Interferon-Free Regimens and Direct-Acting Antiviral Agents for Delta Hepatitis: Are We There Yet?
Abstract
:1. Introduction
2. Epidemiology of Hepatitis Delta Virus Genotypes
3. Hepatitis Delta Virus Structure, Replication, and Pathogenic Mechanisms
4. The Role of Interferon in Modulating Disease Behavior and Its Use in Therapy
The Use of IFNs and Therapy Outcome
5. Emerging New Drugs: Targeted Molecular Therapy
5.1. New Generation Drugs: Bulevirtide
5.2. Lonafarnib
5.3. Nucleic Acid Polymers
6. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Global Health Sector Strategy on Viral Hepatitis 2016–2021; Global Hepatitis Programme, Department of HIV/AIDS: Geneva, Switzerland, 2016; 56p. [Google Scholar]
- Hayashi, T.; Takeshita, Y.; Hutin, Y.J.F.; Harmanci, H.; Easterbrook, P.; Hess, S.; van Holten, J.; Oru, E.O.; Kaneko, S.; Yurdaydin, C.; et al. The global hepatitis delta virus (HDV) epidemic: What gaps to address in order to mount a public health response? Arch. Public Health 2021, 79, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Blanchet, M.; Sinnathamby, V.; Vaillant, A.; Labonté, P. Inhibition of HBsAg secretion by nucleic acid polymers in HepG2.2.15 cells. Antivir. Res. 2019, 164, 97–105. [Google Scholar] [CrossRef]
- Rizzetto, M.; Canese, M.G.; Aricò, S.; Crivelli, O.; Trepo, C.; Bonino, F.; Verme, G. Immunofluorescence detection of new antigen-antibody system (delta/anti-delta) associated to hepatitis B virus in liver and in serum of HBsAg carriers. Gut 1977, 18, 997–1003. [Google Scholar] [CrossRef] [PubMed]
- Koffas, A.; Mak, L.Y.; Kennedy, P.T.F. Hepatitis delta virus: Disease assessment and stratification. J. Viral Hepat. 2023, 30 (Suppl. 1), 11–20. [Google Scholar] [CrossRef] [PubMed]
- Sagnelli, C.; Pisaturo, M.; Curatolo, C.; Codella, A.V.; Coppola, N.; Sagnelli, E. Hepatitis B virus/hepatitis D virus epidemiology: Changes over time and possible future influence of the SARS-CoV-2 pandemic. World J. Gastroenterol. 2021, 27, 7271–7284. [Google Scholar] [CrossRef] [PubMed]
- Urban, S.; Neumann-Haefelin, C.; Lampertico, P. Hepatitis D virus in 2021: Virology, immunology and new treatment approaches for a difficult-to-treat disease. Gut 2021, 70, 1782–1794. [Google Scholar] [CrossRef] [PubMed]
- Le Gal, F.; Brichler, S.; Drugan, T.; Alloui, C.; Roulot, D.; Pawlotsky, J.-M.; Dény, P.; Gordien, E. Genetic diversity and worldwide distribution of the deltavirus genus: A study of 2,152 clinical strains. Hepatology 2017, 66, 1826–1841. [Google Scholar] [CrossRef] [PubMed]
- Rizzetto, M.; Hamid, S.; Negro, F. The changing context of hepatitis D. J. Hepatol. 2021, 74, 1200–1211. [Google Scholar] [CrossRef]
- Karlsen, A.A.; Kyuregyan, K.K.; Isaeva, O.V.; Kichatova, V.S.; Mobarkhan, F.A.A.; Bezuglova, L.V.; Netesova, I.G.; Manuylov, V.A.; Pochtovyi, A.A.; Gushchin, V.A.; et al. Different evolutionary dynamics of hepatitis B virus genotypes A and D, and hepatitis D virus genotypes 1 and 2 in an endemic area of Yakutia, Russia. BMC Infect. Dis. 2022, 22, 452. [Google Scholar] [CrossRef]
- Usman, Z.; Velkov, S.; Protzer, U.; Roggendorf, M.; Frishman, D.; Karimzadeh, H. HDVdb: A Comprehensive Hepatitis D Virus Database. Viruses 2020, 12, 538. [Google Scholar] [CrossRef]
- Souza Campos, M.; Villalobos-Salcedo, J.M.; Vieira Dallacqua, D.S.; Lopes Borges Andrade, C.; Meyer Nascimento, R.J.; Menezes Freire, S.; Paraná, R.; Schinoni, M.I. Systemic Inflammatory Molecules Are Associated with Advanced Fibrosis in Patients from Brazil Infected with Hepatitis Delta Virus Genotype 3 (HDV-3). Microorganisms 2023, 11, 1270. [Google Scholar] [CrossRef] [PubMed]
- Botelho-Souza, L.F.; Vasconcelos, M.P.A.; Dos Santos, A.O.; Salcedo, J.M.V.; Vieira, D.S. Hepatitis delta: Virological and clinical aspects. Virol. J. 2017, 14, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zhang, Y.; Tang, Y.; Yao, T.; Lv, M.; Tang, Z.; Zang, G.; Yu, Y.; Chen, X. Molecular epidemiology and clinical characteristics of hepatitis delta virus (HDV) infected patients with elevated transaminases in Shanghai, China. BMC Infect. Dis. 2020, 20, 565. [Google Scholar] [CrossRef] [PubMed]
- Sant’Anna, T.B.; Araujo, N.M. Hepatitis B Virus Genotype D: An Overview of Molecular Epidemiology, Evolutionary History, and Clinical Characteristics. Microorganisms 2023, 11, 1101. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ni, Y.; Urban, S. Endogenous and exogenous IFN responses suppress HDV persistence during proliferation of hepatocytes in vitro. J. Hepatol. 2019, 70, e718–e719. [Google Scholar] [CrossRef]
- Netter, H.J.; Barrios, M.H.; Littlejohn, M.; Yuen, L.K.W. Hepatitis Delta Virus (HDV) and Delta-Like Agents: Insights into Their Origin. Front. Microbiol. 2021, 12, 652962. [Google Scholar] [CrossRef]
- Denniston, K.J.; Hoyer, B.H.; Smedile, A.; Wells, F.V.; Nelson, J.; Gerin, J.L. Cloned fragment of the hepatitis delta virus RNA genome: Sequence and diagnostic application. Science 1986, 232, 873–875. [Google Scholar] [CrossRef]
- Venkataraman, S.; Badar, U.; Shoeb, E.; Hashim, G.; AbouHaidar, M.; Hefferon, K. An Inside Look into Biological Miniatures: Molecular Mechanisms of Viroids. Int. J. Mol. Sci. 2021, 22, 2795. [Google Scholar] [CrossRef]
- Webb, C.H.; Lupták, A. HDV-like self-cleaving ribozymes. RNA Biol. 2011, 8, 719–727. [Google Scholar] [CrossRef]
- Sureau, C.; Negro, F. The hepatitis delta virus: Replication and pathogenesis. J. Hepatol. 2016, 64, S102–S116. [Google Scholar] [CrossRef]
- Sausen, D.G.; Shechter, O.; Bietsch, W.; Shi, Z.; Miller, S.M.; Gallo, E.S.; Dahari, H.; Borenstein, R. Hepatitis B and Hepatitis D Viruses: A Comprehensive Update with an Immunological Focus. Int. J. Mol. Sci. 2022, 23, 15973. [Google Scholar] [CrossRef] [PubMed]
- Rizzetto, M. The Discovery of the Hepatitis D Virus: Three Princes of Serendip and the Recognition of Autoantibodies to Liver-Kidney Microsomes. Clin. Liver Dis. 2020, 16, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Koh, C.; Heller, T.; Glenn, J.S. Pathogenesis of and New Therapies for Hepatitis D. Gastroenterology 2019, 156, 461–476.e1. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Urban, S. Interplay between Hepatitis D Virus and the Interferon Response. Viruses 2020, 12, 1334. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Zhong, G.; Xu, G.; He, W.; Jing, Z.; Gao, Z.; Huang, Y.; Qi, Y.; Peng, B.; Wang, H.; et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife 2012, 1, e00049. [Google Scholar] [CrossRef]
- Shen, C.; Jiang, X.; Li, M.; Luo, Y. Hepatitis Virus and Hepatocellular Carcinoma: Recent Advances. Cancers 2023, 15, 533. [Google Scholar] [CrossRef]
- Yan, Y.; Allweiss, L.; Yang, D.; Kang, J.; Wang, J.; Qian, X.; Zhang, T.; Liu, H.; Wang, L.; Liu, S.; et al. Down-regulation of cell membrane localized NTCP expression in proliferating hepatocytes prevents hepatitis B virus infection. Emerg. Microbes Infect. 2019, 8, 879–894. [Google Scholar] [CrossRef]
- Zi, J.; Gao, X.; Du, J.; Xu, H.; Niu, J.; Chi, X. Multiple Regions Drive Hepatitis Delta Virus Proliferation and Are Therapeutic Targets. Front. Microbiol. 2022, 13, 838382. [Google Scholar] [CrossRef]
- Ma, J.; Dissanayaka Mudiyanselage, S.D.; Hao, J.; Wang, Y. Cellular roadmaps of viroid infection. Trends Microbiol. 2023; ahead of print. [Google Scholar] [CrossRef]
- Lange, M.; Zaret, D.; Kushner, T. Hepatitis Delta: Current Knowledge and Future Directions. Gastroenterol. Hepatol. 2022, 18, 508–520. [Google Scholar]
- Guillot, C.; Martel, N.; Berby, F.; Bordes, I.; Hantz, O.; Blanchet, M.; Sureau, C.; Vaillant, A.; Chemin, I. Inhibition of hepatitis B viral entry by nucleic acid polymers in HepaRG cells and primary human hepatocytes. PLoS ONE 2017, 12, e0179697. [Google Scholar] [CrossRef]
- Niro, G.A.; Ferro, A.; Cicerchia, F.; Brascugli, I.; Durazzo, M. Hepatitis delta virus: From infection to new therapeutic strategies. World J. Gastroenterol. 2021, 27, 3530–3542. [Google Scholar] [CrossRef] [PubMed]
- Stephenson-Tsoris, S.; Casey, J.L. Hepatitis Delta Virus Genome RNA Synthesis Initiates at Position 1646 with a Nontemplated Guanosine. J. Virol. 2022, 96, 0201721. [Google Scholar] [CrossRef] [PubMed]
- Alves, C.; Branco, C.; Cunha, C. Hepatitis delta virus: A peculiar virus. Adv. Virol. 2013, 12, 560105. [Google Scholar] [CrossRef] [PubMed]
- Khalfi, P.; Kennedy, P.T.; Majzoub, K.; Asselah, T. Hepatitis D virus: Improving virological knowledge to develop new treatments. Antivir. Res. 2023, 209, 105461. [Google Scholar] [CrossRef] [PubMed]
- Mentha, N.; Clément, S.; Negro, F.; Alfaiate, D. A review on hepatitis D: From virology to new therapies. J. Adv. Res. 2019, 17, 3–15. [Google Scholar] [CrossRef]
- Mogensen, T.H. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev. 2009, 22, 240–273. [Google Scholar] [CrossRef]
- Zhang, Z.; Trippler, M.; Real, C.I.; Werner, M.; Luo, X.; Schefczyk, S.; Kemper, T.; Anastasiou, O.E.; Ladiges, Y.; Treckmann, J.; et al. Hepatitis B Virus Particles Activate Toll-Like Receptor 2 Signaling Initially Upon Infection of Primary Human Hepatocytes. Hepatology 2020, 72, 829–844. [Google Scholar] [CrossRef]
- Schoggins, J.W.; Rice, C.M. Interferon-stimulated genes and their antiviral effector functions. Curr. Opin. Virol. 2011, 1, 519–525. [Google Scholar] [CrossRef]
- Winer, B.Y.; Gaska, J.M.; Lipkowitz, G.; Bram, Y.; Parekh, A.; Parsons, L.; Leach, R.; Jindal, R.; Cho, C.H.; Shrirao, A.; et al. Analysis of Host Responses to Hepatitis B and Delta Viral Infections in a Micro-scalable Hepatic Co-culture System. Hepatology 2020, 71, 14–30. [Google Scholar] [CrossRef]
- Pugnale, P.; Pazienza, V.; Guilloux, K.; Negro, F. Hepatitis delta virus inhibits alpha interferon signaling. Hepatology 2009, 49, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, D.; Dou, X.; Xie, Q.; Jiang, J.; Chen, X.; Ren, H. Consensus on Pegylated Interferon Alpha in Treatment of Chronic Hepatitis B. J. Clin. Transl. Hepatol. 2018, 6, 1–10. [Google Scholar] [CrossRef]
- Abdrakhman, A.; Ashimkhanova, A.; Almawi, W.Y. Effectiveness of pegylated interferon monotherapy in the treatment of chronic hepatitis D virus infection: A meta-analysis. Antivir. Res. 2021, 185, 104995. [Google Scholar] [CrossRef] [PubMed]
- Jang, T.-Y.; Wei, Y.-J.; Yeh, M.-L.; Liu, S.-F.; Hsu, C.-T.; Hsu, P.-Y.; Liu, T.-W.; Lin, Y.-H.; Liang, P.-C.; Hsieh, M.-H.; et al. Role of hepatitis D virus in persistent alanine aminotransferase abnormality among chronic hepatitis B patients treated with nucleotide/nucleoside analogues. J. Formos. Med. Assoc. 2021, 120, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Zhao, Q.; Sheraz, M.; Cheng, J.; Qi, Y.; Su, Q.; Cuconati, A.; Wei, L.; Du, Y.; Li, W.; et al. HBV core protein allosteric modulators differentially alter cccDNA biosynthesis from de novo infection and intracellular amplification pathways. PLoS Pathog. 2017, 13, e1006658. [Google Scholar] [CrossRef] [PubMed]
- Gane, E.; Liu, A.; Yuen, M.F.; Schwabe, C.; Bo, Q.; Das, S.; Gao, L.; Zhou, X.; Wang, Y.; Coakley, E.; et al. LBO-003-RO7049389, a core protein allosteric modulator, demonstrates robust anti-HBV activity in chronic hepatitis B patients and is safe and well tolerated. J. Hepatol. 2018, 68, S101. [Google Scholar] [CrossRef]
- Verrier, E.R.; Weiss, A.; Bach, C.; Heydmann, L.; Turon-Lagot, V.; Kopp, A.; El Saghire, H.; Crouchet, E.; Pessaux, P.; Garcia, T.; et al. Combined small molecule and loss-of-function screen uncovers estrogen receptor alpha and CAD as host factors for HDV infection and antiviral targets. Gut 2020, 69, 158–167. [Google Scholar] [CrossRef]
- Vogt, A.; Wohlfart, S.; Urban, S.; Mier, W. Medical Advances in Hepatitis D Therapy: Molecular Targets. Int. J. Mol. Sci. 2022, 23, 10817. [Google Scholar] [CrossRef]
- Hamid, S.S.; Etzion, O.; Lurie, Y. A phase 2 randomized clinical trial to evaluate the safety and efficacy of pegylated interferon lambda monotherapy in patients with chronic hepatitis delta virus infection. interim results from the LIMT HDV study. Hepatology 2017, 66, 234–239. [Google Scholar]
- Koh, C.; Hercun, J.; Rahman, F. A phase 2 study of peginterferon lambda, lonafarnib, and ritonavir for 24 weeks: End-of-study results from the lift HDV study. In Proceedings of the AASLD 2020: The Liver Meeting, Virtual, 13–16 November 2020. [Google Scholar]
- Tan, Y.C.; Lee, G.H.; Huang, D.Q.; Lim, S.G. Future anti-HDV treatment strategies, including those aimed at HBV functional cure. Liver Int. 2022, 3, 129–137. [Google Scholar] [CrossRef]
- Wedemeyer, H.; Bogomolov, P.; Blank, A.; Allweiss, L.; Dandri-Petersen, M.; Bremer, B.; Voronkova, N.; Schoneweis, K.; Pathil, A.; Burhenne, J.; et al. Final results of a multicenter, open-label phase 2b clinical trial to assess safety and efficacy of myrcludex B in combination with tenofovir in patients with chronic HBV/HDV co-infection. Lancet Infect. Dis. 2022; in press. [Google Scholar] [CrossRef]
- Wedemeyer, H.; Schöneweis, K.; Bogomolov, P.; Chulanov, V.; Stepanova, T.; Viacheslav, M.; Allweiss, L.; Dandri, M.; Ciesek, S.; Dittmer, U.; et al. 48 weeks of high dose (10 mg) bulevirtide as monotherapy or with peginterferon alfa-2a in patients with chronic HBV/HDV coinfection. J Hepatol. 2020, 73, S52. [Google Scholar] [CrossRef]
- Wedemeyer, H.; Aleman, S.; Andreone, P.; Blank, A.; Brunetto, M.; Bogomolov, P.; Chulanov, V.; Geyvandova, N.; Hilgard, G.; Mamonova, N.; et al. Bulevirtide monotherapy at low and high dose in patients with chronic hepatitis delta: 24-week interim data of the phase 3 MYR301 study. J. Hepatol. 2021, 75, S294. [Google Scholar] [CrossRef]
- Lampertico, P.; Roulot, D.; Wedemeyer, H. Bulevirtide with or without pegIFNα for patients with compensated chronic hepatitis delta: From clinical trials to real-world studies. J. Hepatol. 2022, 77, 1422–1430. [Google Scholar] [CrossRef]
- Tomaru, A.; Takeda-Morishita, M.; Banba, H.; Takayama, K. Analysis of the pharmacokinetic boosting effects of ritonavir on oral bioavailability of drugs in mice. Drug Metab. Pharmacokinet. 2013, 28, 144–152. [Google Scholar] [CrossRef]
- Zeldin, R.K.; Petruschke, R.A. Pharmacological and therapeutic properties of ritonavir-boosted protease inhibitor therapy in HIV-infected patients. J. Antimicrob. Chemother. 2004, 53, 4–9. [Google Scholar] [CrossRef]
- Yurdaydin, C.; Keskin, O.; Kalkan, C.; Karakaya, F.; Çalişkan, A.; Karatayli, E.; Karatayli, S.; Bozdayi, A.M.; Koh, C.; Heller, T.; et al. Optimizing lonafarnib treatment for the management of chronic delta hepatitis: The LOWR HDV-1 study. Hepatology 2018, 67, 1224–1236. [Google Scholar] [CrossRef]
- Yurdaydin, C.; Idilman, R.; Kalkan, C.; Karakaya, F.; Caliskan, A.; Keskin, O.; Yurdcu, E.; Karatayli, S.; Bozdayi, M.; Koh, C.; et al. A phase 2 dose-optimization study of lonafarnib with ritonavir for the treatment of chronic delta hepatitis-end of treatment results from the LOWR HDV-2 study. J. Hepatol. 2017, 66, S33–S34. [Google Scholar] [CrossRef]
- Koh, C.; Surana, P.; Han, T.; Fryzek, N.; Kapuria, D.; Etzion, O.; Takyar, V.; Rotman, Y.; Canales, R.; Dahari, H. A phase 2 study exploring once daily dosing of ritonavir boosted lonafarnib for the treatment of chronic delta hepatitis—End of study results from the LOWR HDV-3 study. J. Hepatol. 2017, 66, S101–S102. [Google Scholar] [CrossRef]
- Wedemeyer, H.; Port, K.; Deterding, K.; Wranke, A.; Kirschner, J.; Bruno, B.; Martins, B.; Glenn, J.S.; Kornberg, M.; Manns, M.P.; et al. A phase 2 dose-escalation study of lonafarnib plus ritonavir in patients with chronic hepatitis D: Final results from the lonafarnib with ritonavir in HDV-4 (LOWR HDV-4) study. J. Hepatol. 2017, 66, S24. [Google Scholar] [CrossRef]
- Vaillant, A. Nucleic acid polymers: Broad spectrum antiviral activity, antiviral mechanisms and optimization for the treatment of hepatitis B and hepatitis D infection. Antivir. Res. 2016, 133, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Bazinet, M.; Pântea, V.; Cebotarescu, V.; Cojuhari, L.; Jimbei, P.; Albrecht, J.; Schmid, P.; Le Gal, F.; Gordien, E.; Krawczyk, A.; et al. Safety and efficacy of REP 2139 and pegylated interferon alfa-2a for treatment-naive patients with chronic hepatitis B virus and hepatitis D virus co-infection (REP 301 and REP 301-LTF): A non-randomised, open-label, phase 2 trial. Lancet Gastroenterol. Hepatol. 2017, 2, 877–889. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Hepcludex (Bulevirtide) Powder for Solution for Injection: EU Summary of Product Characteristics. 2020. Available online: https://ec.europa.eu (accessed on 31 August 2020).
Name of Agent/Agents Used | Number of Participants | Study Type | Phase of Clinical Trial/Trial ID | Summary of Clinical Trial Outcomes | |
---|---|---|---|---|---|
Lonafarnib Oral prenylation inhibitor | Lonafarnib Placebo | 14 | Randomized Interventional | Phase 2/ NCT01495585 |
|
Lonafarnib Ritonavir Interferon λ | 26 | Interventional | Phase 2/ NCT03600714 |
| |
Lonafarnib Ritonavir Placebo | 22 | Interventional | Phase 2/ NCT02511431 |
| |
Bulevirtide Entry inhibitor | Bulevirtide pegIFN α-2a Tenofovir | 90 | Multicenter, Open-label, Randomized, Comparative, parallel-arm | Phase 2/ NCT02888106 |
|
Bulevirtide Tenofovir | 120 | Multicenter, Open-label, Randomized Interventional | Phase 2/ NCT03546621 |
| |
Bulevirtide pegIFNα | 175 | Randomized Interventional Multicenter, Open-label | Phase 2b/ NCT03852433 |
| |
REP 2139-Ca Nucleic acid polymers Block viral entry | REP 2139-Ca pegIFNα-2a | 12 | Interventional | Phase 2/ NCT02233075 |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nemteanu, R.; Clim, A.; Hincu, C.E.; Gheorghe, L.; Ciortescu, I.; Plesa, A. Interferon-Free Regimens and Direct-Acting Antiviral Agents for Delta Hepatitis: Are We There Yet? Curr. Issues Mol. Biol. 2023, 45, 7878-7890. https://doi.org/10.3390/cimb45100498
Nemteanu R, Clim A, Hincu CE, Gheorghe L, Ciortescu I, Plesa A. Interferon-Free Regimens and Direct-Acting Antiviral Agents for Delta Hepatitis: Are We There Yet? Current Issues in Molecular Biology. 2023; 45(10):7878-7890. https://doi.org/10.3390/cimb45100498
Chicago/Turabian StyleNemteanu, Roxana, Andreea Clim, Corina Elena Hincu, Liliana Gheorghe, Irina Ciortescu, and Alina Plesa. 2023. "Interferon-Free Regimens and Direct-Acting Antiviral Agents for Delta Hepatitis: Are We There Yet?" Current Issues in Molecular Biology 45, no. 10: 7878-7890. https://doi.org/10.3390/cimb45100498
APA StyleNemteanu, R., Clim, A., Hincu, C. E., Gheorghe, L., Ciortescu, I., & Plesa, A. (2023). Interferon-Free Regimens and Direct-Acting Antiviral Agents for Delta Hepatitis: Are We There Yet? Current Issues in Molecular Biology, 45(10), 7878-7890. https://doi.org/10.3390/cimb45100498