Evaluation of Antidiabetic, Antioxidant and Anti-Hyperlipidemic Effects of Solanum indicum Fruit Extract in Streptozotocin-Induced Diabetic Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Assay Kits
2.3. Collection and Identification of Plant
2.4. Extraction
2.5. Estimation of Total Phenolic Content
2.6. DPPH Radical Scavenging Assay
2.7. Maintenance of Cell Line
3. In Vitro Studies
3.1. Cytotoxicity Evaluation of Extract Using MTT Assay
3.2. Cellular Antioxidant Assay
3.3. α-Amylase Inhibition Assay
4. Animal Experimentation
4.1. Experimental Animals
4.2. Preparation of the Test Samples
4.3. Acute Toxicity Study
4.4. Evaluation of Extract in Oral Glucose Tolerance Test
4.5. Induction of Diabetes Mellitus
4.6. Experimental Design
4.7. Biochemical Assays
4.7.1. Oxidative Stress Biomarkers
SOD
CAT
GPx
5. Statistical Analysis
6. Result
6.1. Preliminary Phytochemical Analysis
6.2. Total Phenolic Content
6.3. DPPH Radical Scavenging Assay
6.4. MTT Assay
6.5. Cellular Antioxidant Assay
6.6. α-Amylase Inhibition
6.7. Acute Toxicity Study
6.8. Effect of Extract on Oral Glucose Tolerance Test
6.9. Effect on Fasting Blood Glucose Levels
6.10. Effect on ALT and AST
6.11. Effect on Serum Lipid Profile
6.12. Oxidative Stress Markers
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pareek, H.; Sharma, S.; Khajja, B.S.; Jain, K.; Jain, G.C. Evaluation of Hypoglycemic and anti hyperglycemic potential of Tridax procumbens (Linn.). BMC Complement. Altern. Med. 2009, 9, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Diabetes Federation (IDF) Diabetes Atlas-7th Edition. 2015. Available online: http://www.diabetesatlas.org/resources/2015-atlas.html (accessed on 4 April 2014).
- Rubin, R.; Strayer, D.S.; Rubin, E. Rubin’s Pathology: Clinicopathologic Foundations of Medicine, 6th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2012; pp. 1081–1098. [Google Scholar]
- Aslan, M.; Orhan, N.; Orhan, D.D.; Ergun, F. Hypoglycemic activity and antioxidant potential of some medicinal plants traditionally used in Turkey for diabetes. J. Ethnopharmacol. 2010, 128, 384–389. [Google Scholar] [CrossRef]
- Mukherjee, P.; Maiti, K.; Mukherjee, K.; Houghton, P.J. Leads from Indian medicinal plants with hypoglycemic potentials. J. Ethnopharmacol. 2006, 106, 1–28. [Google Scholar] [PubMed]
- Tiwari, A.; Rao, J. Diabetes mellitus and multiple therapeutic approaches of phyochemicals: Present status and future prospects. Curr. Sci. 2002, 83, 30–38. [Google Scholar]
- Kirtikar, K.R.; Basu, B.D. Indian Medicinal Plants, 2nd ed.; International Book Distributor: Dehradun, India, 1987. [Google Scholar]
- Kasali, F.M.; Masunda, A.T.; Madarhi, J.K.; Matambura, A.B.; Tshibangu, D.S.T.; Ngbolua, K.-T.-N.; Kadima, J.N.; Mpiana, P.T. Assessment of antidiabetic activity and acute toxicity of leaf extracts from Solanum nigrum L. (Solanaceae) in guinea-pigs. Int. J. Herb. Med. 2016, 4, 14–19. [Google Scholar]
- Umamageswari, M.S.; Karthikeyan, T.M.; Maniyar, Y.A. Antidiabetic Activity of Aqueous Extract of Solanum nigrum Linn Berries in Alloxan Induced Diabetic Wistar Albino Rats. J. Clin. Diagn. Res. 2017, 11, FC16–FC19. [Google Scholar] [CrossRef] [PubMed]
- Nakitto, A.M.S.; Muyonga, J.H.; Byaruhanga, Y.B.; Wagner, A.E. Solanum anguivi Lam. Fruits: Their Potential Effects on Type 2 Diabetes Mellitus. Molecules 2021, 26, 2044. [Google Scholar] [CrossRef] [PubMed]
- Fatma, A.; Sokindra, K.; Shah, A.K. Estimation of total phenolic content, in vitro antioxidant and anti-inflammatory activity of flowers of Moringa oleifera. Asian. Pac. J. Trop. Biomed. 2013, 3, 623–627. [Google Scholar]
- Shimada, K.; Fujikawa, K.; Yahara, K.; Nakamuda, T. Antioxidative properties of xanthone on the auto oxidation of soybean in cylcodextrin emulsion. J. Agric. Food Chem. 1992, 40, 945–948. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Cecilia, B.; Sara, G.; Benno, F.Z.; Helmut, H.W. Antioxidant potential of aqueous plant extracts assessed by the cellular antioxidant activity assay. Am. J. Biol. Life Sci. 2014, 2, 72–79. [Google Scholar]
- Thirunavukkarasu, V.; Anuradha, C.V.; Viawanathan, P. Protective effect of fenugreek (Trigonella foenum graecum) seeds in experimental ethanol toxicity. Phytother. Res. 2003, 17, 737–743. [Google Scholar] [CrossRef] [PubMed]
- Shirwaikar, A.; Rajendran, K.; Barik, R. Effect of Aqueous Bark Extracts of Garuga pinnata in Streptozotocin-Nicotinamide Induced Type-II Diabetes Mellitus. J. Ethnopharmacol. 2006, 107, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Masiello, P.; Broca, C.; Gross, R.; Roye, M.; Manteghetti, M.; Hillaire, B.D. Development of a new model of type 2 diabetes in adult rats administered with streptozotocin and nicotinamide. Diabetes 1998, 47, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Annie, S.; Rajendran, K.; Punitha, I.S.R. Antidiabetic activity of alcoholic stem extract of Coscinium fenestratum in streptozotocin-nicotinamide induced type 2 diabetic rats. J. Ethnopharmacol. 2005, 97, 369–374. [Google Scholar]
- Misra, H.P.; Fridovich, I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972, 247, 3170–3175. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. Methods Enzym. 1984, 105, 121–126. [Google Scholar]
- Kim, S.H.; Hyun, S.H.; Choung, S.Y. Antidiabetic effect of cinnamon extract on blood glucose in db/db mice. J. Ethnopharmacol. 2006, 104, 119–123. [Google Scholar] [CrossRef]
- Rohman, A.; Riyanto, S.; Yuniarti, N.; Saputra, W.R.; Utami, R. Antioxidant activity, total phenolic and total flavaonoid of extracts and fractions of red fruit (Pandanus conoideus Lam). Int. Food. Res. J. 2010, 17, 97–106. [Google Scholar]
- Zheng, W.; Wang, Y.S. Antioxidant Activity and Phenolic Compounds in Selected Herbs. J. Agric. Food Chem. 2001, 49, 5165–5170. [Google Scholar] [CrossRef]
- Wolfe, K.L.; Liu, R.H. Cellular Antioxidant Activity (CAA) Assay for Assessing Antioxidants, Foods, and Dietary Supplements. J. Agric. Food Chem. 2007, 55, 8896–8907. [Google Scholar] [CrossRef] [PubMed]
- Papaccio, G.; Pisanthi, F.A.; Latronico, M.Y.; Ammendola, E.; Galdieri, M. Multiple low dose and single high dose treatments with streptozotocin do not generate nitricoxide. J. Cell. Biochem. 2000, 77, 82–91. [Google Scholar] [CrossRef]
- Anderson, T.; Schein, P.S.; McMenamin, M.G.; Cooney, D.A. Streptozotocin diabetes correlation with extent of depression of pancreatic islet nicotinamide adenine dinucleotide. J. Clin. Investig. 1974, 54, 672–677. [Google Scholar] [CrossRef] [PubMed]
- Szkudelski, T. The mechanism of alloxan and streptozotocin action in β-cells of the rat pancreas. Physiol. Res. 2001, 50, 536–546. [Google Scholar]
- Sarulmozhia, S.; Mazumderb, P.M.; Lohidasanc, S.; Thakurdesai, P. Antidiabetic and antihyperlipidemic activity of leaves of Alstonia scholaris Linn. R. Br. Eur. J. Integr. Med. 2010, 2, 23–32. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Suthindhiran, K.R.; Jayasri, M.A. α-glucosidase and α-amylase inhibitory activity of Micromonospora sp. of VITSDK3 (EU551238). Int. J. Integrat. Biol. 2009, 6, 115–120. [Google Scholar]
- Al-Shamaony, L.; Al-khazraji, S.M.; Twaiji, H.A. Hypoglycemic effect of Artemisia herba alba 2. Effect of a valuable extract on some blood parameters in diabetic animals. J. Ethnopharmacol. 1994, 43, 167–171. [Google Scholar] [CrossRef]
- Swanston-Flatt, S.K.; Day, C.; Bailey, C.J.; Flatt, P.R. Traditional plant treatments for diabetes. Studies in normal and streptozotocin diabetic mice. Diabetologia 1990, 33, 462–464. [Google Scholar] [CrossRef] [PubMed]
- Musabayane, C.T.; Mahlalela, N.; Shode, F.O.; Ojewole, J.A. Effects of Syzygium cordatum (Hochst.) [Myrtaceae] leaf extract on plasma glucose and hepatic glycogen in streptozotocin-induced diabetic rats. J. Ethnopharmacol. 2005, 97, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Eliza, J.; Daisy, P.; Ignacimuthu, S.; Duraipandiyan, V. Antidiabetic and antilipidemic effect of eremanthin from Costus speciosus (Koen.) Sm., in STZ induced diabetic rats. Chem. Biol. Interact. 2009, 82, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Ravi, K.; Ramachandran, B.; Subramanian, S. Effect of Eugenia jambolana seed kernel on antioxidant defense system in streptozotocin induced diabetes in rats. Life Sci. 2004, 75, 2717–2731. [Google Scholar] [CrossRef]
- Alfy, A.; Ahmed, A.; Fatani, A. Protective effect of red grape seeds proanthocyanidins against induction of diabetes by alloxan in rats. Pharmacol. Res. 2005, 52, 264–270. [Google Scholar]
- Mahboob, M.; Rahman, M.F.; Grover, P. Serum lipid peroxidation and antioxidant enzyme levels in male and female diabetic patients. Singap. Med. J. 2005, 46, 322–324. [Google Scholar]
- Senthilkumar, G.P.; Arulselvan, P.; Sathishkumar, D.; Subramanian, S.P. Antidiabetic activity of fruits of Terminalia chebula on streptozotocin induced diabetic rats. J. Health Sci. 2006, 52, 283–291. [Google Scholar]
- Latha, M.; Pari, L. Preventive effects of Cassia auriculata L. Flowers on brain lipid peroxidation in rats treated with streptozotocin. Mol. Cell. Biochem. 2003, 243, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, J.; Nazratun Nafizah, A.H.; Zariyantey, A.H.; Budin, S.B. Mechanisms of Diabetes-Induced Liver Damage: The role of oxidative stress and inflammation. Sultan Qaboos Univ. Med. J. 2016, 16, e132–e141. [Google Scholar] [CrossRef]
- Dewanjee, S.; Chakraborty, P.; Mukherjee, B.; De Feo, V. Plant-Based Antidiabetic Nanoformulations: The Emerging Paradigm for Effective Therapy. Int. J. Mol. Sci. 2020, 21, 2217. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, B.K.; Maddirala, D.R.; Vinay, K.K.; Shaik, S.F.; Tiruvenkata, K.E.G.; Swapna, S.; Ramesh, B.; Rao, C.A. Antihyperglycemic and antihyperlipidemic activities of methanol:water (4:1) fraction isolated from aqueous extract of Syzygium alternifolium seeds in streptozotocin induced diabetic rats. Food. Chem. Toxicol. 2010, 48, 1078–1084. [Google Scholar]
- Jasmine, R.; Daisy, P. Hypoglycemic and hepato protective activity of Eugenia jumbolana in streptozotocin-induced diabetic rats. Int. J. Biol. Chem. Sci. 2007, 1, 117–121. [Google Scholar]
- Ananthan, R.; Latha, M.; Ramkumar, K.; Pari, L.; Baskar, C.; Bai, V. Effect of Gymnema montanum leaves on serum and tissue lipids in alloxan diabetic rats. Exp. Diabetes Res. 2003, 4, 183–189. [Google Scholar] [CrossRef] [PubMed]
Concentration of (μg/mL) | DPPH Scavenging Activity (%) |
---|---|
10 | 21.29 |
20 | 46.09 |
30 | 72.87 |
40 | 79.86 |
50 | 82.06 |
100 | 85.89 |
Treatments | Concentration (µg/mL) | % Inhibition | IC50 (µg/mL) |
---|---|---|---|
Fruit extract of Solanum indicum | 10 | 38.11 ± 0.37 | 17.22 |
20 | 53.80 ± 0.31 | ||
40 | 59.66 ± 0.64 | ||
60 | 66.59 ± 0.52 | ||
80 | 72.10 ± 0.07 | ||
100 | 83.60 ± 0.09 | ||
Standard (Acarbose) | 10 | 55.92 ± 0.31 | 2.65 |
20 | 65.73 ± 0.56 | ||
40 | 73.83 ± 0.73 | ||
60 | 82.55 ± 0.77 | ||
80 | 82.86 ± 0.49 | ||
100 | 93.61 ± 0.56 |
Group | Treatment | 0 h | 1 h | 2 h | 3 h | % Reduction |
---|---|---|---|---|---|---|
I | Diabetic control | 387.2 ± 5.1 | 396.5 ± 4.3 | 398.8 ± 3.8 | 394.6 ± 3.8 | - |
II | Glibenclamide (5 mg/kg) | 344.3 ± 1.0 | 174.7 ± 1.2 | 115.9 ± 2.2 | 106.6 ± 2.7 | 69.03 |
III | Solanum indicum extract (100 mg/kg) | 389.7 ± 4.8 | 347.6 ± 3.6 | 316.5 ± 3.9 | 286.4 ± 6.2 | 26.50 |
IV | Solanum indicum extract (200 mg/kg) | 355.2 ± 4.7 | 323.6 ± 3.4 | 279.1 ± 5.6 | 244.4 ± 4.3 | 31.19 |
Group | Treatments | 0 Days | 10 Days | 20 Days | 30 Days |
---|---|---|---|---|---|
I | Control (0.3% w/v CMC) | 95.8 ± 1.88 | 93.2 ± 0.86 | 93.200 ± 0.86 | 89.800 ± 0.8 |
II | Diabetic control | 287.4 ± 1.88 | 281.8 ± 2.03 | 275.8 ± 1.39 | 272.8 ± 1.98 |
III | Glibenclamide (5 mg/kg) | 179.4 ± 1.6 | 133.8 ± 2.27 ** | 125.8 ± 3.29 ** | 122.8 ± 1.93 ** |
IV | Solanum indicum extract (100 mg/kg) | 180.8 ± 1.39 | 138.2 ± 2.55 * | 132.2 ± 2.85 * | 122.8 ± 1.93 * |
V | Solanum indicum extract (200 mg/kg) | 180.2 ± 1.24 | 136 ± 2.72 * | 125.4 ± 2.06 * | 120.2 ± 1.65 * |
Group | Treatments | Initial | Final |
---|---|---|---|
I | Control (0.3% w/v CMC) | 198.8 ± 3.26 | 200.0 ± 1.41 |
II | Diabetic control | 161.4.4 ± 1.2 | 141 ± 1.0 |
III | Glibenclamide (5 mg/kg) | 162.4 ± 1.7 | 181.1 ± 1.50 ** |
IV | Solanum indicum extract (100 mg/kg) | 163.2 ± 1.7 | 175.6 ± 1.56 ** |
V | Solanum indicum extract (200 mg/kg) | 163.6 ± 2.15 | 178.4 ± 1.63 ** |
Group | Treatment | AST | ALT |
---|---|---|---|
I | Control | 36.43 ± 2.48 | 54.68 ± 5.48 |
II | Diabetic control | 66.46 ± 4.25 | 90.88 ± 3.52 |
III | Glibenclamide (5 mg/kg) | 42.31 ± 4.89 *** | 53.67 ± 3.65 *** |
IV | Solanum indicum (100 mg/kg) | 48.36 ± 3.41 ** | 72.36 ± 5.41 ** |
V | Solanum indicum (200 mg/kg) | 45.89 ± 3.21 ** | 61.36 ± 5.63 *** |
Treatment | TC | TG | HDLc |
---|---|---|---|
Control | 166.7 ± 5.1 | 140 ± 2.6 | 43 ± 1.3 |
Diabetic control | 213.8 ± 3.6 ** | 182 ± 3.8 ** | 25 ± 2.8 * |
Glibenclamide | 153.6 ± 4.3 * | 135 ± 4.2 | 40 ± 3.1 |
Solanum indicum 100 mg/kg | 186.8 ± 3.9 | 175 ± 2.8 * | 26 ± 4.3 |
Solanum indicum 200 mg/kg | 168.2 ± 5.3 * | 160 ± 4.1 * | 32 ± 2.9 * |
Treatments | SOD (U/mg of Protein) | CAT (mM of H2O2 Decomposed/min) | GPx (U/mg of Protein) |
---|---|---|---|
Control | 4.89 ± 0.06 | 59.78 ± 2.86 | 44.35 ± 1.69 |
Diabetic control | 2.70 ± 0.08 | 36.43 ± 3.10 | 26.72 ± 2.10 |
Glibenclamide (5 mg/kg) | 4.58 ± 0.02 * | 58.93 ± 1.68 * | 35.31 ± 2.22 * |
Solanum indicum (100 mg/kg) | 3.76 ± 0.09 * | 41.65 ± 1.56 * | 37.49 ± 1.65 * |
Solanum indicum (200 mg/kg) | 4.32 ± 0.03 ** | 56.53 ± 2.33 * | 40.52 ± 2.76 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gadewar, M.M.; G K, P.; Mishra, P.C.; Ashraf, G.M.; Almashjary, M.N.; Harakeh, S.; Upadhye, V.; Dey, A.; Singh, P.; Jha, N.K.; et al. Evaluation of Antidiabetic, Antioxidant and Anti-Hyperlipidemic Effects of Solanum indicum Fruit Extract in Streptozotocin-Induced Diabetic Rats. Curr. Issues Mol. Biol. 2023, 45, 903-917. https://doi.org/10.3390/cimb45020058
Gadewar MM, G K P, Mishra PC, Ashraf GM, Almashjary MN, Harakeh S, Upadhye V, Dey A, Singh P, Jha NK, et al. Evaluation of Antidiabetic, Antioxidant and Anti-Hyperlipidemic Effects of Solanum indicum Fruit Extract in Streptozotocin-Induced Diabetic Rats. Current Issues in Molecular Biology. 2023; 45(2):903-917. https://doi.org/10.3390/cimb45020058
Chicago/Turabian StyleGadewar, Manoj M., Prashanth G K, Prabhu Chandra Mishra, Ghulam Md Ashraf, Majed N. Almashjary, Steve Harakeh, Vijay Upadhye, Abhijit Dey, Pallavi Singh, Niraj Kumar Jha, and et al. 2023. "Evaluation of Antidiabetic, Antioxidant and Anti-Hyperlipidemic Effects of Solanum indicum Fruit Extract in Streptozotocin-Induced Diabetic Rats" Current Issues in Molecular Biology 45, no. 2: 903-917. https://doi.org/10.3390/cimb45020058
APA StyleGadewar, M. M., G K, P., Mishra, P. C., Ashraf, G. M., Almashjary, M. N., Harakeh, S., Upadhye, V., Dey, A., Singh, P., Jha, N. K., & Jha, S. K. (2023). Evaluation of Antidiabetic, Antioxidant and Anti-Hyperlipidemic Effects of Solanum indicum Fruit Extract in Streptozotocin-Induced Diabetic Rats. Current Issues in Molecular Biology, 45(2), 903-917. https://doi.org/10.3390/cimb45020058