Sperm Cryopreservation Today: Approaches, Efficiency, and Pitfalls
Abstract
:1. Background and General Principles of Cryopreservation
2. The Impact of Cryopreservation on Human Spermatozoa (Cryodamage)
2.1. Plasma Membrane Fluidity and Spermatozoa Viability
2.2. Motility
2.3. DNA Integrity and Acrosome Integrity
Method Used for DNA Damage Detection | Method and Cryoprotectant Used for Cryopreservation | Patients Included in the Study | Results | References |
---|---|---|---|---|
TUNEL | Freezing on liquid nitrogen vapor with glycerol as a cryoprotectant. | 30 normozoospermic patients (>20 × 106/mL and motility ≥50%) | There were no significant changes in DNA fragmentation observed. | Paasch et al., (2004) [47] |
TUNEL | Freezing on liquid nitrogen vapor with glycerol as a cryoprotectant. | 47 patients with oligozoospermia (<10 × 106 sperm/mL) and 30 normozoospermic patients (>20 × 106/mL and motility ≥50%) | An increase in apoptotic DNA fragmentation was observed in both groups, and there was no significant difference between groups. | de Paula et al., (2006) [48] |
TUNEL | Freezing on liquid nitrogen vapor with glycerol as a cryoprotectant. | 15 normozoospermic patients (>20 × 106/mL and motility ≥50%) | A significant increase in DNA fragmentation after cryopreservation as well as decreases in sperm motility and viability. | Zribi et al., (2010) [49] |
TUNEL | Programmable slow freezing and vitrification with glycerol as a cryoprotectant. | 37 normozoospermic patients (>20 × 106/mL and motility ≥50%) | A significant increase in DNA fragmentation for both methods, and a greater decrease in sperm motility after the vitrification method. | Tongdee et al., (2015) [50] |
TUNEL | Freezing on liquid nitrogen vapor with glycerol as a cryoprotectant. | 100 normozoospermic patients (>20 × 106/mL and motility ≥50%) | Increased sperm DNA damage after cryopreservation. | Cankut et al., (2019) [51] |
Comet | Freezing on liquid nitrogen vapor and vitrification with glycerol as a cryoprotectant. | 38 normozoospermic patients (>20 × 106/mL and motility ≥50%) | Cryopreserved spermatozoa were found to be unaffected by cryopreservation via both techniques, and their DNA integrity was comparable with that of fresh sperm. | Isachenko et al., (2004) [52] |
Comet | Freezing on liquid nitrogen vapor with glycerol as a cryoprotectant. | 166 patients (80 teratozoospermia, 32 normozoospermic, and 30 asthenoteratozoospermic, and 24 oligoasthenoteratozoospermic) | Increased sperm DNA damage in all groups, lower in a normozoospermic group. Higher levels of DNA damage in cryopreserved samples in comparison with fresh samples. | Ahmad et al., (2010) [53] |
Comet | Freezing on liquid nitrogen vapor with glycerol as a cryoprotectant. | 12 patients (6 normozoospermic, 3 asthenozoospermic, 1 oligozoospermic, 1 teratozoospermic, and 1 oligoasthenozoospermic) | Sperm DNA integrity was significantly negatively affected by cryopreservation. | Riel et al., (2011) [54] |
Acridine Orange (AO) staining | Programmable slow freezing and freezing on liquid nitrogen vapor with glycerol as a cryoprotectant. | 40 normozoospermic patients (>20 × 106/mL and motility ≥50%) | A post-thaw increase in sperm DNA damage; programmable slow freezing provided superior results than freezing on liquid nitrogen vapor. | Somsin et al., (2007) [55] |
3. Factors Causing Cryodamage
3.1. Oxidative Stress
Method Used for DNA Damage Detection | Method and Cryoprotectant Used Cryopreservation | Patients Included in the Study | Results | References |
---|---|---|---|---|
Flow cytometry | Programmable slow freezing with glycerol as a cryoprotectant. | 18 normozoospermic patients (>20 × 106/mL and motility ≥50%) | Levels of ROS were increased after cryopreservation. | Wang et al., (1997) [60] |
Flow cytometry | Programmable slow freezing with glycerol as a cryoprotectant. | 60 patients (34 with abnormal semen results and 26 with normal semen results) | The process of cryopreservation resulted in an increase in DNA fragmentation. The dominant pathway to DNA fragmentation during cryopreservation is the ROS pathway. | Thomson et al., (2009) [61] |
Flow cytometry | Freezing on liquid nitrogen vapor with glycerol as a cryoprotectant. | 30 normozoospermic patients (>20 × 106/mL and motility ≥50%) | The levels of ROS detected via flow cytometry increased significantly compared with the fresh control group. | Li et al., (2010) [62] |
Flow cytometry | Freezing on liquid nitrogen vapor with glycerol as a cryoprotectant. | 15 normozoospermic patients (>20 × 106/mL and motility ≥50%) | They found no relationship between DNA fragmentation and ROS levels; they suggest cryopreservation-induced DNA damage happens through other pathways. | Zribi et al., (2010) [49] |
Flow cytometry | freezing on liquid nitrogen vapor and vitrification with glycerol as a cryoprotectant | 49 patients of infertile couples undergoing routine semen analysis | Both cryopreservation methods induced higher levels of ROS production. Results with the vitrification method were poorer than results achieved via vapor freezing. | Arciero et al., (2021) [63] |
3.2. Osmotic Stress
3.3. Temperature Stress
4. Cryoprotectants and Antioxidants
5. Cryopreservation Techniques
5.1. Comparison of Slow Freezing Vs. Vitrification
5.2. Cryopreservation Affects Spermatozoa on a Molecular Level
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Benson, J.; Woods, E.; Walters, E.; Critser, J. The cryobiology of spermatozoa. Theriogenology 2012, 78, 1682–1699. [Google Scholar] [CrossRef] [PubMed]
- Anger, J.T.; Gilbert, B.R.; Goldstein, M. Cryopreservation of Sperm: Indications, Methods and Results. J. Urol. 2003, 170, 1079–1084. [Google Scholar] [CrossRef] [PubMed]
- Doetsch, R.N. Lazzaro Spallanzani’s Opuscoli of 1776. Bacteriol. Rev. 1976, 40, 270–275. [Google Scholar] [CrossRef]
- Jensen, J.R.; Morbeck, D.E.; Coddington, C.C. Fertility Preservation. Mayo Clin. Proc. 2011, 86, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Bratton, R.; Foote, R.; Cruthers, J.C. Preliminary Fertility Results with Frozen Bovine Spermatozoa. J. Dairy Sci. 1955, 38, 40–46. [Google Scholar] [CrossRef]
- Mazur, P. Freezing of living cells: Mechanisms and implications. Am. J. Physiol. Physiol. 1984, 247, C125–C142. [Google Scholar] [CrossRef]
- Gao, D.; Critser, J.K. Mechanisms of Cryoinjury in Living Cells. ILAR J. 2000, 41, 187–196. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, W.-B.; Huang, C.; Tang, Y.-L.; Hu, J.-L.; Zhou, W.-J.; Huang, Z.-H.; Luo, X.-F. Update on techniques for cryopreservation of human spermatozoa. Asian J. Androl. 2022, 24, 563. [Google Scholar] [CrossRef]
- James, P.; Wolfe, C.; Mackie, A.; Ladha, S.; Prentice, A.; Jones, R. Lipid dynamics in the plasma membrane of fresh and cryopreserved human spermatozoa. Hum. Reprod. 1999, 14, 1827–1832. [Google Scholar] [CrossRef]
- Muldrew, K.; McGann, L. The osmotic rupture hypothesis of intracellular freezing injury. Biophys. J. 1994, 66, 532–541. [Google Scholar] [CrossRef]
- Desrosiers, P.; Légaré, C.; Leclerc, P.; Sullivan, R. Membranous and structural damage that occur during cryopreservation of human sperm may be time-related events. Fertil. Steril. 2006, 85, 1744–1752. [Google Scholar] [CrossRef]
- Fuller, B.J. Cryoprotectants: The essential antifreezes to protect life in the frozen state. Cryo Lett. 2004, 25, 375–388. [Google Scholar]
- Verkman, A.S.; van Hoek, A.N.; Ma, T.; Frigeri, A.; Skach, W.R.; Mitra, A.; Tamarappoo, B.K.; Farinas, J. Water transport across mammalian cell membranes. Am. J. Physiol. Physiol. 1996, 270, C12–C30. [Google Scholar] [CrossRef]
- Sutton, R.L. Critical cooling rates for aqueous cryoprotectants in the presence of sugars and polysaccharides. Cryobiology 1992, 29, 585–598. [Google Scholar] [CrossRef]
- Abdelhafez, F.; Bedaiwy, M.; El-Nashar, S.A.; Sabanegh, E.; Desai, N. Techniques for cryopreservation of individual or small numbers of human spermatozoa: A systematic review. Hum. Reprod. Update 2008, 15, 153–164. [Google Scholar] [CrossRef]
- Medeiros, C.; Forell, F.; Oliveira, A.; Rodrigues, J. Current status of sperm cryopreservation: Why isn’t it better? Theriogenology 2002, 57, 327–344. [Google Scholar] [CrossRef]
- Morris, G.J.; Acton, E.; Murray, B.J.; Fonseca, F. Freezing injury: The special case of the sperm cell. Cryobiology 2012, 64, 71–80. [Google Scholar] [CrossRef]
- Ozkavukcu, S.; Erdemli, E.; Isik, A.; Oztuna, D.; Karahuseyinoglu, S. Effects of cryopreservation on sperm parameters and ultrastructural morphology of human spermatozoa. J. Assist. Reprod. Genet. 2008, 25, 403–411. [Google Scholar] [CrossRef]
- Isachenko, E.; Isachenko, V.; Katkov, I.I.; Dessole, S.; Nawroth, F. Vitrification of mammalian spermatozoa in the absence of cryoprotectants: From past practical difficulties to present success. Reprod. Biomed. Online 2003, 6, 191–200. [Google Scholar] [CrossRef]
- Gómez-Torres, M.J.; Medrano, L.; Romero, A.; Fernández-Colom, P.J.; Aizpurúa, J. Effectiveness of human spermatozoa biomarkers as indicators of structural damage during cryopreservation. Cryobiology 2017, 78, 90–94. [Google Scholar] [CrossRef]
- Watson, H. Biological membranes. Essays Biochem. 2015, 59, 43–69. [Google Scholar] [CrossRef] [PubMed]
- Almén, M.S.; Nordström, K.J.; Fredriksson, R.; Schiöth, H.B. Mapping the human membrane proteome: A majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol. 2009, 7, 50. [Google Scholar] [CrossRef]
- Van Meer, G.; Voelker, D.R.; Feigenson, G.W. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol. 2008, 9, 112–124. [Google Scholar] [CrossRef] [PubMed]
- Gousset, K.; Wolkers, W.F.; Tsvetkova, N.M.; Oliver, A.E.; Field, C.L.; Walker, N.J.; Crowe, J.H.; Tablin, F. Evidence for a physiological role for membrane rafts in human platelets. J. Cell. Physiol. 2001, 190, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Hammerstedt, R.H.; Graham, J.K.; Nolan, J.P. Cryopreservation of mammalian sperm: What we ask them to survive. J. Androl. 1990, 11, 73–88. [Google Scholar]
- Giraud, M.; Motta, C.; Boucher, D.; Grizard, G. Membrane fluidity predicts the outcome of cryopreservation of human spermatozoa. Hum. Reprod. 2000, 15, 2160–2164. [Google Scholar] [CrossRef]
- Woolley, D.M.; Richardson, D.W. Ultrastructural injury to human spermatozoa after freezing and thawing. Reproduction 1978, 53, 389–394. [Google Scholar] [CrossRef]
- Zhu, W.J.; Liu, X.G. Cryodamage to plasma membrane integrity in head and tail regions of human sperm. Asian J. Androl. 2000, 2, 135–138. [Google Scholar]
- Torra-Massana, M.; Vassena, R.; Rodríguez, A. Sperm cryopreservation does not affect live birth rate in normozoospermic men: Analysis of 7969 oocyte donation cycles. Hum. Reprod. 2023, 38, 400–407. [Google Scholar] [CrossRef]
- Barratt, C.L.R.; Bjorndahl, L.; Menkveld, R.; Mortimer, D. ESHRE special interest group for andrology basic semen analysis course: A continued focus on accuracy, quality, efficiency and clinical relevance. Hum. Reprod. 2011, 26, 3207–3212. [Google Scholar] [CrossRef]
- Björndahl, L. The usefulness and significance of assessing rapidly progressive spermatozoa. Asian J. Androl. 2010, 12, 33–35. [Google Scholar] [CrossRef]
- O’Connell, M.; McClure, N.; Lewis, S.E.M. The effects of cryopreservation on sperm morphology, motility and mitochondrial function. Hum. Reprod. 2002, 17, 704–709. [Google Scholar] [CrossRef]
- Lin, M.-H.; Morshedi, M.; Srisombut, C.; Nassar, A.; Oehninger, S. Plasma membrane integrity of cryopreserved human sperm: An investigation of the results of the hypoosmotic swelling test, the water test, and eosin-y staining. Fertil. Steril. 1998, 70, 1148–1155. [Google Scholar] [CrossRef]
- Hammadeh, M.E.; Askari, A.S.; Georg, T.; Rosenbaum, P.; Schmidt, W. Effect of freeze–thawing procedure on chromatin stability, morphological alteration and membrane integrity of human spermatozoa in fertile and subfertile men. Int. J. Androl. 1999, 22, 155–162. [Google Scholar] [CrossRef]
- Stanic, P.; Tandara, M.; Sonicki, Z.; Simunic, V.; Radakovic, B.; Suchanek, E. Comparison of protective media and freezing techniques for cryopreservation of human semen. Eur. J. Obstet. Gynecol. Reprod. Biol. 2000, 91, 65–70. [Google Scholar] [CrossRef]
- Kremer, J.; Dijkhuis, J.R.H.; Jager, S. A simplified method for freezing and storage of human semen. Fertil. Steril. 1987, 47, 838–842. [Google Scholar] [CrossRef]
- Karakus, F.N.; Kuran, S.B.; Solakoglu, S. Effect of curcumin on sperm parameters after the cryopreservation. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 267, 161–166. [Google Scholar] [CrossRef]
- Centola, G.M.; Raubertas, R.F.; Mattox, J.H. Cryopreservation of Human Semen: Comparison of Cryopreservatives, Sources of Variability, and Prediction of Post-thaw Survival. J. Androl. 1992, 13, 283–288. [Google Scholar] [CrossRef]
- Li, Z.; Wang, L.; Cai, J.; Huang, H. Correlation of sperm DNA damage with IVF and ICSI outcomes: A systematic review and meta-analysis. J. Assist. Reprod. Genet. 2006, 23, 367–376. [Google Scholar] [CrossRef]
- Simon, L.; Lewis, S.E.M. Sperm DNA damage or progressive motility: Which one is the better predictor of fertilization in vitro? Syst. Biol. Reprod. Med. 2011, 57, 133–138. [Google Scholar] [CrossRef]
- Du, C.; Tuo, Y. Correlation of DNA fragments with routine semen parameters and lifestyle and their impact on assisted reproductive outcomes. Rev. Int. Androl. 2023, 21, 100337. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Gao, J.; Zhou, N.; Mo, M.; Wang, X.; Zhang, X.; Yang, H.; Chen, Q.; Ao, L.; Liu, J.; et al. The effect of two cryopreservation methods on human sperm DNA damage. Cryobiology 2016, 72, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Neild, D.M.; Gadella, B.M.; Chaves, M.G.; Miragaya, M.H.; Colenbrander, B.; Agüero, A. Membrane changes during different stages of a freeze–thaw protocol for equine semen cryopreservation. Theriogenology 2003, 59, 1693–1705. [Google Scholar] [CrossRef] [PubMed]
- Silva, P.; Gadella, B. Detection of damage in mammalian sperm cells. Theriogenology 2006, 65, 958–978. [Google Scholar] [CrossRef]
- Rahiminia, T.; Hosseini, A.; Anvari, M.; Ghasemi-Esmailabad, S.; Talebi, A.R. Modern human sperm freezing: Effect on DNA, chromatin and acrosome integrity. Taiwan J. Obstet. Gynecol. 2017, 56, 472–476. [Google Scholar] [CrossRef]
- Fortunato, A.; Leo, R.; Liguori, F. Effects of cryostorage on human sperm chromatin integrity. Zygote 2013, 21, 330–336. [Google Scholar] [CrossRef]
- Paasch, U.; Sharma, R.K.; Gupta, A.K.; Grunewald, S.; Mascha, E.J.; Thomas, A.J.; Glander, H.-J.; Agarwal, A. Cryopreservation and Thawing Is Associated with Varying Extent of Activation of Apoptotic Machinery in Subsets of Ejaculated Human Spermatozoa1. Biol. Reprod. 2004, 71, 1828–1837. [Google Scholar] [CrossRef]
- de Paula, T.S.; Bertolla, R.P.; Spaine, D.M.; Cunha, M.A.; Schor, N.; Cedenho, A.P. Effect of cryopreservation on sperm apoptotic deoxyribonucleic acid fragmentation in patients with oligozoospermia. Fertil. Steril. 2006, 86, 597–600. [Google Scholar] [CrossRef]
- Zribi, N.; Chakroun, N.F.; El Euch, H.; Gargouri, J.; Bahloul, A.; Keskes, L.A. Effects of cryopreservation on human sperm deoxyribonucleic acid integrity. Fertil. Steril. 2010, 93, 159–166. [Google Scholar] [CrossRef]
- Tongdee, P.; Sukprasert, M.; Satirapod, C.; Phd, A.W.; Choktanasiri, W. Comparison of Cryopreserved Human Sperm between Ultra Rapid Freezing and Slow Programmable Freezing: Effect on Motility, Morphology and DNA Integrity. J. Med. Assoc. Thai. 2015, 98, 33. Available online: http://www.jmatonline.com (accessed on 23 April 2023).
- Cankut, S.; Dinc, T.; Cincik, M.; Ozturk, G.; Selam, B. Evaluation of Sperm DNA Fragmentation via Halosperm Technique and TUNEL Assay Before and After Cryopreservation. Reprod. Sci. 2019, 26, 1575–1581. [Google Scholar] [CrossRef]
- Isachenko, V.; Isachenko, E.; Katkov, I.I.; Montag, M.; Dessole, S.; Nawroth, F.; Van Der Ven, H. Cryoprotectant-Free Cryopreservation of Human Spermatozoa by Vitrification and Freezing in Vapor: Effect on Motility, DNA Integrity, and Fertilization Ability. Biol. Reprod. 2004, 71, 1167–1173. [Google Scholar] [CrossRef]
- Ahmad, L.; Jalali, S.; Shami, S.A.; Akram, Z.; Batool, S.; Kalsoom, O. Effects of Cryopreservation on Sperm DNA Integrity in Normospermic and Four Categories of Infertile Males. Syst. Biol. Reprod. Med. 2010, 56, 74–83. [Google Scholar] [CrossRef]
- Riel, J.M.; Yamauchi, Y.; Huang, T.T.; Grove, J.; Ward, M.A. Short-Term Storage of Human Spermatozoa in Electrolyte-Free Medium Without Freezing Maintains Sperm Chromatin Integrity Better Than Cryopreservation. Biol. Reprod. 2011, 85, 536–547. [Google Scholar] [CrossRef]
- Petyim, S.; Choavaratana, R.; Kunathikom, S.; Laokirkkiat, P.; Prechapanich, J. Freezing Effect on Post-Thawed Sperm Characteristics Especially Sperm DNA Integrity Comparing between Liquid Nitrogen Vapour and Computerized Program Freezer. Siriraj Med. J. 2007, 59, 298–302. [Google Scholar]
- Aitken, R.; De Iuliis, G. On the possible origins of DNA damage in human spermatozoa. Mol. Hum. Reprod. 2010, 16, 3–13. [Google Scholar] [CrossRef]
- Saleh, R.A.; Hcld, A.A. Oxidative Stress and Male Infertility: From Research Bench to Clinical Practice. J. Androl. 2002, 23, 737–752. [Google Scholar] [CrossRef]
- Sawyer, D.E.; Mercer, B.G.; Wiklendt, A.M.; Aitken, R. Quantitative analysis of gene-specific DNA damage in human spermatozoa. Mutat. Res. Mol. Mech. Mutagen. 2003, 529, 21–34. [Google Scholar] [CrossRef]
- Kumar, A.; Prasad, J.K.; Srivastava, N.; Ghosh, S.K. Strategies to Minimize Various Stress-Related Freeze–Thaw Damages During Conventional Cryopreservation of Mammalian Spermatozoa. Biopreserv. Biobank. 2019, 17, 603–612. [Google Scholar] [CrossRef]
- Wang, A.W.; Zhang, H.; Ikemoto, I.; Anderson, D.J.; Loughlin, K.R. Reactive oxygen species generation by seminal cells during cryopreservation. Urology 1997, 49, 921–925. [Google Scholar] [CrossRef]
- Thomson, L.; Fleming, S.; Aitken, R.; De Iuliis, G.; Zieschang, J.-A.; Clark, A. Cryopreservation-induced human sperm DNA damage is predominantly mediated by oxidative stress rather than apoptosis. Hum. Reprod. 2009, 24, 2061–2070. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Lin, Q.; Liu, R.; Xiao, W.; Liu, W. Protective Effects of Ascorbate and Catalase on Human Spermatozoa During Cryopreservation. J. Androl. 2010, 31, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Arciero, V.; Ammar, O.; Maggi, M.; Vignozzi, L.; Muratori, M.; Dabizzi, S. Vapour fast freezing with low semen volumes can highly improve motility and viability or DNA quality of cryopreserved human spermatozoa. Andrology 2022, 10, 1123–1133. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.Y.; Ashworth, E.; Watson, P.F.; Kleinhans, F.W.; Mazur, P.; Critser, J.K. Hyperosmotic Tolerance of Human Spermatozoa: Separate Effects of Glycerol, Sodium Chloride, and Sucrose on Spermolysis1. Biol. Reprod. 1993, 49, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Critser, J.K.; Huse-Benda, A.R.; Aaker, D.V.; Arneson, B.W.; Ball, G.D. Cryopreservation of human spermatozoa. III. The effect of Cryoprotectants on motility. Fertil. Steril. 1988, 50, 314–320. [Google Scholar] [CrossRef]
- Penninckx, F.; Poelmans, S.; Kerremans, R.; De Loecker, W. Erythrocyte swelling after rapid dilution of cryoprotectants and its prevention. Cryobiology 1984, 21, 25–32. [Google Scholar] [CrossRef]
- De Leeuw, F.E.; Chen, H.-C.; Colenbrander, B.; Verkleij, A.J. Cold-induced ultrastructural changes in bull and boar sperm plasma membranes. Cryobiology 1990, 27, 171–183. [Google Scholar] [CrossRef]
- Pegg, D.E. The History and Principles of Cryopreservation. Semin. Reprod. Med. 2002, 20, 005–014. [Google Scholar] [CrossRef]
- Pegg, D.E. Principles of Cryopreservation. Cryopreserv. Free. Dry. Protoc. 2015, 1257, 3–19. [Google Scholar] [CrossRef]
- Paoli, D.; Lombardo, F.; Lenzi, A.; Gandini, L. Sperm Cryopreservation: Effects on Chromatin Structure. Genet. Damage Hum. Spermatozoa 2014, 791, 137–150. [Google Scholar] [CrossRef]
- Oldenhof, H.; Gojowsky, M.; Wang, S.; Henke, S.; Yu, C.; Rohn, K.; Wolkers, W.F.; Sieme, H. Osmotic Stress and Membrane Phase Changes During Freezing of Stallion Sperm: Mode of Action of Cryoprotective Agents1. Biol. Reprod. 2013, 88, 68. [Google Scholar] [CrossRef]
- Saragusty, J.; Gacitua, H.; Rozenboim, I.; Arav, A. Do physical forces contribute to cryodamage? Biotechnol. Bioeng. 2009, 104, 719–728. [Google Scholar] [CrossRef]
- Selige, C.; Quirino, M.; Schröter, F.; Aepli, M.; Schulze, M. Effect of pasteurized egg yolk on the quality of cryopreserved boar semen. Reprod. Domest. Anim. 2021, 56, 1152–1155. [Google Scholar] [CrossRef]
- Grigorieva, A.; Simonenko, E.; Garmaeva, S.; Mironova, A.; Yakovenko, S. Human Gametes Cryopreservation with Cryoprotectant Modified by Egg Yolk. Cryoletters 2019, 40, 187–192. [Google Scholar]
- McGonagle, L.S.; Goldstein, M.; Feldschuh, J.; Foote, R.H. The influence of cryoprotective media and processing procedures on motility and migration of frozen-thawed human sperm. Asian J. Androl. 2002, 4, 137–141. [Google Scholar]
- Sieme, H. Semen extenders for frozen semen. In Equine Reproduction, 2nd ed.; McKinnon, A.O., Squires, E.L., Vaala, W.E., Varner, D.D., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2011; pp. 296–297. [Google Scholar]
- Pillet, E.; Labbe, C.; Batellier, F.; Duchamp, G.; Beaumal, V.; Anton, M.; Desherces, S.; Schmitt, E.; Magistrini, M. Liposomes as an alternative to egg yolk in stallion freezing extender. Theriogenology 2012, 77, 268–279. [Google Scholar] [CrossRef]
- Hossain, A.M.; Osuamkpe, C.O. Sole Use of Sucrose in Human Sperm Cryopreservation. Arch. Androl. 2007, 53, 99–103. [Google Scholar] [CrossRef]
- Sherman, J. Cryopreservation of human semen. In Handbook of the Laboratory Diagnosis and Treatment of Infertility; Keel, B., Webster, B.W., Eds.; CRC Press: Boca Raton, FL, USA, 1990. [Google Scholar]
- Mandumpal, J.B.; Kreck, C.A.; Mancera, R.L. A molecular mechanism of solvent cryoprotection in aqueous DMSO solutions. Phys. Chem. Chem. Phys. 2011, 13, 3839–3842. [Google Scholar] [CrossRef]
- He, L.; He, T.; Farrar, S.; Ji, L.; Liu, T.; Ma, X. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species. Cell. Physiol. Biochem. 2017, 44, 532–553. [Google Scholar] [CrossRef]
- Kalthur, G.; Raj, S.; Thiyagarajan, A.; Kumar, S.; Kumar, P.; Adiga, S.K. Vitamin E supplementation in semen-freezing medium improves the motility and protects sperm from freeze-thaw–induced DNA damage. Fertil. Steril. 2011, 95, 1149–1151. [Google Scholar] [CrossRef]
- Karimfar, M.; Niazvand, F.; Haghani, K.; Ghafourian, S.; Shirazi, R.; Bakhtiyari, S. The protective effects of melatonin against cryopreservation-induced oxidative stress in human sperm. Int. J. Immunopathol. Pharmacol. 2015, 28, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Aghaz, F.; Khazaei, M.; Vaisi-Raygani, A.; Bakhtiyari, M. Cryoprotective effect of sericin supplementation in freezing and thawing media on the outcome of cryopreservation in human sperm. Aging Male 2018, 23, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Shiri, E.; Abolhassani, F.; Khosravizadeh, Z.; Najafi, A.; Khanezad, M.; Vazirian, M.; Fallahi, P.; Rezaeian, Z.; Hedayatpour, A. Aqueous Origanum vulgare Extract Improves the Quality of Cryopreserved Human Spermatozoa Through Its Antioxidant Effects. Biopreserv. Biobank. 2020, 18, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.; Alqawasmeh, O.; Zhao, M.; Chan, C.; Leung, M.; Chow, K.; Agarwal, N.; Mak, J.; Wang, C.; Pang, C.; et al. Green tea extract as a cryoprotectant additive to preserve the motility and DNA integrity of human spermatozoa. Asian J. Androl. 2021, 23, 150–156. [Google Scholar] [CrossRef]
- Santonastaso, M.; Mottola, F.; Iovine, C.; Colacurci, N.; Rocco, L. Protective Effects of Curcumin on the Outcome of Cryopreservation in Human Sperm. Reprod. Sci. 2021, 28, 2895–2905. [Google Scholar] [CrossRef]
- Li, Y.-X.; Zhou, L.; Lv, M.-Q.; Ge, P.; Liu, Y.-C.; Zhou, D.-X. Vitrification and conventional freezing methods in sperm cryopreservation: A systematic review and meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019, 233, 84–92. [Google Scholar] [CrossRef]
- Gilmore, J.A.; Liu, J.; Gao, D.Y.; Critser, J.K. Determination of optimal cryoprotectants and procedures for their addition and removal from human spermatozoa. Hum. Reprod. 1997, 12, 112–118. [Google Scholar] [CrossRef]
- Mazur, P. Kinetics of Water Loss from Cells at Subzero Temperatures and the Likelihood of Intracellular Freezing. J. Gen. Physiol. 1963, 47, 347–369. [Google Scholar] [CrossRef]
- Barbas, J.P.; Mascarenhas, R.D. Cryopreservation of domestic animal sperm cells. Cell Tissue Bank. 2008, 10, 49–62. [Google Scholar] [CrossRef]
- Fahy, G.M.; Macfarlane, D.R.; Angell, C.A.; Meryman, H.T. Vitrification as an approach to cryopreservation. Cryobiology 1984, 21, 407–426. [Google Scholar] [CrossRef]
- Satirapod, C.; Treetampinich, C.; Weerakiet, S.; Wongkularb, A.; Rattanasiri, S.; Choktanasiri, W. Comparison of cryopreserved human sperm from solid surface vitrification and standard vapor freezing method: On motility, morphology, vitality and DNA integrity. Andrologia 2012, 44, 786–790. [Google Scholar] [CrossRef]
- Fraga, C.G.; Motchnik, P.A.; Shigenaga, M.K.; Helbock, H.J.; Jacob, R.A.; Ames, B.N. Ascorbic acid protects against endogenous oxidative DNA damage in human sperm. Proc. Natl. Acad. Sci. USA 1991, 88, 11003–11006. [Google Scholar] [CrossRef]
- Vutyavanich, T.; Piromlertamorn, W.; Nunta, S. Rapid freezing versus slow programmable freezing of human spermatozoa. Fertil. Steril. 2010, 93, 1921–1928. [Google Scholar] [CrossRef]
- Hosseini, A.; Khalili, M.A.; Talebi, A.R.; Agha-Rahimi, A.; Ghasemi-Esmailabad, S.; Woodward, B.; Yari, N. Cryopreservation of Low Number of Human Spermatozoa; Which is Better: Vapor Phase or Direct Submerging in Liquid Nitrogen? Hum. Fertil. 2019, 22, 126–132. [Google Scholar] [CrossRef]
- Riva, N.S.; Ruhlmann, C.; Iaizzo, R.S.; López, C.A.M.; Martínez, A.G. Comparative analysis between slow freezing and ultra-rapid freezing for human sperm cryopreservation. JBRA Assist. Reprod. 2018, 22, 331–337. [Google Scholar] [CrossRef]
- Nallella, K.P.; Sharma, R.K.; Allamaneni, S.S.; Aziz, N.; Agarwal, A. Cryopreservation of human spermatozoa: Comparison of two cryopreservation methods and three cryoprotectants. Fertil. Steril. 2004, 82, 913–918. [Google Scholar] [CrossRef]
- Isachenko, V.; Maettner, R.; Petrunkina, A.M.; Sterzik, K.; Mallmann, P.; Rahimi, G.; Sanchez, R.; Risopatrón, J.; Damjanoski, I.; Isachenko, E. Vitrification of Human ICSI/IVF Spermatozoa Without Cryoprotectants: New Capillary Technology. J. Androl. 2012, 33, 462–468. [Google Scholar] [CrossRef]
- Gianaroli, L.; Magli, M.C.; Stanghellini, I.; Crippa, A.; Crivello, A.M.; Pescatori, E.S.; Ferraretti, A.P. DNA integrity is maintained after freeze-drying of human spermatozoa. Fertil. Steril. 2012, 97, 1067–1073.e1. [Google Scholar] [CrossRef]
- Cohen, J.; Garrisi, G.J.; Congedo-Ferrara, T.A.; Kieck, K.A.; Schimmel, T.W.; Scott, R.T. Cryopreservation of single human spermatozoa. Hum. Reprod. 1997, 12, 994–1001. [Google Scholar] [CrossRef]
- Schuster, T.G.; Keller, L.M.; Dunn, R.L.; Ohl, D.A.; Smith, G.D. Ultra-rapid freezing of very low numbers of sperm using cryoloops. Hum. Reprod. 2003, 18, 788–795. [Google Scholar] [CrossRef]
- Sharma, R.; Kattoor, A.J.; Ghulmiyyah, J.; Agarwal, A. Effect of sperm storage and selection techniques on sperm parameters. Syst. Biol. Reprod. Med. 2015, 61, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ďuračka, M.; Benko, F.; Tvrdá, E. Molecular Markers: A New Paradigm in the Prediction of Sperm Freezability. Int. J. Mol. Sci. 2023, 24, 3379. [Google Scholar] [CrossRef] [PubMed]
- Loomis, P.; Graham, J. Commercial semen freezing: Individual male variation in cryosurvival and the response of stallion sperm to customized freezing protocols. Anim. Reprod. Sci. 2008, 105, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Mazur, P.; Leibo, S.P.; Chu, E.H. A two-factor hypothesis of freezing injury: Evidence from Chinese hamster tissue-culture cells. Exp. Cell Res. 1972, 71, 345–355. [Google Scholar] [CrossRef]
- Yánez-Ortiz, I.; Catalán, J.; Rodríguez-Gil, J.E.; Miró, J.; Yeste, M. Advances in sperm cryopreservation in farm animals: Cattle, horse, pig and sheep. Anim. Reprod. Sci. 2022, 246, 106904. [Google Scholar] [CrossRef]
- Fraser, L.; Strzeżek, J. Is there a relationship between the chromatin status and DNA fragmentation of boar spermatozoa following freezing–thawing? Theriogenology 2007, 68, 248–257. [Google Scholar] [CrossRef]
- Flores, E.; Ramió-Lluch, L.; Bucci, D.; Fernández-Novell, J.; Peña, A.; Rodríguez-Gil, J. Freezing-thawing induces alterations in histone H1-DNA binding and the breaking of protein-DNA disulfide bonds in boar sperm. Theriogenology 2011, 76, 1450–1464. [Google Scholar] [CrossRef]
- Ribas-Maynou, J.; Garcia-Bonavila, E.; Hidalgo, C.O.; Catalán, J.; Miró, J.; Yeste, M. Species-Specific Differences in Sperm Chromatin Decondensation Between Eutherian Mammals Underlie Distinct Lysis Requirements. Front. Cell Dev. Biol. 2021, 9, 669182. [Google Scholar] [CrossRef]
- Kopeika, J.; Thornhill, A.; Khalaf, Y. The effect of cryopreservation on the genome of gametes and embryos: Principles of cryobiology and critical appraisal of the evidence. Hum. Reprod. Update 2015, 21, 209–227. [Google Scholar] [CrossRef]
- Wang, S.; Wang, W.; Xu, Y.; Tang, M.; Fang, J.; Sun, H.; Sun, Y.; Gu, M.; Liu, Z.; Zhang, Z.; et al. Proteomic characteristics of human sperm cryopreservation. Proteomics 2014, 14, 298–310. [Google Scholar] [CrossRef]
- Wu, J.; Bao, J.; Wang, L.; Hu, Y.; Xu, C. MicroRNA-184 downregulates nuclear receptor corepressor 2 in mouse spermatogenesis. BMC Dev. Biol. 2011, 11, 64. [Google Scholar] [CrossRef]
- Ortiz-Rodriguez, J.M.; Ortega-Ferrusola, C.; Gil, M.C.; Martín-Cano, F.E.; Gaitskell-Phillips, G.; Rodríguez-Martínez, H.; Hinrichs, K.; Álvarez-Barrientos, A.; Román, Á.; Peña, F.J. Transcriptome analysis reveals that fertilization with cryopreserved sperm downregulates genes relevant for early embryo development in the horse. PLoS ONE 2019, 14, e0213420. [Google Scholar] [CrossRef]
- Valcarce, D.; Cartón-García, F.; Herráez, M.; Robles, V. Effect of cryopreservation on human sperm messenger RNAs crucial for fertilization and early embryo development. Cryobiology 2013, 67, 84–90. [Google Scholar] [CrossRef]
- Bogle, O.A.; Kumar, K.; Attardo-Parrinello, C.; Lewis, S.E.M.; Estanyol, J.M.; Ballescà, J.L.; Oliva, R. Identification of protein changes in human spermatozoa throughout the cryopreservation process. Andrology 2017, 5, 10–22. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, H.; Hu, C.; Hao, H.; Zhang, J.; Li, K.; Zhao, X.; Qin, T.; Zhao, K.; Zhu, H.; et al. Identification of differentially expressed proteins in fresh and frozen–thawed boar spermatozoa by iTRAQ-coupled 2D LC–MS/MS. Reproduction 2014, 147, 321–330. [Google Scholar] [CrossRef]
- Li, P.; Hulak, M.; Koubek, P.; Sulc, M.; Dzyuba, B.; Boryshpolets, S.; Rodina, M.; Gela, D.; Manaskova-Postlerova, P.; Peknicova, J.; et al. Ice-age endurance: The effects of cryopreservation on proteins of sperm of common carp, Cyprinus carpio L. Theriogenology 2010, 74, 413–423. [Google Scholar] [CrossRef]
- Rahbar, S.; Novin, M.G.; Alizadeh, E.; Shahnazi, V.; Pashaei-Asl, F.; AsrBadr, Y.A.; Farzadi, L.; Ebrahimie, E.; Pashaiasl, M. New insights into the expression profile of MicroRNA-34c and P53 in infertile men spermatozoa and testicular tissue. Cell. Mol. Biol. 2017, 63, 77–83. [Google Scholar] [CrossRef]
- Biggar, K.K.; Dubuc, A.; Storey, K. MicroRNA regulation below zero: Differential expression of miRNA-21 and miRNA-16 during freezing in wood frogs. Cryobiology 2009, 59, 317–321. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, C.-J.; He, L.; Ding, L.; Tang, K.-Y.; Peng, W.-P. Selection of endogenous reference microRNA genes for quantitative reverse transcription polymerase chain reaction studies of boar spermatozoa cryopreservation. Theriogenology 2015, 83, 634–641. [Google Scholar] [CrossRef]
- Curry, E.; Safranski, T.J.; Pratt, S.L. Differential expression of porcine sperm microRNAs and their association with sperm morphology and motility. Theriogenology 2011, 76, 1532–1539. [Google Scholar] [CrossRef]
- Mishima, T.; Takizawa, T.; Luo, S.-S.; Ishibashi, O.; Kawahigashi, Y.; Mizuguchi, Y.; Ishikawa, T.; Mori, M.; Kanda, T.; Goto, T.; et al. MicroRNA (miRNA) cloning analysis reveals sex differences in miRNA expression profiles between adult mouse testis and ovary. Reproduction 2008, 136, 811–822. [Google Scholar] [CrossRef] [PubMed]
- Hezavehei, M.; Mirzaei, M.; Sharafi, M.; Wu, Y.; Gupta, V.; Fitzhenry, M.; Kouchesfahani, H.M.; Eftekhari-Yazdi, P.; Baharvand, H.; Dalman, A.; et al. Proteomics study reveals the molecular mechanisms underlying cryotolerance induced by mild sublethal stress in human sperm. Cell Tissue Res. 2022, 387, 143–157. [Google Scholar] [CrossRef] [PubMed]
Antioxidant Used | Method and Cryoprotectant Used for Cryopreservation | Patients Included in the Study | Results | References |
---|---|---|---|---|
Vitamin E | Freezing on liquid nitrogen vapor with glycerol as a cryoprotectant. | 59 patients with asthenozoospermia and 38 normozoospermic patients (>20 × 106/mL and motility ≥50%) | Supplementing the cryoprotectant with VE significantly enhanced the total motility and progressive motility in normozoospermic as well as asthenozoospermic samples. | Kalthur et al., (2011) [82] |
Melatonin | Freezing on liquid nitrogen vapor with glycerol as a cryoprotectant. | 43 normozoospermic patients (>20 × 106/mL and motility ≥50%) | The results show that the supplementation of melatonin significantly increased motility and viability and decreased levels of intracellular ROS. | Karimfar et al., (2015) [83] |
Sericin | Freezing on liquid nitrogen vapor with glycerol as a cryoprotectant. | 51 normozoospermic patients (>20 × 106/mL and motility ≥50%) | The addition of sericin significantly increased sperm viability and total motility and decreased DNA fragmentation. | Aghaz et al., (2018) [84] |
Oregano Extract (Oregano vulgare) | Freezing on liquid nitrogen vapor with glycerol as a cryoprotectant. | 20 normozoospermic patients (>20 × 106/mL and motility ≥50%) | The total motility was significantly increased in frozen–thawed spermatozoa in comparison with the control group. The percentage of vital spermatozoa was also significantly higher. | Shiri et al., (2020) [85] |
Green Tea | Freezing on liquid nitrogen vapor with glycerol as a cryoprotectant. | 45 normozoospermic patients (>20 × 106/mL and motility ≥50%) | They found that supplementing the sperm-freezing media with GTE had a significant protective effect on human sperm motility and DNA integrity, but there was no significant change in the ROS level. | Alqawasmeh et al., (2021) [86] |
Curcumin | Freezing on liquid nitrogen vapor with glycerol as a cryoprotectant. | 23 normozoospermic patients (>20 × 106/mL and motility ≥50%) | In the curcumin group, progressive motility, sperm chromatin condensation, and DNA integrity significantly increased after the thawing process when compared with the control. | Karakus et al., (2021) [37] |
Curcumin | Freezing on liquid nitrogen vapor with glycerol as a cryoprotectant. | 60 normozoospermic patients (>20 × 106/mL and motility ≥50%) | The results showed that curcumin supplementation in a freezing medium was protective for human sperm parameters (increased total motility) and sperm DNA (decrease in DNA fragmentation). | Santonastaso et al., (2021) [87] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozimic, S.; Ban-Frangez, H.; Stimpfel, M. Sperm Cryopreservation Today: Approaches, Efficiency, and Pitfalls. Curr. Issues Mol. Biol. 2023, 45, 4716-4734. https://doi.org/10.3390/cimb45060300
Ozimic S, Ban-Frangez H, Stimpfel M. Sperm Cryopreservation Today: Approaches, Efficiency, and Pitfalls. Current Issues in Molecular Biology. 2023; 45(6):4716-4734. https://doi.org/10.3390/cimb45060300
Chicago/Turabian StyleOzimic, Sanja, Helena Ban-Frangez, and Martin Stimpfel. 2023. "Sperm Cryopreservation Today: Approaches, Efficiency, and Pitfalls" Current Issues in Molecular Biology 45, no. 6: 4716-4734. https://doi.org/10.3390/cimb45060300
APA StyleOzimic, S., Ban-Frangez, H., & Stimpfel, M. (2023). Sperm Cryopreservation Today: Approaches, Efficiency, and Pitfalls. Current Issues in Molecular Biology, 45(6), 4716-4734. https://doi.org/10.3390/cimb45060300