Clinical Significance of SOX10 Expression in Human Pathology
Abstract
:1. Introduction
2. SOX10 Expression in Normal Tissues
2.1. SOX10 Expression within the Peripheral Nervous System
2.2. SOX10 Expression within the Inner Ear
2.3. SOX10 Expression in Melanocytes
2.4. SOX10 Expression in the Mammary Epithelium
3. SOX10 Expression in Non-Neoplastic Pathological Conditions
3.1. SOX10 in Waardenburg–Shah Syndrome
3.2. PCWH
3.3. Kallman Syndrome
3.4. Hearing Loss
4. SOX10 Expression in Neural and Neuroectodermal Tumors
4.1. SOX10 Expression in Melanoma
4.2. SOX10 Expression in Malignant Peripheral Nerve Sheath Tumor and Schwannomas
Tumor | References | Findings |
---|---|---|
Melanoma | [51] | Role of SOX10 in Melanoma:
|
[45] |
| |
[39] |
| |
[40] | SOX10 in Melanoma Cell Migration and Metastasis:
| |
[41] | SOX10 as a Diagnostic Marker for Melanoma:
| |
[36] | SOX10 and Nestin in Melanoma Development:
| |
Malignant peripheral nerve sheath tumor | [48,49] | SOX10 in Differentiating MPNSTs and Synovial Sarcomas:
|
Merlin-null schwannoma | [50] | SOX10 in Schwannomas and Normal Schwann Cell Function:
|
5. SOX10 Expression in Mesenchymal Tumors
6. SOX10 Expression in Epithelial Neoplasms
Epithelial Neoplasm | SOX10 Expression | Implications |
---|---|---|
Ovarian serous, mucinous, and endometrioid carcinoma | Overexpressed |
|
Triple-negative breast cancer | Overexpressed |
|
Nasopharyngeal carcinomas | Overexpressed | |
Bladder carcinomas | Overexpressed |
|
Salivary gland neoplasms | Overexpressed |
|
Gastrointestinal Mesenchymal Tumors | Lost |
|
Uterine Sarcomas | Lost |
|
7. Expression of Other Members of the “SRY-Related HMG Box” in Cancers
7.1. The HMG Box Family
7.1.1. Non-Sequence Specific HMG Box Domains
- Proteins in this category, such as HMGB1-4, typically possess two HMG boxes or four to six HMG boxes in the presence of transcription factor UBF [75];
- Mammals have four HMGB proteins (HMGB1-4), and they function as DNA chaperones, contributing to processes like transcription and DNA repair. However, each of these proteins has distinct characteristics [75].
7.1.2. Sequence Specific HMG Box Domains
- Proteins classified as sequence-specific usually have a single HMG box and lack acidic C-tails, which are common in non-sequence-specific HMG box proteins [74];
- Examples of proteins in this category include TCF, SRY, and SOX [75];
- Despite recognizing specific DNA sequences, these proteins form few base-specific hydrogen bonds, resulting in less sequence specificity [75].
7.2. SRY-Related HMG Box
7.2.1. Genetic Organization
- SOX genes are organized into eight groups (A–H), with group B further divided into subgroups B1 and B2 [76];
- Within the same group, SOX proteins share a high degree of structural and identity similarity, ranging from 70% to 95%, both in the HMG box domain and in external characteristics;
- Groups outside the same group have partial similarities in identities (>46%) in the HMG box domain and none in the external domains [76];
7.2.2. Functions and Mechanisms
- SOX genes play crucial roles in DNA replication and mutations, contributing to diverse cellular processes [76];
7.2.3. Individual SOX Genes
- The specific locus and schematic of the different SOX genes are detailed in Table 3
Group | Gene | Locus | Schematic |
---|---|---|---|
A | SRY | YC3 | |
B1 | SOX1 | 8 A1–A2 | |
SOX2 | 3 A2–B | ||
SOX3 | X A7.3–B | ||
B2 | SOX14 | 9 E3.3 | |
SOX21 | 14 E4 | ||
C | SOX4 | 13 A3–A5 | |
SOX11 | 12 A3 | ||
SOX12 | 2 G3 | ||
D | SOX5 | 6 G3 | |
L-SOX5 | 6 G3 | ||
SOX6 | 7 F1 | ||
SOX13 | 1 E4 | ||
E | SOX8 | 17 A3 | |
SOX9 | 11 E2 | ||
SOX10 | 15 E1 | ||
F | SOX7 | 14 C3 | |
SOX17 | 1 A1 | ||
SOX18 | 2 H4 | ||
G | SOX15 | 11 B3 | |
H | SOX30 | 11 B1.1 |
Group A
Group B (B1 + B2)
- Function: SOX1 plays a crucial role in maintaining stem cell lineage, particularly in embryogenesis, differentiation, and mammalian brain development. It is essential for the survival and function of dopaminergic neurons [80];
- Oncogenic properties: SOX1 has been implicated in the development of small cell lung, central nervous system, breast, and ovarian cancers. In small-cell lung cancer, SOX1 collaborates with NKX2.1 to maintain its identity and function. In central nervous system tumors like glioblastomas, SOX1 extends the survivability of cancer cells [83]. In breast and ovarian cancer, SOX1 acts as a tumor suppressor by inhibiting the Wnt/B-Catenin and STAT3 signaling pathways [84,85];
Group C
- Function: SOX11 serves as both a causative and protective agent in various tumors;
- Cancer associations: Upregulation of SOX11 is seen in medulloblastoma, mantle cell lymphoma, endometrial and breast cancer, Burkitt’s lymphoma, colorectal cancer, lung adenocarcinoma, lung SCC, and ovarian cancer [98,99,100,101,102,103,104]. SOX11 expression is a unique feature in certain cancers and helps distinguish them from other malignancies [105,106];
- Function: Hepatocellular carcinomas positive for SOX12 exhibit increased proliferation, malignant potential, and higher resistance to cisplatin, a common chemotherapy agent [108];
Group D
- Function: SOX5 plays a role in the development and differentiation of embryonic germ cell lines [111];
- Function: SOX6 exhibits both tumor suppressor and oncogenic properties depending on the cancer type;
- Unique properties: SOX6 induces autophagy in cervical cancer cell lines, leading to increased resistance to cisplatin chemotherapy and enhanced survivability [123];
- Cancer associations: SOX13 is highly expressed in oligodendrogliomas, gliomas, gastric carcinomas, and hepatocellular carcinomas [123,124,125,126]. SOX13 overexpression in hepatocellular carcinoma activates TWIST1, a major transcription factor in embryonic development, promoting cancer metastasis [126]. SOX13 supports stem-like properties in hepatocellular carcinoma, contributing to increased self-renewal, resistance to chemotherapy, and tumorgenicity [127].
Group E
- Function: SOX8 has some minor effects on the specification and differentiation of glial cells;
- Cancer associations: SOX8 expression is greatest during central nervous system development in immature cells. Elevated levels of SOX8 indicate an undifferentiated state in the gliomas [124];
- Function: SOX9 is involved in multiple cancers in a variety of ways;
- Cancer associations: In some breast cancer subtypes, SOX9 is involved in a positive feedback loop through Wnt/β-catenin activation [128]. Prostate cancer tends to be correlated with elevated levels of SOX9 [129]. SOX9 contributes to cell proliferation and invasion in renal cell carcinoma. MiRNA-138-induced SOX9 suppression prevents renal cell carcinoma progression [130]. Through the WNT/β-catenin pathway, SOX9 is involved in cancer cell proliferation and invasion in papillary thyroid cancer [131]. SOX9 increases LGR5 expression, imparting the ability of glioblastoma cells to undergo tumorigenesis [77]. Elevated levels of SOX9 expression in colorectal cancers are associated with lower 5-year survival rates [132]. SOX9 levels are increased in non-small lung cancer [77] due to tumor-associated macrophages, which release TGF-β [133]. In skin cancers, SOX9 levels are elevated too [77]. Increased SOX9 levels cause melanoma cells to metastasize [134]. SOX9-involved keratinocyte proliferation also occurs in cutaneous BCC and cutaneous SCC [135].
Group F
- Cancer associations: SOX7 is implicated in several cancers. In breast cancer, SOX7 functions as a tumor suppressor [136]. Hypermethylation-mediated silencing of the SOX7 promoter is associated with greater carcinogenesis in breast cancer [136]. SOX7 can be used as a marker for prognosis in prostate cancer. Its downregulation may be involved in the castration-resistant progression of prostate cancer [129]. SOX7 also exhibits tumor-suppressive effects in gastric cancer through potential involvement in abnormalities with the SOX7-associated WNT/β-catenin pathway [137]. SOX7’s tumor suppressor effects have also been delineated in non-small-cell lung cancer, targeted by microRNA-9 [138];
- Cancer associations: SOX17 is associated with several cancers. Hypermethylation-dependent silencing of the SOX17 promoter may induce inappropriate activation of the Wnt pathway, giving rise to breast cancer, thyroid cancer, gliomas, and gastrointestinal tumors [139,140,141,142]. Melanoma pathogenesis is also associated with decreased SOX17 expression; however, the mechanism is unclear [143];
- Cancer associations: SOX18 is associated with breast, lung, and skin cancers. In breast cancer, there is a positive correlation between SOX18 and vascular endothelial growth factor D (VEGF-D), suggesting that SOX18 positively influences angiogenesis [144]. In non-small-cell lung cancer, SOX18 expression is noted in cells and vessels, and its expression may be used as a prognostic marker [145]. In skin cancers, elevated SOX18 expression is involved in the formation of BCC and SCC [146].
Group G
Group H
8. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herbarth, B.; Pingault, V.; Bondurand, N.; Kuhlbrodt, K.; Hermans-Borgmeyer, I.; Puliti, A.; Lemort, N.; Goossens, M.; Wegner, M. Mutation of the Sry-related Sox10 gene in Dominant megacolon, a mouse model for human Hirschsprung disease. Proc. Natl. Acad. Sci. USA 1998, 95, 5161–5165. [Google Scholar] [CrossRef]
- Aoki, Y.; Saint-Germain, N.; Gyda, M.; Magner-Fink, E.; Lee, Y.H.; Credidio, C.; Saint-Jeannet, J.P. Sox10 regulates the development of neural crest-derived melanocytes in Xenopus. Dev. Biol. 2003, 259, 19–33. [Google Scholar] [CrossRef]
- Pingault, V.; Zerad, L.; Bertani-Torres, W.; Bondurand, N. SOX10: 20 years of phenotypic plurality and current understanding of its developmental function. J. Med. Genet. 2022, 59, 105–114. [Google Scholar] [CrossRef]
- Schreiner, S.; Cossais, F.; Fischer, K.; Scholz, S.; Bösl, M.R.; Holtmann, B.; Sendtner, M.; Wegner, M. Hypomorphic Sox10 alleles reveal novel protein functions and unravel developmental differences in glial lineages. Development 2007, 134, 3271–3281. [Google Scholar] [CrossRef] [PubMed]
- Pusch, C.; Hustert, E.; Pfeifer, D.; Südbeck, P.; Kist, R.; Roe, B.; Wang, Z.; Balling, R.; Blin, N.; Scherer, G. The SOX10/Sox10 gene from human and mouse: Sequence, expression, and transactivation by the encoded HMG domain transcription factor. Hum. Genet. 1998, 103, 115–123. [Google Scholar] [CrossRef]
- Sommer, L. Generation of melanocytes from neural crest cells. Pigment. Cell Melanoma Res. 2011, 24, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Yalan, L.; Hua, Z.; Yong, F. Progress in the study of syndromic hearing loss resulted from neural crest abnormalities. Yi Chuan 2014, 36, 1131–1144. [Google Scholar] [PubMed]
- Pingault, V.; Bondurand, N.; Kuhlbrodt, K.; Goerich, D.E.; Préhu, M.O.; Puliti, A.; Herbarth, B.; Hermans-Borgmeyer, I.; Legius, E.; Matthijs, G.; et al. SOX10 mutations in patients with Waardenburg-Hirschsprung disease. Nat. Genet. 1998, 18, 171–173. [Google Scholar] [CrossRef]
- Wissmüller, S.; Kosian, T.; Wolf, M.; Finzsch, M.; Wegner, M. The high-mobility-group domain of Sox proteins interacts with DNA-binding domains of many transcription factors. Nucleic Acids Res. 2006, 34, 1735–1744. [Google Scholar] [CrossRef] [PubMed]
- Schock, E.N.; LaBonne, C. Sorting Sox: Diverse Roles for Sox Transcription Factors During Neural Crest and Craniofacial Development. Front. Physiol. 2020, 11, 606889. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.A.C.; Soufi, A.; Pollard, S.M. Post-translational modification of SOX family proteins: Key biochemical targets in cancer? Semin. Cancer Biol. 2020, 67, 30–38. [Google Scholar] [CrossRef]
- Taylor, K.M.; Labonne, C. SoxE factors function equivalently during neural crest and inner ear development and their activity is regulated by SUMOylation. Dev. Cell 2005, 9, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Girard, M.; Goossens, M. Sumoylation of the SOX10 transcription factor regulates its transcriptional activity. FEBS Lett. 2006, 580, 1635–1641. [Google Scholar] [CrossRef] [PubMed]
- Peirano, R.I.; Goerich, D.E.; Riethmacher, D.; Wegner, M. Protein zero gene expression is regulated by the glial transcription factor Sox10. Mol. Cell Biol. 2000, 20, 3198–3209. [Google Scholar] [CrossRef] [PubMed]
- Amer, S.; Ibrahim, H.; Elkordy, M. The Immunohistochemical Expression of SOX-10 in Urothelial Carcinoma and the Non Neoplastic Urothelium; and a Correlation with the Tumor Features. Asian Pac. J. Cancer Prev. 2022, 23, 1425–1432. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Qin, C.; Zhao, Y.; Du, Y.; Sheng, Z.; Wang, Q.; Song, Q.; Chen, L.; Liu, C.; Xu, T. SOX10 is over-expressed in bladder cancer and contributes to the malignant bladder cancer cell behaviors. Clin. Transl. Oncol. 2017, 19, 1035–1044. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Takeda, K.; Katori, Y.; Ikeda, K.; Oshima, T.; Yasumoto, K.; Saito, H.; Takasaka, T.; Shibahara, S. Expression of the Sox10 gene during mouse inner ear development. Brain Res. Mol. Brain Res. 2000, 84, 141–145. [Google Scholar] [CrossRef]
- Locher, H.; Frijns, J.H.; van Iperen, L.; de Groot, J.C.; Huisman, M.A.; Chuva de Sousa Lopes, S.M. Neurosensory development and cell fate determination in the human cochlea. Neural Dev. 2013, 8, 20. [Google Scholar] [CrossRef]
- Qi, J.; Ma, L.; Guo, W. Recent advances in the regulation mechanism of SOX10. J. Otol. 2022, 17, 247–252. [Google Scholar] [CrossRef]
- Britsch, S.; Goerich, D.E.; Riethmacher, D.; Peirano, R.I.; Rossner, M.; Nave, K.A.; Birchmeier, C.; Wegner, M. The transcription factor Sox10 is a key regulator of peripheral glial development. Genes. Dev. 2001, 15, 66–78. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, C.; Law, W.D.; Rodríguez-Molina, J.F.; Prasad, A.B.; Song, L.; Crawford, G.E.; Mullikin, J.C.; Svaren, J.; Antonellis, A. Stringent comparative sequence analysis reveals SOX10 as a putative inhibitor of glial cell differentiation. BMC Genom. 2016, 17, 887. [Google Scholar] [CrossRef]
- Mertelmeyer, S.; Weider, M.; Baroti, T.; Reiprich, S.; Fröb, F.; Stolt, C.C.; Wagner, K.U.; Wegner, M. The transcription factor Sox10 is an essential determinant of branching morphogenesis and involution in the mouse mammary gland. Sci. Rep. 2020, 10, 17807. [Google Scholar] [CrossRef]
- Southard-Smith, E.M.; Kos, L.; Pavan, W.J. Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat. Genet. 1998, 18, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Lane, P.W.; Liu, H.M. Association of megacolon with a new dominant spotting gene (Dom) in the mouse. J. Hered. 1984, 75, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Veronique, P.; Dorothée, E.; Florence Dastot-Le, M.; Michel, G.; Sandrine, M.; Nadege, B. Review and update of mutations causing Waardenburg syndrome. Hum. Mutat. 2010, 31, 391–406. [Google Scholar] [CrossRef]
- Bondurand, N.; Dastot-Le Moal, F.; Stanchina, L.; Collot, N.; Baral, V.; Marlin, S.; Attie-Bitach, T.; Giurgea, I.; Skopinski, L.; Reardon, W.; et al. Deletions at the SOX10 gene locus cause Waardenburg syndrome types 2 and 4. Am. J. Hum. Genet. 2007, 81, 1169–1185. [Google Scholar] [CrossRef] [PubMed]
- Inoue, K.; Shilo, K.; Boerkoel, C.F.; Crowe, C.; Sawady, J.; Lupski, J.R.; Agamanolis, D.P. Congenital hypomyelinating neuropathy, central dysmyelination, and Waardenburg-Hirschsprung disease: Phenotypes linked by SOX10 mutation. Ann. Neurol. 2002, 52, 836–842. [Google Scholar] [CrossRef] [PubMed]
- Touraine, R.L.; Attié-Bitach, T.; Manceau, E.; Korsch, E.; Sarda, P.; Pingault, V.; Encha-Razavi, F.; Pelet, A.; Augé, J.; Nivelon-Chevallier, A.; et al. Neurological phenotype in Waardenburg syndrome type 4 correlates with novel SOX10 truncating mutations and expression in developing brain. Am. J. Hum. Genet. 2000, 66, 1496–1503. [Google Scholar] [CrossRef] [PubMed]
- Inoue, K.; Tanabe, Y.; Lupski, J.R. Myelin deficiencies in both the central and the peripheral nervous systems associated with a SOX10 mutation. Ann. Neurol. 1999, 46, 313–318. [Google Scholar] [CrossRef]
- Lieblich, J.M.; Rogol, A.D.; White, B.J.; Rosen, S.W. Syndrome of anosmia with hypogonadotropic hypogonadism (Kallmann syndrome): Clinical and laboratory studies in 23 cases. Am. J. Med. 1982, 73, 506–519. [Google Scholar] [CrossRef]
- Veronique, P.; Virginie, B.; Viviane, B.; Séverine, M.; Yuli, W.; Asma, C.; Corinne, F.; Chrystel, L.; Verier-Mine, O.; Christine, F.; et al. Loss-of-Function Mutations in SOX10 Cause Kallmann Syndrome with Deafness. Am. J. Hum. Genet. 2013, 92, 707–724. [Google Scholar] [CrossRef]
- Elmaleh-Bergès, M.; Baumann, C.; Noël-Pétroff, N.; Sekkal, A.; Couloigner, V.; Devriendt, K.; Wilson, M.; Marlin, S.; Sebag, G.; Pingault, V. Spectrum of Temporal Bone Abnormalities in Patients with Waardenburg Syndrome and SOX10 Mutations. Am. J. Neuroradiol. 2013, 34, 1257–1263. [Google Scholar] [CrossRef] [PubMed]
- Jian, S.; Yong, F.; Frederic, R.A.; Frederic, A.; Paul, C.; Kris, V.; Ingeborg, D. Hearing loss in Waardenburg syndrome: A systematic review. Clin. Genet. 2016, 89, 416–425. [Google Scholar] [CrossRef]
- Breuskin, I.; Bodson, M.; Thelen, N.; Thiry, M.; Borgs, L.; Nguyen, L.; Stolt, C.; Wegner, M.; Lefebvre, P.P.; Malgrange, B. Glial but not neuronal development in the cochleo-vestibular ganglion requires Sox10. J. Neurochem. 2010, 114, 1827–1839. [Google Scholar] [CrossRef] [PubMed]
- Veronique, P.; Emmanuelle, F.; Viviane, B.; Souad, G.; Natalie, L.; Vincent, C.; Françoise, D.; Noël-Pétroff, N.; Pointe, H.D.L.; Monique, E.; et al. SOX10 mutations mimic isolated hearing loss. Clin. Genet. 2015, 88, 352–359. [Google Scholar] [CrossRef]
- Bakos, R.M.; Maier, T.; Besch, R.; Mestel, D.S.; Ruzicka, T.; Sturm, R.A.; Berking, C. Nestin and SOX9 and SOX10 transcription factors are coexpressed in melanoma. Exp. Dermatol. 2010, 19, e89–e94. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Zheng, X.; Zhang, X.; Wang, Y.; Zhu, S.; Lu, F.; Qu, J.; Hou, L. Sox10 regulates skin melanocyte proliferation by activating the DNA replication licensing factor MCM5. J. Dermatol. Sci. 2017, 85, 216–225. [Google Scholar] [CrossRef]
- Cronin, J.C.; Watkins-Chow, D.E.; Incao, A.; Hasskamp, J.H.; Schönewolf, N.; Aoude, L.G.; Hayward, N.K.; Bastian, B.C.; Dummer, R.; Loftus, S.K.; et al. SOX10 Ablation Arrests Cell Cycle, Induces Senescence, and Suppresses Melanomagenesis. Cancer Res. 2013, 73, 5709–5718. [Google Scholar] [CrossRef]
- Rosenbaum, S.R.; Tiago, M.; Caksa, S.; Capparelli, C.; Purwin, T.J.; Kumar, G.; Glasheen, M.; Pomante, D.; Kotas, D.; Chervoneva, I.; et al. SOX10 requirement for melanoma tumor growth is due, in part, to immune-mediated effects. Cell Rep. 2021, 37, 110085. [Google Scholar] [CrossRef]
- Seong, I.; Min, H.J.; Lee, J.H.; Yeo, C.Y.; Kang, D.M.; Oh, E.S.; Hwang, E.S.; Kim, J. Sox10 controls migration of B16F10 melanoma cells through multiple regulatory target genes. PLoS ONE 2012, 7, e31477. [Google Scholar] [CrossRef]
- Clevenger, J.; Joseph, C.; Dawlett, M.; Guo, M.; Gong, Y. Reliability of immunostaining using pan-melanoma cocktail, SOX10, and microphthalmia transcription factor in confirming a diagnosis of melanoma on fine-needle aspiration smears. Cancer Cytopathol. 2014, 122, 779–785. [Google Scholar] [CrossRef]
- Cronin, J.C.; Loftus, S.K.; Baxter, L.L.; Swatkoski, S.; Gucek, M.; Pavan, W.J. Identification and functional analysis of SOX10 phosphorylation sites in melanoma. PLoS ONE 2018, 13, e0190834. [Google Scholar] [CrossRef]
- Wouters, J.; Kalender-Atak, Z.; Minnoye, L.; Spanier, K.I.; De Waegeneer, M.; Bravo González-Blas, C.; Mauduit, D.; Davie, K.; Hulselmans, G.; Najem, A.; et al. Robust gene expression programs underlie recurrent cell states and phenotype switching in melanoma. Nat. Cell Biol. 2020, 22, 986–998. [Google Scholar] [CrossRef]
- Verfaillie, A.; Imrichova, H.; Atak, Z.K.; Dewaele, M.; Rambow, F.; Hulselmans, G.; Christiaens, V.; Svetlichnyy, D.; Luciani, F.; Van den Mooter, L.; et al. Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state. Nat. Commun. 2015, 6, 6683. [Google Scholar] [CrossRef] [PubMed]
- Cronin, J.C.; Wunderlich, J.; Loftus, S.K.; Prickett, T.D.; Wei, X.; Ridd, K.; Vemula, S.; Burrell, A.S.; Agrawal, N.S.; Lin, J.C.; et al. Frequent mutations in the MITF pathway in melanoma. Pigment. Cell Melanoma Res. 2009, 22, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Shakhova, O.; Zingg, D.; Schaefer, S.M.; Hari, L.; Civenni, G.; Blunschi, J.; Claudinot, S.; Okoniewski, M.; Beermann, F.; Mihic-Probst, D.; et al. Sox10 promotes the formation and maintenance of giant congenital naevi and melanoma. Nat. Cell Biol. 2012, 14, 882–890. [Google Scholar] [CrossRef] [PubMed]
- Capparelli, C.; Purwin, T.J.; Glasheen, M.; Caksa, S.; Tiago, M.; Wilski, N.; Pomante, D.; Rosenbaum, S.; Nguyen, M.Q.; Cai, W.; et al. Targeting SOX10-deficient cells to reduce the dormant-invasive phenotype state in melanoma. Nat. Commun. 2022, 13, 1381. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Pekmezci, M.; Folpe, A.L.; Ersen, A.; Horvai, A.E. Diagnostic utility of SOX10 to distinguish malignant peripheral nerve sheath tumor from synovial sarcoma, including intraneural synovial sarcoma. Mod. Pathol. 2014, 27, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Pekmezci, M.; Reuss, D.E.; Hirbe, A.C.; Dahiya, S.; Gutmann, D.H.; von Deimling, A.; Horvai, A.E.; Perry, A. Morphologic and immunohistochemical features of malignant peripheral nerve sheath tumors and cellular schwannomas. Mod. Pathol. 2015, 28, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Doddrell, R.D.; Dun, X.P.; Shivane, A.; Feltri, M.L.; Wrabetz, L.; Wegner, M.; Sock, E.; Hanemann, C.O.; Parkinson, D.B. Loss of SOX10 function contributes to the phenotype of human Merlin-null schwannoma cells. Brain 2013, 136, 549–563. [Google Scholar] [CrossRef]
- Su, Z.; Bao, W.; Yang, G.; Liu, J.; Zhao, B. SOX12 promotes thyroid cancer cell proliferation and invasion by regulating the expression of POU2F1 and POU3F1. Yonsei Med. J. 2022, 63, 591. [Google Scholar] [CrossRef] [PubMed]
- Miettinen, M.; McCue, P.A.; Sarlomo-Rikala, M.; Biernat, W.; Czapiewski, P.; Kopczynski, J.; Thompson, L.D.; Lasota, J.; Wang, Z.; Fetsch, J.F. Sox10—A marker for not only schwannian and melanocytic neoplasms but also myoepithelial cell tumors of soft tissue: A systematic analysis of 5134 tumors. Am. J. Surg. Pathol. 2015, 39, 826–835. [Google Scholar] [CrossRef] [PubMed]
- Karamchandani, J.R.; Nielsen, T.O.; van de Rijn, M.; West, R.B. Sox10 and S100 in the diagnosis of soft-tissue neoplasms. Appl. Immunohistochem. Mol. Morphol. 2012, 20, 445–450. [Google Scholar] [CrossRef]
- Atiq, M.A.; Davis, J.L.; Hornick, J.L.; Dickson, B.C.; Fletcher, C.D.M.; Fletcher, J.A.; Folpe, A.L.; Mariño-Enríquez, A. Mesenchymal tumors of the gastrointestinal tract with NTRK rearrangements: A clinicopathological, immunophenotypic, and molecular study of eight cases, emphasizing their distinction from gastrointestinal stromal tumor (GIST). Mod. Pathol. 2021, 34, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Chiang, S.; Cotzia, P.; Hyman, D.M.; Drilon, A.; Tap, W.D.; Zhang, L.; Hechtman, J.F.; Frosina, D.; Jungbluth, A.A.; Murali, R.; et al. NTRK Fusions Define a Novel Uterine Sarcoma Subtype With Features of Fibrosarcoma. Am. J. Surg. Pathol. 2018, 42, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kang, H.J.; Yoo, C.W.; Park, W.S.; Ryu, J.S.; Jung, Y.S.; Choi, S.W.; Park, J.Y.; Han, N. PLAG1, SOX10, and Myb Expression in Benign and Malignant Salivary Gland Neoplasms. J. Pathol. Transl. Med. 2019, 53, 23–30. [Google Scholar] [CrossRef]
- Hsieh, M.S.; Lee, Y.H.; Chang, Y.L. SOX10-positive salivary gland tumors: A growing list, including mammary analogue secretory carcinoma of the salivary gland, sialoblastoma, low-grade salivary duct carcinoma, basal cell adenoma/adenocarcinoma, and a subgroup of mucoepidermoid carcinoma. Hum. Pathol. 2016, 56, 134–142. [Google Scholar] [CrossRef]
- Schmitt, A.C.; Cohen, C.; Siddiqui, M.T. Expression of SOX10 in Salivary Gland Oncocytic Neoplasms: A Review and a Comparative Analysis with Other Immunohistochemical Markers. Acta Cytol. 2015, 59, 384–390. [Google Scholar] [CrossRef]
- Zhu, S.; Schuerch, C.; Hunt, J. Review and updates of immunohistochemistry in selected salivary gland and head and neck tumors. Arch. Pathol. Lab. Med. 2015, 139, 55–66. [Google Scholar] [CrossRef]
- Ohtomo, R.; Mori, T.; Shibata, S.; Tsuta, K.; Maeshima, A.M.; Akazawa, C.; Watabe, Y.; Honda, K.; Yamada, T.; Yoshimoto, S.; et al. SOX10 is a novel marker of acinus and intercalated duct differentiation in salivary gland tumors: A clue to the histogenesis for tumor diagnosis. Mod. Pathol. 2013, 26, 1041–1050. [Google Scholar] [CrossRef]
- Rooper, L.M.; McCuiston, A.M.; Westra, W.H.; Bishop, J.A. SOX10 Immunoexpression in Basaloid Squamous Cell Carcinomas: A Diagnostic Pitfall for Ruling out Salivary Differentiation. Head. Neck Pathol. 2019, 13, 543–547. [Google Scholar] [CrossRef]
- Kriegsmann, K.; Flechtenmacher, C.; Heil, J.; Kriegsmann, J.; Mechtersheimer, G.; Aulmann, S.; Weichert, W.; Sinn, H.P.; Kriegsmann, M. Immunohistological Expression of SOX-10 in Triple-Negative Breast Cancer: A Descriptive Analysis of 113 Samples. Int. J. Mol. Sci. 2020, 21, 6407. [Google Scholar] [CrossRef]
- Cimino-Mathews, A. Novel uses of immunohistochemistry in breast pathology: Interpretation and pitfalls. Mod. Pathol. 2021, 34, 62–77. [Google Scholar] [CrossRef]
- Liu, J.L.; Chen, D.S.; Cheng, Z.Q.; Hu, J.T. Expression of SOX10 and GATA3 in breast cancer and their significance. Zhonghua Bing Li Xue Za Zhi 2022, 51, 536–541. [Google Scholar] [PubMed]
- Adkins, B.D.; Geromes, A.; Zhang, L.Y.; Chernock, R.; Kimmelshue, K.; Lewis, J., Jr.; Ely, K. SOX10 and GATA3 in Adenoid Cystic Carcinoma and Polymorphous Adenocarcinoma. Head. Neck Pathol. 2020, 14, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Kwon, A.Y.; Heo, I.; Lee, H.J.; Kim, G.; Kang, H.; Heo, J.H.; Kim, T.H.; An, H.J. Sox10 expression in ovarian epithelial tumors is associated with poor overall survival. Virchows Arch. 2016, 468, 597–605. [Google Scholar] [CrossRef] [PubMed]
- Raspaglio, G.; Petrillo, M.; Martinelli, E.; Li Puma, D.D.; Mariani, M.; De Donato, M.; Filippetti, F.; Mozzetti, S.; Prislei, S.; Zannoni, G.F.; et al. Sox9 and Hif-2α regulate TUBB3 gene expression and affect ovarian cancer aggressiveness. Gene 2014, 542, 173–181. [Google Scholar] [CrossRef]
- Siu, M.K.Y.; Jiang, Y.X.; Wang, J.J.; Leung, T.H.Y.; Han, C.Y.; Tsang, B.K.; Cheung, A.N.Y.; Ngan, H.Y.S.; Chan, K.K.L. Hexokinase 2 Regulates Ovarian Cancer Cell Migration, Invasion and Stemness via FAK/ERK1/2/MMP9/NANOG/SOX9 Signaling Cascades. Cancers 2019, 11, 813. [Google Scholar] [CrossRef]
- Lu, R.; Tang, P.; Zhang, D.; Lin, S.; Li, H.; Feng, X.; Sun, M.; Zhang, H. SOX9/NFIA promotes human ovarian cancer metastasis through the Wnt/β-catenin signaling pathway. Pathol. Res. Pract. 2023, 248, 154602. [Google Scholar] [CrossRef]
- Hou, R.; Jiang, L. LINC00115 promotes stemness and inhibits apoptosis of ovarian cancer stem cells by upregulating SOX9 and inhibiting the Wnt/β-catenin pathway through competitively binding to microRNA-30a. Cancer Cell Int. 2021, 21, 360. [Google Scholar] [CrossRef]
- Malki, S.; Bibeau, F.; Notarnicola, C.; Roques, S.; Berta, P.; Poulat, F.; Boizet-Bonhoure, B. Expression and biological role of the prostaglandin D synthase/SOX9 pathway in human ovarian cancer cells. Cancer Lett. 2007, 255, 182–193. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Z.G.; Tang, J.; Zou, R.F.; Chen, X.Y.; Jiang, G.M.; Qiu, Y.F.; Wang, H. High expression of Sox10 correlates with tumor aggressiveness and poor prognosis in human nasopharyngeal carcinoma. Onco Targets Ther. 2016, 9, 1671–1677. [Google Scholar] [CrossRef]
- Goodwin, G.H.; Sanders, C.; Johns, E.W. A new group of chromatin-associated proteins with a high content of acidic and basic amino acids. Eur. J. Biochem. 1973, 38, 14–19. [Google Scholar] [CrossRef]
- Štros, M.; Launholt, D.; Grasser, K.D. The HMG-box: A versatile protein domain occurring in a wide variety of DNA-binding proteins. Cell. Mol. Life Sci. 2007, 64, 2590–2606. [Google Scholar] [CrossRef]
- Štros, M. HMGB proteins: Interactions with DNA and chromatin. Biochim. Biophys. Acta (BBA)-Gene Regul. Mech. 2010, 1799, 101–113. [Google Scholar] [CrossRef]
- Lefebvre, V.; Dumitriu, B.; Penzo-Méndez, A.; Han, Y.; Pallavi, B. Control of cell fate and differentiation by Sry-related high-mobility-group box (Sox) transcription factors. Int. J. Biochem. Cell Biol. 2007, 39, 2195–2214. [Google Scholar] [CrossRef] [PubMed]
- Grimm, D.; Bauer, J.; Wise, P.; Krüger, M.; Simonsen, U.; Wehland, M.; Infanger, M.; Corydon, T.J. The role of SOX family members in solid tumours and metastasis. Semin. Cancer Biol. 2020, 67, 122–153. [Google Scholar] [CrossRef] [PubMed]
- Kashimada, K.; Koopman, P. Sry: The master switch in mammalian sex determination. Development 2010, 137, 3921–3930. [Google Scholar] [CrossRef] [PubMed]
- Lau, Y.F.C.; Zhang, J. Expression analysis of thirty one Y chromosome genes in human prostate cancer. Mol. Carcinog. Publ. Coop. Univ. Tex. MD Anderson Cancer Cent. 2000, 27, 308–321. [Google Scholar] [CrossRef]
- Kanwore, K.; Guo, X.-X.; Abdulrahman, A.A.; Kambey, P.A.; Nadeem, I.; Gao, D. SOX1 is a backup gene for brain neurons and glioma stem cell protection and proliferation. Mol. Neurobiol. 2021, 58, 2634–2642. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zou, Y.; Lu, Q.; Tang, N.; Heng, A.; Islam, I.; Tong, H.J.; Dawe, G.S.; Cao, T. Efficient derivation of dopaminergic neurons from SOX1—Floor plate cells under defined culture conditions. J. Biomed. Sci. 2016, 23, 34. [Google Scholar] [CrossRef] [PubMed]
- Nitta, K.R.; Takahashi, S.; Haramoto, Y.; Fukuda, M.; Onuma, Y.; Asashima, M. Expression of Sox1 during Xenopus early embryogenesis. Biochem. Biophys. Res. Commun. 2006, 351, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Garcia, I.; Aldaregia, J.; Marjanovic Vicentic, J.; Aldaz, P.; Moreno-Cugnon, L.; Torres-Bayona, S.; Carrasco-Garcia, E.; Garros-Regulez, L.; Egaña, L.; Rubio, A. Oncogenic activity of SOX1 in glioblastoma. Sci. Rep. 2017, 7, 46575. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Liu, T.; Li, C.; Yan, G.; Li, C.; Zhang, J.; Wang, L. The MRTF-A/miR-155/SOX1 pathway mediates gastric cancer migration and invasion. Cancer Cell Int. 2020, 20, 1–13. [Google Scholar] [CrossRef]
- Guan, Z.; Zhang, J.; Wang, J.; Wang, H.; Zheng, F.; Peng, J.; Xu, Y.; Yan, M.; Liu, B.; Cui, B. SOX1 down-regulates β-catenin and reverses malignant phenotype in nasopharyngeal carcinoma. Mol. Cancer 2014, 13, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Novak, D.; Hüser, L.; Elton, J.J.; Umansky, V.; Altevogt, P.; Utikal, J. SOX2 in development and cancer biology. Semin. Cancer Biol. 2020, 67, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.H.d.S.; Underwood, A.; Almeida, C.P.; Ribeiro, T.S.; Souza-Fagundes, E.M.; Martins, A.S.; Eliezeck, M.; Guatimosim, S.; Andrade, L.O.; Rezende, L. Transcription factor SOX3 upregulated pro-apoptotic genes expression in human breast cancer. Med. Oncol. 2022, 39, 212. [Google Scholar] [CrossRef]
- Zhao, J.; Cao, H.; Zhang, W.; Fan, Y.; Shi, S.; Wang, R. SOX14 hypermethylation as a tumour biomarker in cervical cancer. BMC Cancer 2021, 21, 675. [Google Scholar] [CrossRef]
- Li, F.; Wang, T.; Tang, S. SOX14 promotes proliferation and invasion of cervical cancer cells through Wnt/β-catenin pathway. Int. J. Clin. Exp. Pathol. 2015, 8, 1698. [Google Scholar]
- Caglayan, D.; Lundin, E.; Kastemar, M.; Westermark, B.; Ferletta, M. SOX21 inhibits glioma progression in vivo by forming complexes with SOX2 and stimulating aberrant differentiation. Int. J. Cancer 2013, 133, 1345–1356. [Google Scholar] [CrossRef]
- Ferletta, M.; Caglayan, D.; Mokvist, L.; Jiang, Y.; Kastemar, M.; Uhrbom, L.; Westermark, B. Forced expression of SOX21 inhibits SOX2 and induces apoptosis in human glioma cells. Int. J. Cancer 2011, 129, 45–60. [Google Scholar] [CrossRef] [PubMed]
- Vervoort, S.J.; van Boxtel, R.; Coffer, P.J. The role of SRY-related HMG box transcription factor 4 (SOX4) in tumorigenesis and metastasis: Friend or foe? Oncogene 2013, 32, 3397–3409. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liang, Q.; Lei, Y.; Yao, M.; Li, L.; Gao, X.; Feng, J.; Zhang, Y.; Gao, H.; Liu, D.-X. SOX4 induces epithelial–mesenchymal transition and contributes to breast cancer progression. Cancer Res. 2012, 72, 4597–4608. [Google Scholar] [CrossRef]
- Hanieh, H.; Ahmed, E.A.; Vishnubalaji, R.; Alajez, N.M. SOX4: Epigenetic regulation and role in tumorigenesis. Semin. Cancer Biol. 2020, 67, 91–104. [Google Scholar] [CrossRef]
- Medina, P.P.; Castillo, S.D.; Blanco, S.; Sanz-Garcia, M.; Largo, C.; Alvarez, S.; Yokota, J.; Gonzalez-Neira, A.; Benitez, J.; Clevers, H.C. The SRY-HMG box gene, SOX4, is a target of gene amplification at chromosome 6p in lung cancer. Hum. Mol. Genet. 2009, 18, 1343–1352. [Google Scholar] [CrossRef] [PubMed]
- Hur, W.; Rhim, H.; Jung, C.K.; Kim, J.D.; Bae, S.H.; Jang, J.W.; Yang, J.M.; Oh, S.-T.; Kim, D.G.; Wang, H.J. SOX4 overexpression regulates the p53-mediated apoptosis in hepatocellular carcinoma: Clinical implication and functional analysis in vitro. Carcinogenesis 2010, 31, 1298–1307. [Google Scholar] [CrossRef]
- Jafarnejad, S.M.; Ardekani, G.S.; Ghaffari, M.; Li, G. Pleiotropic function of SRY-related HMG box transcription factor 4 in regulation of tumorigenesis. Cell. Mol. Life Sci. 2013, 70, 2677–2696. [Google Scholar] [CrossRef]
- Weigle, B.; Ebner, R.; Temme, A.; Schwind, S.; Schmitz, M.; Kiessling, A.; Rieger, M.A.; Schackert, G.; Schackert, H.K.; Rieber, E.P. Highly specific overexpression of the transcription factor SOX11 in human malignant gliomas. Oncol. Rep. 2005, 13, 139–144. [Google Scholar] [CrossRef]
- de Bont, J.M.; Kros, J.M.; Passier, M.M.; Reddingius, R.E.; Smitt, P.A.S.; Luider, T.M.; Boer, M.L.d.; Pieters, R. Differential expression and prognostic significance of SOX genes in pediatric medulloblastoma and ependymoma identified by microarray analysis. Neuro-Oncol. 2008, 10, 648–660. [Google Scholar] [CrossRef]
- Ek, S.; Dictor, M.; Jerkeman, M.; Jirström, K.; Borrebaeck, C.A. Nuclear expression of the non-B-cell lineage SOX11 transcription factor identifies mantle cell lymphoma. Blood J. Am. Soc. Hematol. 2008, 111, 800–805. [Google Scholar] [CrossRef]
- Dictor, M.; Ek, S.; Sundberg, M.; Warenholt, J.; György, C.; Sernbo, S.; Gustavsson, E.; Abu-Alsoud, W.; Wadström, T.; Borrebaeck, C. Strong lymphoid nuclear expression of SOX11 transcription factor defines lymphoblastic neoplasms, mantle cell lymphoma and Burkitt’s lymphoma. Haematologica 2009, 94, 1563. [Google Scholar] [CrossRef] [PubMed]
- Brennan, D.J.; Ek, S.; Doyle, E.; Drew, T.; Foley, M.; Flannelly, G.; O’Connor, D.P.; Gallagher, W.M.; Kilpinen, S.; Kallioniemi, O.-P. The transcription factor Sox11 is a prognostic factor for improved recurrence-free survival in epithelial ovarian cancer. Eur. J. Cancer 2009, 45, 1510–1517. [Google Scholar] [CrossRef] [PubMed]
- Zvelebil, M.; Oliemuller, E.; Gao, Q.; Wansbury, O.; Mackay, A.; Kendrick, H.; Smalley, M.J.; Reis-Filho, J.S.; Howard, B.A. Embryonic mammary signature subsets are activated in Brca1-/-and basal-like breast cancers. Breast Cancer Res. 2013, 15, R25. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Yuan, Z.; Shi, H.; Bian, Y.; Guo, R. miR-145 targets the SOX11 3’UTR to suppress endometrial cancer growth. Am. J. Cancer Res. 2017, 7, 2305. [Google Scholar] [PubMed]
- Prat, A.; Adamo, B.; Fan, C.; Peg, V.; Vidal, M.; Galván, P.; Vivancos, A.; Nuciforo, P.; Palmer, H.G.; Dawood, S. Genomic analyses across six cancer types identify basal-like breast cancer as a unique molecular entity. Sci. Rep. 2013, 3, 3544. [Google Scholar] [CrossRef] [PubMed]
- Tsang, S.M.; Oliemuller, E.; Howard, B.A. Regulatory roles for SOX11 in development, stem cells and cancer. Semin. Cancer Biol. 2020, 67, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Zhou, C.; Zhang, J.; Cai, Q.; Li, J.; Du, T.; Zhu, Z.; Cui, X.; Liu, B. The metastasis suppressor SOX11 is an independent prognostic factor for improved survival in gastric cancer. Int. J. Oncol. 2014, 44, 1512–1520. [Google Scholar] [CrossRef]
- Zou, S.; Wang, C.; Liu, J.; Wang, Q.; Zhang, D.; Zhu, S.; Xu, S.; Kang, M.; He, S. Sox12 is a cancer stem-like cell marker in hepatocellular carcinoma. Mol. Cells 2017, 40, 847. [Google Scholar]
- Qu, M.; Zhu, Y.; Jin, M. MicroRNA-138 inhibits SOX12 expression and the proliferation, invasion and migration of ovarian cancer cells. Exp. Ther. Med. 2018, 16, 1629–1638. [Google Scholar] [CrossRef]
- Du, F.; Feng, W.; Chen, S.; Wu, S.; Cao, T.; Yuan, T.; Tian, D.; Nie, Y.; Wu, K.; Fan, D. Sex determining region Y-box 12 (SOX12) promotes gastric cancer metastasis by upregulating MMP7 and IGF1. Cancer Lett. 2019, 452, 103–118. [Google Scholar] [CrossRef]
- Yuan, W.-M.; Fan, Y.-G.; Cui, M.; Luo, T.; Wang, Y.-E.; Shu, Z.-J.; Zhao, J.; Zheng, J.; Zeng, Y. SOX5 regulates cell proliferation, apoptosis, migration and invasion in KSHV-infected cells. Virol. Sin. 2021, 36, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Han, S.; Wang, X.; Peng, R.; Li, X. SOX5 promotes epithelial–mesenchymal transition and cell invasion via regulation of Twist1 in hepatocellular carcinoma. Med. Oncol. 2015, 32, 461. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Ban, Y.; Wang, K.; Sun, Y.; Zhao, Z. SOX5 promotes breast cancer proliferation and invasion by transactivation of EZH2. Oncol. Lett. 2019, 17, 2754–2762. [Google Scholar] [CrossRef]
- You, J.; Zhao, Q.; Fan, X.; Wang, J. SOX5 promotes cell invasion and metastasis via activation of twist-mediated epithelial–mesenchymal transition in gastric cancer. OncoTargets Ther. 2019, 12, 2465. [Google Scholar] [CrossRef]
- Lamouille, S.; Xu, J.; Derynck, R. Molecular mechanisms of epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 2014, 15, 178–196. [Google Scholar] [CrossRef]
- Niknami, Z.; Muhammadnejad, A.; Ebrahimi, A.; Harsani, Z.; Shirkoohi, R. Significance of E-cadherin and Vimentin as epithelial-mesenchymal transition markers in colorectal carcinoma prognosis. EXCLI J. 2020, 19, 917. [Google Scholar] [PubMed]
- Wang, Z.; Li, J.; Li, K.; Xu, J. SOX6 is downregulated in osteosarcoma and suppresses the migration, invasion and epithelial-mesenchymal transition via TWIST1 regulation. Mol. Med. Rep. 2018, 17, 6803–6811. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.-R.; Tang, H.; Xie, F.; Liu, H.; Zhu, Y.; Ai, J.; Chen, L.; Li, Y.; Kwong, D.L.; Fu, L. Characterization of tumor-suppressive function of SOX6 in human esophageal squamous cell carcinoma. Clin. Cancer Res. 2011, 17, 46–55. [Google Scholar] [CrossRef]
- Guo, X.; Yang, M.; Gu, H.; Zhao, J.; Zou, L. Decreased expression of SOX6 confers a poor prognosis in hepatocellular carcinoma. Cancer Epidemiol. 2013, 37, 732–736. [Google Scholar] [CrossRef]
- Iguchi, H.; Urashima, Y.; Inagaki, Y.; Ikeda, Y.; Okamura, M.; Tanaka, T.; Uchida, A.; Yamamoto, T.T.; Kodama, T.; Sakai, J. SOX6 suppresses cyclin D1 promoter activity by interacting with β-catenin and histone deacetylase 1, and its down-regulation induces pancreatic β-cell proliferation. J. Biol. Chem. 2007, 282, 19052–19061. [Google Scholar] [CrossRef]
- Ueda, R.; Ohkusu-Tsukada, K.; Fusaki, N.; Soeda, A.; Kawase, T.; Kawakami, Y.; Toda, M. Identification of HLA-A2-and A24-restricted T-cell epitopes derived from SOX6 expressed in glioma stem cells for immunotherapy. Int. J. Cancer 2010, 126, 919–929. [Google Scholar] [CrossRef]
- Lin, M.; Lei, T.; Zheng, J.; Chen, S.; Du, L.; Xie, H. UBE2S mediates tumor progression via SOX6/β-Catenin signaling in endometrial cancer. Int. J. Biochem. Cell Biol. 2019, 109, 17–22. [Google Scholar] [CrossRef]
- Huang, H.; Han, Q.; Zheng, H.; Liu, M.; Shi, S.; Zhang, T.; Yang, X.; Li, Z.; Xu, Q.; Guo, H. MAP4K4 mediates the SOX6-induced autophagy and reduces the chemosensitivity of cervical cancer. Cell Death Dis. 2021, 13, 13. [Google Scholar] [CrossRef]
- Schlierf, B.; Friedrich, R.; Roerig, P.; Felsberg, J.; Reifenberger, G.; Wegner, M. Expression of SOXE and SOXD genes in human gliomas. Neuropathol. Appl. Neurobiol. 2007, 33, 621–630. [Google Scholar] [CrossRef]
- Bie, L.-Y.; Li, D.; Wei, Y.; Li, N.; Chen, X.-B.; Luo, S.-X. SOX13 dependent PAX8 expression promotes the proliferation of gastric carcinoma cells. Artif. Cells Nanomed. Biotechnol. 2019, 47, 3180–3187. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Fang, F.; Fang, T.; Jiao, H.; You, S.; Wang, X.; Zhao, W. SOX13 promotes hepatocellular carcinoma metastasis by transcriptionally activating Twist1. Lab. Investig. 2020, 100, 1400–1410. [Google Scholar] [CrossRef] [PubMed]
- Jiao, H.; Fang, F.; Fang, T.; You, Y.; Feng, M.; Wang, X.; Yin, Z.; Zhao, W. SOX13 regulates cancer stem-like properties and tumorigenicity in hepatocellular carcinoma cells. Am. J. Cancer Res. 2021, 11, 760. [Google Scholar] [PubMed]
- Wang, H.; He, L.; Ma, F.; Regan, M.M.; Balk, S.P.; Richardson, A.L.; Yuan, X. SOX9 regulates low density lipoprotein receptor-related protein 6 (LRP6) and T-cell factor 4 (TCF4) expression and Wnt/β-catenin activation in breast cancer. J. Biol. Chem. 2013, 288, 6478–6487. [Google Scholar] [CrossRef]
- Zhong, W.-d.; Qin, G.-q.; Dai, Q.-s.; Han, Z.-d.; Chen, S.-m.; Ling, X.-h.; Fu, X.; Cai, C.; Chen, J.-h.; Chen, X.-b. SOXs in human prostate cancer: Implication as progression and prognosis factors. BMC Cancer 2012, 12, 248. [Google Scholar] [CrossRef]
- Hu, B.; Wang, J.; Jin, X. MicroRNA-138 suppresses cell proliferation and invasion of renal cell carcinoma by directly targeting SOX9. Oncol. Lett. 2017, 14, 7583–7588. [Google Scholar] [CrossRef]
- Huang, J.; Guo, L. Knockdown of SOX9 inhibits the proliferation, invasion, and EMT in thyroid cancer cells. Oncol. Res. Featur. Preclin. Clin. Cancer Ther. 2017, 25, 167–176. [Google Scholar] [CrossRef]
- Lü, B.; Fang, Y.; Xu, J.; Wang, L.; Xu, F.; Xu, E.; Huang, Q.; Lai, M. Analysis of SOX9 expression in colorectal cancer. Am. J. Clin. Pathol. 2008, 130, 897–904. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Che, D.; Yang, F.; Chi, C.; Meng, H.; Shen, J.; Qi, L.; Liu, F.; Lv, L.; Li, Y. Tumor-associated macrophages promote tumor metastasis via the TGF-β/SOX9 axis in non-small cell lung cancer. Oncotarget 2017, 8, 99801. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Liang, R.; Liu, C.; Liu, J.A.; Cheung, M.P.L.; Liu, X.; Man, O.Y.; Guan, X.-Y.; Lung, H.L.; Cheung, M. SOX9 is a dose-dependent metastatic fate determinant in melanoma. J. Exp. Clin. Cancer Res. 2019, 38, 17. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.; Sohn, K.-C.; Li, Z.; Choi, D.-K.; Park, Y.M.; Kim, J.-H.; Fan, Y.-M.; Nam, Y.H.; Kim, S.; Im, M. Expression and functional role of SOX9 in human epidermal keratinocytes. PLoS ONE 2013, 8, e54355. [Google Scholar] [CrossRef] [PubMed]
- Stovall, D.B.; Wan, M.; Miller, L.D.; Cao, P.; Maglic, D.; Zhang, Q.; Stampfer, M.R.; Liu, W.; Xu, J.; Sui, G. The regulation of SOX7 and its tumor suppressive role in breast cancer. Am. J. Pathol. 2013, 183, 1645–1653. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Xi, H.; Cai, A.; Bian, S.; Wei, B.; Chen, L. Decreased expression of SOX7 correlates with the upregulation of the Wnt/β-catenin signaling pathway and the poor survival of gastric cancer patients. Int. J. Mol. Med. 2014, 34, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Wang, W.; Ding, W.; Zhang, L. MiR-9 is involved in TGF-β1-induced lung cancer cell invasion and adhesion by targeting SOX7. J. Cell. Mol. Med. 2017, 21, 2000–2008. [Google Scholar] [CrossRef]
- Fu, D.-Y.; Wang, Z.-M.; Wang, B.-L.; Shen, Z.-Z.; Huang, W.; Shao, Z.-M. SOX17, the canonical Wnt antagonist, is epigenetically inactivated by promoter methylation in human breast cancer. Breast Cancer Res. Treat. 2010, 119, 601–612. [Google Scholar] [CrossRef]
- Li, J.-Y.; Han, C.; Zheng, L.-L.; Guo, M.-Z. Epigenetic regulation of Wnt signaling pathway gene SRY-related HMG-box 17 in papillary thyroid carcinoma. Chin. Med. J. 2012, 125, 3526–3531. [Google Scholar]
- Majchrzak-Celińska, A.; Słocińska, M.; Barciszewska, A.-M.; Nowak, S.; Baer-Dubowska, W. Wnt pathway antagonists, SFRP1, SFRP2, SOX17, and PPP2R2B, are methylated in gliomas and SFRP1 methylation predicts shorter survival. J. Appl. Genet. 2016, 57, 189–197. [Google Scholar] [CrossRef]
- Du, Y.C.; Oshima, H.; Oguma, K.; Kitamura, T.; Itadani, H.; Fujimura, T.; Piao, Y.S.; Yoshimoto, T.; Minamoto, T.; Kotani, H. Induction and down-regulation of SOX17 and its possible roles during the course of gastrointestinal tumorigenesis. Gastroenterology 2009, 137, 1346–1357. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, G.; Cheng, Y.; Tang, Y.; Dong, Z.; McElwee, K.J.; Li, G. Reduced expression of SRY-box containing gene 17 correlates with an unfavorable melanoma patient survival. Oncol. Rep. 2014, 32, 2571–2579. [Google Scholar] [CrossRef] [PubMed]
- Pula, B.; Olbromski, M.; Wojnar, A.; Gomulkiewicz, A.; Witkiewicz, W.; Ugorski, M.; Dziegiel, P.; Podhorska-Okolow, M. Impact of SOX18 expression in cancer cells and vessels on the outcome of invasive ductal breast carcinoma. Cell. Oncol. 2013, 36, 469–483. [Google Scholar] [CrossRef] [PubMed]
- Jethon, A.; Pula, B.; Olbromski, M.; Werynska, B.; Muszczynska-Bernhard, B.; Witkiewicz, W.; Dziegiel, P.; Podhorska-Okolow, M. Prognostic significance of SOX18 expression in non-small cell lung cancer. Int. J. Oncol. 2015, 46, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Ornat, M.; Kobierzycki, C.; Grzegrzolka, J.; Pula, B.; Zamirska, A.; Bieniek, A.; Szepietowski, J.C.; Dziegiel, P.; Okolow, M.P. SOX18 expression in non-melanoma skin cancer. Anticancer. Res. 2016, 36, 2379–2383. [Google Scholar] [PubMed]
- Yan, H.-T.; Shinka, T.; Sato, Y.; Yang, X.-J.; Chen, G.; Sakamoto, K.; Kinoshita, K.; Aburatani, H.; Nakahori, Y. Overexpression of SOX15 inhibits proliferation of NT2/D1 cells derived from a testicular embryonal cell carcinoma. Mol. Cells 2007, 24, 323–328. [Google Scholar] [PubMed]
- Thu, K.; Radulovich, N.; Becker-Santos, D.; Pikor, L.; Pusic, A.; Lockwood, W.; Lam, W.; Tsao, M. SOX15 is a candidate tumor suppressor in pancreatic cancer with a potential role in Wnt/β-catenin signaling. Oncogene 2014, 33, 279–288. [Google Scholar] [CrossRef]
- Thu, K.L.; Becker-Santos, D.D.; Radulovich, N.; Pikor, L.A.; Lam, W.L.; Tsao, M.-S. SOX15 and other SOX family members are important mediators of tumorigenesis in multiple cancer types. Oncoscience 2014, 1, 326. [Google Scholar] [CrossRef]
- Han, F.; Liu, W.; Jiang, X.; Shi, X.; Yin, L.; Ao, L.; Cui, Z.; Li, Y.; Huang, C.; Cao, J. SOX30, a novel epigenetic silenced tumor suppressor, promotes tumor cell apoptosis by transcriptional activating p53 in lung cancer. Oncogene 2015, 34, 4391–4402. [Google Scholar] [CrossRef]
- Han, F.; Liu, W.-B.; Shi, X.-Y.; Yang, J.-T.; Zhang, X.; Li, Z.-M.; Jiang, X.; Yin, L.; Li, J.-J.; Huang, C.-S. SOX30 inhibits tumor metastasis through attenuating Wnt-signaling via transcriptional and posttranslational regulation of β-catenin in lung cancer. EBioMedicine 2018, 31, 253–266. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Han, F.; Ma, B.; Zhang, N.; Chen, H.; Jiang, X.; Yin, L.; Liu, W.; Ao, L.; Cao, J. SOX30 is a key regulator of desmosomal gene suppressing tumor growth and metastasis in lung adenocarcinoma. J. Exp. Clin. Cancer Res. 2018, 37, 111. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bahmad, H.F.; Thiravialingam, A.; Sriganeshan, K.; Gonzalez, J.; Alvarez, V.; Ocejo, S.; Abreu, A.R.; Avellan, R.; Arzola, A.H.; Hachem, S.; et al. Clinical Significance of SOX10 Expression in Human Pathology. Curr. Issues Mol. Biol. 2023, 45, 10131-10158. https://doi.org/10.3390/cimb45120633
Bahmad HF, Thiravialingam A, Sriganeshan K, Gonzalez J, Alvarez V, Ocejo S, Abreu AR, Avellan R, Arzola AH, Hachem S, et al. Clinical Significance of SOX10 Expression in Human Pathology. Current Issues in Molecular Biology. 2023; 45(12):10131-10158. https://doi.org/10.3390/cimb45120633
Chicago/Turabian StyleBahmad, Hisham F., Aran Thiravialingam, Karthik Sriganeshan, Jeffrey Gonzalez, Veronica Alvarez, Stephanie Ocejo, Alvaro R. Abreu, Rima Avellan, Alejandro H. Arzola, Sana Hachem, and et al. 2023. "Clinical Significance of SOX10 Expression in Human Pathology" Current Issues in Molecular Biology 45, no. 12: 10131-10158. https://doi.org/10.3390/cimb45120633
APA StyleBahmad, H. F., Thiravialingam, A., Sriganeshan, K., Gonzalez, J., Alvarez, V., Ocejo, S., Abreu, A. R., Avellan, R., Arzola, A. H., Hachem, S., & Poppiti, R. (2023). Clinical Significance of SOX10 Expression in Human Pathology. Current Issues in Molecular Biology, 45(12), 10131-10158. https://doi.org/10.3390/cimb45120633