Polymorphism of Genes and Their Impact on Beef Quality
Abstract
:1. Introduction
2. Myostatin
3. Thyroglobulin
4. The Calpain–Calpastatin System
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kang, N.; Panzone, L.; Kuznesof, S. The role of cooking in consumers’ quality formation: An exploratory study of beef steaks. Meat Sci. 2022, 186, 108730. [Google Scholar] [CrossRef] [PubMed]
- Font-i-Furnols, M.; Guerrero, L. Consumer preference, behavior and perception about meat and meat products: An overview. Meat Sci. 2014, 98, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Whitton, C.; Bogueva, D.; Marinova, D.; Phillips, C.J. Are we approaching peak meat consumption? Analysis of meat consumption from 2000 to 2019 in 35 countries and its relationship to gross domestic product. Animals 2021, 11, 3466. [Google Scholar] [CrossRef] [PubMed]
- Magalhaes, D.R.; Maza, M.T.; Prado, I.N.d.; Fiorentini, G.; Kirinus, J.K.; Campo, M.d.M. An exploratory study of the purchase and consumption of beef: Geographical and cultural differences between Spain and Brazil. Foods 2022, 11, 129. [Google Scholar] [CrossRef] [PubMed]
- Banović, M.; Chrysochou, P.; Grunert, K.G.; Rosa, P.J.; Gamito, P. The effect of fat content on visual attention and choice of red meat and differences across gender. Food Qual. Prefer. 2016, 52, 42–51. [Google Scholar] [CrossRef]
- Killinger, K.; Calkins, C.R.; Umberger, W.; Feuz, D.M.; Eskridge, K.M. Consumer visual preference and value for beef steaks differing in marbling level and color. J. Anim. Sci. 2004, 82, 3288–3293. [Google Scholar] [CrossRef]
- Morales, R.; Aguiar, A.; Subiabre, I.; Realini, C. Beef acceptability and consumer expectations associated with production systems and marbling. Food Qual. Prefer. 2013, 29, 166–173. [Google Scholar] [CrossRef]
- Frank, D.; Ball, A.; Hughes, J.; Krishnamurthy, R.; Piyasiri, U.; Stark, J.; Watkins, P.; Warner, R. Sensory and flavor chemistry characteristics of Australian beef: Influence of intramuscular fat, feed, and breed. J. Agric. Food Chem. 2016, 64, 4299–4311. [Google Scholar] [CrossRef]
- Barendse, W.; Bunch, R.; Thomas, M.; Armitage, S.; Baud, S.; Donaldson, N. The TG5 thyroglobulin gene test for a marbling quantitative trait loci evaluated in feedlot cattle. Aust. J. Exp. Agric. 2004, 44, 669–674. [Google Scholar] [CrossRef]
- McPherron, A.C.; Lee, S.-J. Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl. Acad. Sci. USA 1997, 94, 12457–12461. [Google Scholar] [CrossRef]
- Steen, D.; Claeys, E.; Uytterhaegen, L.; De Smet, S.; Demeyer, D. Early post-mortem conditions and the calpain/calpastatin system in relation to tenderness of double-muscled beef. Meat Sci. 1997, 45, 307–319. [Google Scholar] [CrossRef]
- Li, X.; Zhang, D.; Ren, C.; Bai, Y.; Ijaz, M.; Hou, C.; Chen, L. Effects of protein posttranslational modifications on meat quality: A review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 289–331. [Google Scholar] [CrossRef]
- FAO. FAOSTAT Database. 2019. Available online: https://www.fao.org/faostat/en/#data/QV (accessed on 7 March 2023).
- Huang, C.; Hou, C.; Ijaz, M.; Yan, T.; Li, X.; Li, Y.; Zhang, D. Proteomics discovery of protein biomarkers linked to meat quality traits in post-mortem muscles: Current trends and future prospects: A review. Trends Food Sci. Technol. 2020, 105, 416–432. [Google Scholar] [CrossRef]
- Kantono, K.; Hamid, N.; Ma, Q.; Chadha, D.; Oey, I. Consumers’ perception and purchase behaviour of meat in China. Meat Sci. 2021, 179, 108548. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.M.; Garrick, D. Increasing the accuracy of genomic prediction in pure-bred Limousin beef cattle by including cross-bred Limousin data and accounting for an F94L variant in MSTN. Anim. Genet. 2019, 50, 621–633. [Google Scholar] [CrossRef]
- Prihandini, P.W.; Primasari, A.; Aryogi, A.; Efendy, J.; Luthfi, M.; Pamungkas, D.; Hariyono, D.N.H. Genetic variation in the first intron and exon of the myostatin gene in several Indonesian cattle populations. Vet. World 2021, 14, 1197. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Pang, D.; Wang, K.; Xu, A.; Yao, C.; Li, M.; You, W.; Wang, Q.; Yu, H. The possible role of complete loss of myostatin in limiting excessive proliferation of muscle cells (C2C12) via activation of microRNAs. Int. J. Mol. Sci. 2019, 20, 643. [Google Scholar] [CrossRef] [PubMed]
- Bellinge, R.; Liberles, D.; Iaschi, S.; O’brien, P.; Tay, G. Myostatin and its implications on animal breeding: A review. Anim. Genet. 2005, 36, 1–6. [Google Scholar] [CrossRef]
- Aiello, D.; Patel, K.; Lasagna, E. The myostatin gene: An overview of mechanisms of action and its relevance to livestock animals. Anim. Genet. 2018, 49, 505–519. [Google Scholar] [CrossRef] [PubMed]
- Ansay, M.; Hanset, R. Anatomical, physiological and biochemical differences between conventional and double-muscled cattle in the Belgian Blue and White breed. Livest. Prod. Sci. 1979, 6, 5–13. [Google Scholar] [CrossRef]
- Hanset, R. The major gene of muscular hypertrophy in the Belgian Blue cattle breed. In Breeding for Disease Resistance in Farm Animals; Owen, J., Axford, R., Eds.; CAB International: Wallingford, UK, 1991; pp. 467–478. [Google Scholar]
- Hanset, R.; Michaux, C.; Dessy-Doize, C.; Burtonboy, G. Muscle Hypertrophy of Genetic Origin and Its Use to Improve Beef Production; Springer: Dordrecht, The Netherlands, 1982. [Google Scholar]
- Grobet, L.; Royo Martin, L.J.; Poncelet, D.; Pirottin, D.; Brouwers, B.; Riquet, J.; Schoeberlein, A.; Dunner, S.; Ménissier, F.; Massabanda, J. A deletion in the bovine myostatin gene causes the double–muscled phenotype in cattle. Nat. Genet. 1997, 17, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Kambadur, R.; Matthews, K.G.; Somers, W.G.; Devlin, G.P.; Conaglen, J.V.; Fowke, P.J.; Bass, J.J. Myostatin, a transforming growth factor-β superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct. J. Cell. Physiol. 1999, 180, 1–9. [Google Scholar] [CrossRef]
- Jiao, J.; Yuan, T.; Zhou, Y.; Xie, W.; Zhao, Y.; Zhao, J.; Ouyang, H.; Pang, D. Analysis of myostatin and its related factors in various porcine tissues. J. Anim. Sci. 2011, 89, 3099–3106. [Google Scholar] [CrossRef]
- Wolfman, N.M.; McPherron, A.C.; Pappano, W.N.; Davies, M.V.; Song, K.; Tomkinson, K.N.; Wright, J.F.; Zhao, L.; Sebald, S.M.; Greenspan, D.S. Activation of latent myostatin by the BMP-1/tolloid family of metalloproteinases. Proc. Natl. Acad. Sci. USA 2003, 100, 15842–15846. [Google Scholar] [CrossRef]
- McPherron, A.C.; Lawler, A.M.; Lee, S.-J. Regulation of skeletal muscle mass in mice by a new TGF-p superfamily member. Nature 1997, 387, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Trendelenburg, A.U.; Meyer, A.; Rohner, D.; Boyle, J.; Hatakeyama, S.; Glass, D.J. Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am. J. Physiol.-Cell Physiol. 2009, 296, C1258–C1270. [Google Scholar] [CrossRef]
- Bryson-Richardson, R.J.; Currie, P.D. The genetics of vertebrate myogenesis. Nat. Rev. Genet. 2008, 9, 632–646. [Google Scholar] [CrossRef]
- Amthor, H.; Huang, R.; McKinnell, I.; Christ, B.; Kambadur, R.; Sharma, M.; Patel, K. The regulation and action of myostatin as a negative regulator of muscle development during avian embryogenesis. Dev. Biol. 2002, 251, 241–257. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, D.-H.; Lee, K. Muscle hyperplasia in Japanese quail by single amino acid deletion in MSTN propeptide. Int. J. Mol. Sci. 2020, 21, 1504. [Google Scholar] [CrossRef]
- Tang, L.; Zhao, T.; Kang, Y.; An, S.; Fan, X.; Sun, L. MSTN is an important myokine for weight-bearing training to attenuate bone loss in ovariectomized rats. J. Physiol. Biochem. 2022, 78, 61–72. [Google Scholar] [CrossRef]
- Xin, X.-B.; Yang, S.-P.; Li, X.; Liu, X.-F.; Zhang, L.-L.; Ding, X.-B.; Zhang, S.; Li, G.-P.; Guo, H. Proteomics insights into the effects of MSTN on muscle glucose and lipid metabolism in genetically edited cattle. Gen. Comp. Endocrinol. 2020, 291, 113237. [Google Scholar] [CrossRef] [PubMed]
- Kärst, S.; Strucken, E.M.; Schmitt, A.O.; Weyrich, A.; de Villena, F.P.; Yang, H.; Brockmann, G.A. Effect of the myostatin locus on muscle mass and intramuscular fat content in a cross between mouse lines selected for hypermuscularity. BMC Genom. 2013, 14, 16. [Google Scholar] [CrossRef] [PubMed]
- Hocquette, J.-F.; Bas, P.; Bauchart, D.; Vermorel, M.; Geay, Y. Fat partitioning and biochemical characteristics of fatty tissues in relation to plasma metabolites and hormones in normal and double-muscled young growing bulls. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 1999, 122, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Deng, B.; Zhang, F.; Wen, J.; Ye, S.; Wang, L.; Yang, Y.; Gong, P.; Jiang, S. The function of myostatin in the regulation of fat mass in mammals. Nutr. Metab. 2017, 14, 29. [Google Scholar] [CrossRef]
- Fournier, B.; Murray, B.; Gutzwiller, S.; Marcaletti, S.; Marcellin, D.; Bergling, S.; Brachat, S.; Persohn, E.; Pierrel, E.; Bombard, F. Blockade of the activin receptor IIb activates functional brown adipogenesis and thermogenesis by inducing mitochondrial oxidative metabolism. Mol. Cell. Biol. 2012, 32, 2871–2879. [Google Scholar] [CrossRef]
- Braga, M.; Pervin, S.; Norris, K.; Bhasin, S.; Singh, R. Inhibition of in vitro and in vivo brown fat differentiation program by myostatin. Obesity 2013, 21, 1180–1188. [Google Scholar] [CrossRef]
- Zhao, B.; Wall, R.J.; Yang, J. Transgenic expression of myostatin propeptide prevents diet-induced obesity and insulin resistance. Biochem. Biophys. Res. Commun. 2005, 337, 248–255. [Google Scholar] [CrossRef]
- McPherron, A.C.; Lee, S.-J. Suppression of body fat accumulation in myostatin-deficient mice. J. Clin. Investig. 2002, 109, 595–601. [Google Scholar] [CrossRef]
- Wiener, P.; Woolliams, J.; Frank-Lawale, A.; Ryan, M.; Richardson, R.; Nute, G.; Wood, J.; Homer, D.; Williams, J. The effects of a mutation in the myostatin gene on meat and carcass quality. Meat Sci. 2009, 83, 127–134. [Google Scholar] [CrossRef]
- Allais, S.; Levéziel, H.; Payet-Duprat, N.; Hocquette, J.-F.; Lepetit, J.; Rousset, S.; Denoyelle, C.; Bernard-Capel, C.; Journaux, L.; Bonnot, A. The two mutations, Q204X and nt821, of the myostatin gene affect carcass and meat quality in young heterozygous bulls of French beef breeds. J. Anim. Sci. 2010, 88, 446–454. [Google Scholar] [CrossRef]
- Purfield, D.; Evans, R.; Berry, D. Reaffirmation of known major genes and the identification of novel candidate genes associated with carcass-related metrics based on whole genome sequence within a large multi-breed cattle population. BMC Genom. 2019, 20, 72. [Google Scholar] [CrossRef] [PubMed]
- Bouyer, C.; Forestier, L.; Renand, G.; Oulmouden, A. Deep intronic mutation and pseudo exon activation as a novel muscular hypertrophy modifier in cattle. PLoS ONE 2014, 9, e97399. [Google Scholar] [CrossRef] [PubMed]
- Kambadur, R.; Sharma, M.; Smith, T.P.; Bass, J.J. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res. 1997, 7, 910–915. [Google Scholar] [CrossRef]
- Cappucio, I.; Marchitelli, C.; Serracchioli, A.; Nardone, A.; Filippini, F.; Ajmone-Marsan, P.; Valentini, A. A GT transversion introduces a stop codon at the mh locus in hypertrophic Marchigiana beef subjects. Anim. Genet 1998, 29, 51. [Google Scholar]
- Sellick, G.S.; Pitchford, W.; Morris, C.; Cullen, N.; Crawford, A.; Raadsma, H.; Bottema, C. Effect of myostatin F94L on carcass yield in cattle. Anim. Genet. 2007, 38, 440–446. [Google Scholar] [CrossRef]
- Casas, E.; Keele, J.; Shackelford, S.; Koohmaraie, M.; Sonstegard, T.; Smith, T.; Kappes, S.; Stone, R. Association of the muscle hypertrophy locus with carcass traits in beef cattle. J. Anim. Sci. 1998, 76, 468–473. [Google Scholar] [CrossRef]
- Dunner, S.; Miranda, M.E.; Amigues, Y.; Cañón, J.; Georges, M.; Hanset, R.; Williams, J.; Ménissier, F. Haplotype diversity of the myostatin gene among beef cattle breeds. Genet. Sel. Evol. 2003, 35, 103–118. [Google Scholar] [CrossRef] [PubMed]
- Wegner, J.; Albrecht, E.; Fiedler, I.; Teuscher, F.; Papstein, H.-J.; Ender, K. Growth-and breed-related changes of muscle fiber characteristics in cattle. J. Anim. Sci. 2000, 78, 1485–1496. [Google Scholar] [CrossRef]
- Mwashiuya, J.T.; Manyele, S.V.; Mwaluko, G. Assessment of Beef Quality Determinants based on consumer preferences. J. Serv. Sci. Manag. 2018, 11, 657. [Google Scholar] [CrossRef]
- Farmer, L.; Farrell, D. Beef-eating quality: A European journey. Animal 2018, 12, 2424–2433. [Google Scholar] [CrossRef]
- Egan, A.; Ferguson, D.; Thompson, J. Consumer sensory requirements for beef and their implications for the Australian beef industry. Aust. J. Exp. Agric. 2001, 41, 855–859. [Google Scholar] [CrossRef]
- Arthur, P.F.; Makarechian, M.; Price, M.A. Incidence of dystocia and perinatal calf mortality resulting from reciprocal crossing of double-muscled and normal cattle. Can. Vet. J. 1988, 29, 163. [Google Scholar] [PubMed]
- King, J.; Menissier, F. Muscle hypertrophy of genetic origin and its use to improve beef. In Current Topics in Veterinary Medicine and Animal Science; Springer: Dordrecht, The Netherlands, 1982. [Google Scholar]
- Arthur, P.; Makarechian, M.; Price, M.; Berg, R. Heterosis, maternal and direct effects in double-muscled and normal cattle: I. Reproduction and growth traits. J. Anim. Sci. 1989, 67, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Rehfeldt, C.; Ott, G.; Gerrard, D.E.; Varga, L.; Schlote, W.; Williams, J.L.; Renne, U.; Bünger, L. Effects of the Compact mutant myostatin allele Mstn Cmpt-dl1Abc introgressed into a high growth mouse line on skeletal muscle cellularity. J. Muscle Res. Cell Motil. 2005, 26, 103. [Google Scholar] [CrossRef]
- Kowalewska-Luczak, I.; Kulig, H.; Szewczyk, K. Polimorfizm w genie tyreoglobuliny u bydła rasy jersey. Acta Sci. Polonorum. Zootech. 2010, 9, 129–134. [Google Scholar]
- van der Spek, A.H.; Fliers, E.; Boelen, A. The classic pathways of thyroid hormone metabolism. Mol. Cell. Endocrinol. 2017, 458, 29–38. [Google Scholar] [CrossRef]
- Ardicli, S.; Dincel, D.; Samli, H.; Senturk, N.; Karalar, B.; Unlu, S.; Soyudal, B.; Kubad, E.; Balci, F. Association of polymorphisms in lipid and energy metabolism-related genes with fattening performance in Simmental cattle. Anim. Biotechnol. 2022, 2, 1–13. [Google Scholar] [CrossRef]
- Dolmatova, I.; Sedykh, T.; Valitov, F.; Gizatullin, R.; Khaziev, D.; Kharlamov, A. Effect of the bovine TG5 gene polymorphism on milk-and meat-producing ability. Vet. World 2020, 13, 2046. [Google Scholar] [CrossRef]
- Gan, Q.-F.; Zhang, L.-P.; Li, J.-Y.; Hou, G.-Y.; Li, H.-D.; Gao, X.; Ren, H.-Y.; Chen, J.-B.; Xu, S.-Z. Association analysis of thyroglobulin gene variants with carcass and meat quality traits in beef cattle. J. Appl. Genet. 2008, 49, 251–255. [Google Scholar] [CrossRef]
- Ardicli, S.; Samli, H.; Dincel, D.; Ekiz, B.; Yalcintan, H.; Vatansever, B.; Balci, F. Relationship of the bovine IGF1, TG, DGAT1 and MYF5 genes to meat colour, tenderness and cooking loss. J. Hell. Vet. Med. Soc. 2018, 69, 1077–1087. [Google Scholar] [CrossRef]
- Carvalho, T.D.D.; Siqueira, F.; Torres Júnior, R.A.D.A.; Medeiros, S.R.D.; Feijó, G.L.D.; Souza Junior, M.D.D.; Blecha, I.M.Z.; Soares, C.O. Association of polymorphisms in the leptin and thyroglobulin genes with meat quality and carcass traits in beef cattle. Rev. Bras. De Zootec. 2012, 41, 2162–2168. [Google Scholar] [CrossRef]
- De la Fuente, J.; Diaz, M.; Alvarez, I.; Oliver, M.; i Furnols, M.F.; Sañudo, C.; Campo, M.; Montossi, F.; Nute, G.; Caneque, V. Fatty acid and vitamin E composition of intramuscular fat in cattle reared in different production systems. Meat Sci. 2009, 82, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Testa, M.L.; Grigioni, G.; Panea, B.; Pavan, E. Color and marbling as predictors of meat quality perception of Argentinian consumers. Foods 2021, 10, 1465. [Google Scholar] [CrossRef] [PubMed]
- Listrat, A.; Lebret, B.; Louveau, I.; Astruc, T.; Bonnet, M.; Lefaucheur, L.; Picard, B.; Bugeon, J. How muscle structure and composition influence meat and flesh quality. Sci. World J. 2016, 2016, 3182746. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Beak, S.-H.; Kim, S.Y.; Jeong, I.H.; Piao, M.Y.; Kang, H.J.; Fassah, D.M.; Na, S.W.; Yoo, S.P.; Baik, M. Genetic, management, and nutritional factors affecting intramuscular fat deposition in beef cattle—A review. Asian-Australas. J. Anim. Sci. 2018, 31, 1043. [Google Scholar] [CrossRef] [PubMed]
- Rincker, C.B.; Pyatt, N.A.; Berger, L.L.; Faulkner, D.B. Relationship among GeneSTAR marbling marker, intramuscular fat deposition, and expected progeny differences in early weaned Simmental steers. J. Anim. Sci. 2006, 84, 686–693. [Google Scholar] [CrossRef]
- Casas, E.; White, S.N.; Riley, D.G.; Smith, T.P.L.; Brenneman, R.A.; Olson, T.A.; Johnson, D.D.; Coleman, S.W.; Bennett, G.L.; Chase, C.C., Jr. Assessment of single nucleotide polymorphisms in genes residing on chromosomes 14 and 29 for association with carcass composition traits in Bos indicus cattle1,2. J. Anim. Sci. 2005, 83, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Wood, I.A.; Moser, G.; Burrell, D.L.; Mengersen, K.L.; Hetzel, D.J.S. A meta-analytic assessment of a Thyroglobulin marker for marbling in beef cattle. Genet. Sel. Evol. 2006, 38, 479–494. [Google Scholar] [CrossRef]
- Van Eenennaam, A.L.; Li, J.; Thallman, R.M.; Quaas, R.L.; Dikeman, M.E.; Gill, C.A.; Franke, D.E.; Thomas, M.G. Validation of commercial DNA tests for quantitative beef quality traits1,2. J. Anim. Sci. 2007, 85, 891–900. [Google Scholar] [CrossRef]
- Albrecht, E.; Gotoh, T.; Ebara, F.; Xu, J.; Viergutz, T.; Nürnberg, G.; Maak, S.; Wegner, J. Cellular conditions for intramuscular fat deposition in Japanese Black and Holstein steers. Meat Sci. 2011, 89, 13–20. [Google Scholar] [CrossRef]
- Irie, M.; Kouda, M.; Matono, H. Effect of ursodeoxycholic acid supplementation on growth, carcass characteristics, and meat quality of Wagyu heifers (Japanese Black cattle). J. Anim. Sci. 2011, 89, 4221–4226. [Google Scholar] [CrossRef]
- Jeong, J.; Kwon, E.; Im, S.; Seo, K.; Baik, M. Expression of fat deposition and fat removal genes is associated with intramuscular fat content in longissimus dorsi muscle of Korean cattle steers. J. Anim. Sci. 2012, 90, 2044–2053. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Kang, G.; Seong, P.-N.; Park, B.; Kang, S.M. Effect of slaughter age on the antioxidant enzyme activity, color, and oxidative stability of Korean Hanwoo (Bos taurus coreanae) cow beef. Meat Sci. 2015, 108, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.; Jung, K.; Chung, K.; Yang, B.; Chin, K.; Suh, S.; Oh, D.; Jeon, M.; Baek, K.; Lee, S. Administration of zilpaterol hydrochloride alters feedlot performance, carcass characteristics, muscle, and fat profiling in finishing Hanwoo steers. Livest. Sci. 2013, 157, 435–441. [Google Scholar] [CrossRef]
- Jung, S.; Nam, K.C.; Lee, K.H.; Kim, J.J.; Jo, C. Meat quality traits of Longissimus dorsi muscle from carcasses of Hanwoo steers at different yield grades. Food Sci. Anim. Resour. 2013, 33, 305–316. [Google Scholar] [CrossRef]
- Greenwood, P.L.; Siddell, J.; Walmsley, B.; Geesink, G.; Pethick, D.; McPhee, M. Postweaning substitution of grazed forage with a high-energy concentrate has variable long-term effects on subcutaneous fat and marbling in Bos taurus genotypes. J. Anim. Sci. 2015, 93, 4132–4143. [Google Scholar] [CrossRef]
- Krone, K.; Ward, A.; Madder, K.; Hendrick, S.; McKinnon, J.; Buchanan, F. Interaction of vitamin A supplementation level with ADH1C genotype on intramuscular fat in beef steers. Animal 2016, 10, 403–409. [Google Scholar] [CrossRef]
- Dinh, T.; Blanton Jr, J.; Riley, D.; Chase Jr, C.; Coleman, S.; Phillips, W.; Brooks, J.; Miller, M.; Thompson, L. Intramuscular fat and fatty acid composition of longissimus muscle from divergent pure breeds of cattle. J. Anim. Sci. 2010, 88, 756–766. [Google Scholar] [CrossRef]
- Dubovskova, M.; Selionova, M.; Chizhova, L.; Surzhikova, E.; Gerasimov, N.; Mikhailenko, A.; Dolgashova, M. Use of genetic markers of meat productivity in breeding of Hereford breed bulls. Proc. IOP Conf. Series Earth Environ. Sci. 2019, 341, 012052. [Google Scholar] [CrossRef]
- Bernard, C.; Cassar-Malek, I.; Le Cunff, M.; Dubroeucq, H.; Renand, G.; Hocquette, J.-F. New indicators of beef sensory quality revealed by expression of specific genes. J. Agric. Food Chem. 2007, 55, 5229–5237. [Google Scholar] [CrossRef]
- Gonzales-Malca, J.A.; Tirado-Kulieva, V.A.; Abanto-López, M.S.; Aldana-Juárez, W.L.; Palacios-Zapata, C.M. Bibliometric Analysis of Research on the Main Genes Involved in Meat Tenderness. Animals 2022, 12, 2976. [Google Scholar] [CrossRef] [PubMed]
- Uzabaci, E.; Dincel, D. Associations Between c. 2832A < G Polymorphism of CAST Gene and Meat Tenderness in Cattle: A Meta-Analysis CAST Geninin c. 2832A< G Polimorfizmi ile Sığırlarda Et Gevrekliği Arasındaki İlişki: Bir Meta-Analizi. Kafkas Univ. Vet. Fak. Derg. 2022, 28, 613–620. [Google Scholar]
- Koohmaraie, M.; Geesink, G. Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system. Meat Sci. 2006, 74, 34–43. [Google Scholar] [CrossRef]
- Gagaoua, M.; Terlouw, E.C.; Mullen, A.M.; Franco, D.; Warner, R.D.; Lorenzo, J.M.; Purslow, P.P.; Gerrard, D.; Hopkins, D.L.; Troy, D. Molecular signatures of beef tenderness: Underlying mechanisms based on integromics of protein biomarkers from multi-platform proteomics studies. Meat Sci. 2021, 172, 108311. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Hack, M.E.; Abdelnour, S.A.; Swelum, A.A.; Arif, M. The application of gene marker-assisted selection and proteomics for the best meat quality criteria and body measurements in Qinchuan cattle breed. Mol. Biol. Rep. 2018, 45, 1445–1456. [Google Scholar] [CrossRef]
- Brito Lopes, F.; Magnabosco, C.U.; Passafaro, T.L.; Brunes, L.C.; Costa, M.F.; Eifert, E.C.; Narciso, M.G.; Rosa, G.J.; Lobo, R.B.; Baldi, F. Improving genomic prediction accuracy for meat tenderness in Nellore cattle using artificial neural networks. J. Anim. Breed. Genet. 2020, 137, 438–448. [Google Scholar] [CrossRef]
- Smith, T.P.; Thallman, R.M.; Casas, E.; Shackelford, S.D.; Wheeler, T.L.; Koohmaraie, M. Theory and application of genome-based approaches to improve the quality and value of beef. Outlook Agric. 2003, 32, 253–265. [Google Scholar] [CrossRef]
- Takahashi, K. Mechanism of meat tenderization during post-mortem ageing: Calcium theory. In Proceedings of the International Congress of Meat Science and Technology, Yokohama, Japan, 1–6 August 1999; pp. 230–235. [Google Scholar]
- Koohmaraie, M. The role of Ca(2+)-dependent proteases (calpains) in post mortem proteolysis and meat tenderness. Biochimie 1992, 74, 239–245. [Google Scholar] [CrossRef]
- Watanabe, A.; Daly, C.; Devine, C. The effects of the ultimate pH of meat on tenderness changes during ageing. Meat Sci. 1996, 42, 67–78. [Google Scholar] [CrossRef]
- Bhat, Z.; Morton, J.D.; Mason, S.L.; Bekhit, A.E.-D.A. Role of calpain system in meat tenderness: A review. Food Sci. Hum. Wellness 2018, 7, 196–204. [Google Scholar] [CrossRef]
- Dransfield, E. Meat tenderness–the µ-calpain hypothesis. In Proceedings of the 45th International Congress of Meat Science and Technology, Yokohama, Japan, 1–6 August 1999. [Google Scholar]
- Kurebayashi, N.; Harkins, A.; Baylor, S. Use of fura red as an intracellular calcium indicator in frog skeletal muscle fibers. Biophys. J. 1993, 64, 1934–1960. [Google Scholar] [CrossRef]
- Jeacocke, R.E. The concentrations of free magnesium and free calcium ions both increase in skeletal muscle fibres entering rigor mortis. Meat Sci. 1993, 35, 27–45. [Google Scholar] [CrossRef]
- Ilian, M.A.; Bekhit, A.E.-D.; Bickerstaffe, R. The relationship between meat tenderization, myofibril fragmentation and autolysis of calpain 3 during post-mortem aging. Meat Sci. 2004, 66, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Ilian, M.A.; Morton, J.D.; Bekhit, A.E.-D.; Roberts, N.; Palmer, B.; Sorimachi, H.; Bickerstaffe, R. Effect of preslaughter feed withdrawal period on longissimus tenderness and the expression of calpains in the ovine. J. Agric. Food Chem. 2001, 49, 1990–1998. [Google Scholar] [CrossRef]
- Yang, X.; Chen, J.; Jia, C.; Zhao, R. Gene expression of calpain 3 and PGC-1α is correlated with meat tenderness in the longissimus dorsi muscle of Sutai pigs. Livest. Sci. 2012, 147, 119–125. [Google Scholar] [CrossRef]
- Koohmaraie, M. Effect of pH, temperature, and inhibitors on autolysis and catalytic activity of bovine skeletal muscle μ-calpain. J. Anim. Sci. 1992, 70, 3071–3080. [Google Scholar] [CrossRef]
- Thomson, B.; Dobbie, P.; Singh, K.; Speck, P. Post-mortem kinetics of meat tenderness and the components of the calpain system in bull skeletal muscle. Meat Sci. 1996, 44, 151–157. [Google Scholar] [CrossRef]
- Boehm, M.L.; Kendall, T.L.; Thompson, V.F.; Goll, D.E. Changes in the calpains and calpastatin during postmortem storage of bovine muscle. J. Anim. Sci. 1998, 76, 2415–2434. [Google Scholar] [CrossRef]
- Pringle, T.; Harrelson, J.; West, R.; Williams, S.; Johnson, D. Calcium-activated tenderization of strip loin, top sirloin, and top round steaks in diverse genotypes of cattle. J. Anim. Sci. 1999, 77, 3230–3237. [Google Scholar] [CrossRef]
- Morris, C.; Cullen, N.; Hickey, S.; Dobbie, P.; Veenvliet, B.; Manley, T.; Pitchford, W.; Kruk, Z.; Bottema, C.; Wilson, T. Genotypic effects of calpain 1 and calpastatin on the tenderness of cooked M. longissimus dorsi steaks from Jersey× Limousin, Angus and Hereford-cross cattle. Anim. Genet. 2006, 37, 411–414. [Google Scholar] [CrossRef] [PubMed]
- White, S.; Casas, E.; Wheeler, T.; Shackelford, S.; Koohmaraie, M.; Riley, D.; Chase Jr, C.; Johnson, D.; Keele, J.; Smith, T. A new single nucleotide polymorphism in CAPN1 extends the current tenderness marker test to include cattle of Bos indicus, Bos taurus, and crossbred descent. J. Anim. Sci. 2005, 83, 2001–2008. [Google Scholar] [CrossRef] [PubMed]
- Basson, A.; Strydom, P.E.; van Marle-Köster, E.; Webb, E.C.; Frylinck, L. Sustained Effects of Muscle Calpain System Genotypes on Tenderness Phenotypes of South African Beef Bulls during Ageing up to 20 Days. Animals 2022, 12, 686. [Google Scholar] [CrossRef] [PubMed]
- Avilés, C.; Juárez, M.; Peña, F.; Domenech, V.; Clemente, I.; Molina, A. Association of single nucleotide polymorphisms in CAPN1 and CAST genes with beef tenderness from Spanish commercial feedlots. Czech. J. Anim. Sci. 2013, 58, 479–487. [Google Scholar] [CrossRef]
- Page, B.; Casas, E.; Heaton, M.; Cullen, N.; Hyndman, D.; Morris, C.; Crawford, A.; Wheeler, T.; Koohmaraie, M.; Keele, J. Evaluation of single-nucleotide polymorphisms in CAPN1 for association with meat tenderness in cattle. J. Anim. Sci. 2002, 80, 3077–3085. [Google Scholar] [CrossRef]
- Casas, E.; White, S.; Wheeler, T.; Shackelford, S.; Koohmaraie, M.; Riley, D.; Chase Jr, C.; Johnson, D.; Smith, T. Effects of calpastatin and μ-calpain markers in beef cattle on tenderness traits. J. Anim. Sci. 2006, 84, 520–525. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kim, S.-C.; Chai, H.-H.; Cho, S.-H.; Kim, H.-C.; Lim, D.; Choi, B.-H.; Dang, C.-G.; Sharma, A.; Gondro, C. Mutations in calpastatin and μ-calpain are associated with meat tenderness, flavor and juiciness in Hanwoo (Korean cattle): Molecular modeling of the effects of substitutions in the calpastatin/μ-calpain complex. Meat Sci. 2014, 96, 1501–1508. [Google Scholar] [CrossRef] [PubMed]
- Rubio Lozano, M.S.; Alfaro-Zavala, S.; Sifuentes-Rincón, A.M.; Parra-Bracamonte, G.M.; Braña Varela, D.; Medina, R.D.M.; Pérez Linares, C.; Ríos Rincón, F.; Sánchez Escalante, A.; Torrescano Urrutia, G. Meat tenderness genetic and genomic variation sources in commercial beef cattle. J. Food Qual. 2016, 39, 150–156. [Google Scholar] [CrossRef]
- Smith, T.; Thomas, M.; Bidner, T.; Paschal, J.; Franke, D. Single nucleotide polymorphisms in Brahman steers and their association with carcass and tenderness traits. Genet. Mol. Res 2009, 8, 39–46. [Google Scholar] [CrossRef]
- Pinto, L.; Ferraz, J.B.S.; Meirelles, F.V.; Eler, J.P.; Rezende, F.M.d.; Carvalho, M.; Almeida, H.; Silva, R. Association of SNPs on CAPN 1 and CAST genes with tenderness in Nellore cattle. Genet. Mol. Res. 2010, 9, 1431–1442. [Google Scholar] [CrossRef]
- Pinto, L.F.B.; Ferraz, J.B.S.; Pedrosa, V.B.; Eler, J.P.; Meirelles, F.V.; Bonin, M.d.N.; Rezende, F.M.D.; Carvalho, M.E.; Cucco, D.D.C.; Silva, R.C.G.D. Single nucleotide polymorphisms in CAPN and leptin genes associated with meat color and tenderness in Nellore cattle. Genet. Mol. Res. 2011, 10, 2057–2064. [Google Scholar]
- Rosa, A.F.; Moncau, C.T.; Poleti, M.D.; Fonseca, L.D.; Balieiro, J.C.; Silva, S.L.; Eler, J.P. Proteome changes of beef in Nellore cattle with different genotypes for tenderness. Meat Sci. 2018, 138, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kök, S.; Atalay, S. The Use of various SNPs in CAST and CAPN1 genes to determine the meat tenderness in Turkish grey cattle. Kafkas Univ. Vet. Fak. Derg. 2018, 24, 1–8. [Google Scholar]
- Calvo, J.; Iguácel, L.; Kirinus, J.; Serrano, M.; Ripoll, G.; Casasús, I.; Joy, M.; Pérez-Velasco, L.; Sarto, P.; Albertí, P. A new single nucleotide polymorphism in the calpastatin (CAST) gene associated with beef tenderness. Meat Sci. 2014, 96, 775–782. [Google Scholar] [CrossRef]
- Schenkel, F.S.; Miller, S.P.; Jiang, Z.; Mandell, I.B.; Ye, X.; Li, H.; Wilton, J.W. Association of a single nucleotide polymorphism in the calpastatin gene with carcass and meat quality traits of beef cattle1. J. Anim. Sci. 2006, 84, 291–299. [Google Scholar] [CrossRef]
- Barendse, W.; Harrison, B.E.; Hawken, R.J.; Ferguson, D.M.; Thompson, J.M.; Thomas, M.B.; Bunch, R.J. Epistasis Between Calpain 1 and Its Inhibitor Calpastatin Within Breeds of Cattle. Genetics 2007, 176, 2601–2610. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Fu, R.; Liu, R.; Zhao, G.; Zheng, M.; Cui, H.; Li, Q.; Song, J.; Wang, J.; Wen, J. Protein profiles for muscle development and intramuscular fat accumulation at different post-hatching ages in chickens. PLoS ONE 2016, 11, e0159722. [Google Scholar] [CrossRef] [PubMed]
- Cônsolo, N.R.B.; Ferrari, V.B.; Mesquita, L.G.; Goulart, R.S.; e Silva, L.F.P. Zilpaterol hydrochloride improves beef yield, changes palatability traits, and increases calpain-calpastatin gene expression in Nellore heifers. Meat Sci. 2016, 121, 375–381. [Google Scholar] [CrossRef]
- Malheiros, J.M.; Enríquez-Valencia, C.E.; da Silva Duran, B.O.; de Paula, T.G.; Curi, R.A.; de Vasconcelos Silva, J.A.I.; Dal-Pai-Silva, M.; de Oliveira, H.N.; Chardulo, L.A.L. Association of CAST2, HSP90AA1, DNAJA1 and HSPB1 genes with meat tenderness in Nellore cattle. Meat Sci. 2018, 138, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Muroya, S.; Neath, K.E.; Nakajima, I.; Oe, M.; Shibata, M.; Ojima, K.; Chikuni, K. Differences in mRNA expression of calpains, calpastatin isoforms and calpain/calpastatin ratios among bovine skeletal muscles. Anim. Sci. J. 2012, 83, 252–259. [Google Scholar] [CrossRef]
- Allais, S.; Journaux, L.; Levéziel, H.; Payet-Duprat, N.; Raynaud, P.; Hocquette, J.-F.; Lepetit, J.; Rousset, S.; Denoyelle, C.; Bernard-Capel, C. Effects of polymorphisms in the calpastatin and µ-calpain genes on meat tenderness in 3 French beef breeds. J. Anim. Sci. 2011, 89, 1–11. [Google Scholar] [CrossRef]
- Johnston, D.; Graser, H.-U. Estimated gene frequencies of GeneSTAR markers and their size of effects on meat tenderness, marbling, and feed efficiency in temperate and tropical beef cattle breeds across a range of production systems. J. Anim. Sci. 2010, 88, 1917–1935. [Google Scholar] [CrossRef] [PubMed]
- Tait Jr, R.; Shackelford, S.; Wheeler, T.; King, D.; Keele, J.; Casas, E.; Smith, T.; Bennett, G. CAPN1, CAST, and DGAT1 genetic effects on preweaning performance, carcass quality traits, and residual variance of tenderness in a beef cattle population selected for haplotype and allele equalization. J. Anim. Sci. 2014, 92, 5382–5393. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, J.; Wang, F.; Xiao, J.; Wang, Y.; Yang, H.; Li, S.; Cao, Z. Heat stress on calves and heifers: A review. J. Anim. Sci. Biotechnol. 2020, 11, 79. [Google Scholar] [CrossRef] [PubMed]
- Dobson, H.; Smith, R. What is stress, and how does it affect reproduction? Anim. Reprod. Sci. 2000, 60, 743–752. [Google Scholar] [CrossRef]
SNP | |||
---|---|---|---|
Reference | Breed | Position | Mutation |
[24] | Belgian Blue | c.821 | Del11 |
[10] | Blonde d’Aquitaine | c.821 | Del11 |
[45] | g.3811 | T > G | |
[46] | Charolaise | c.610 | C > T |
[46] | Limousine | c.821 | Del11 |
[47] | c.610 | C > T | |
[48] | g.433 | C > A | |
[47] | Marchigiana | g.874 | G > T |
[46] | Piedmontese | c.938 | G > A |
Reference | Breed | Muscle | CAPN SNP |
---|---|---|---|
[108] | Angus, Charolaise, Brahman, and Nguni | Longissimus thoracis et lumborum | CAPN1 184+, CAPN1 187+, CAPN1 4751+, and CAPN2 780+ |
[109] | Charolaise, Limousine, and Retinta | Longissimus dorsi | CAPN1+ |
[106] | Jersey–Limousine cross, Angus, and Hereford cross | Longissimus dorsi | CAPN1: c.947C > G+ |
[110] | Piedmontese–Angus cross and Jersey-Limousine cross | Longissimus thoracis | 38 SNPs+ |
[111] | Angus, Red Angus, Beefmaster, Brangus, Hereford, Bonsmara, Romosinuano, Brahman, Limousine, Charolaise, Gelbvieh, and Simmental | No data | CAPN1+ |
[107] | Brangus, Beefmaster, Bonsmara, Brahman, Romosinuano, Hereford, and Angus | Longissimus | CAPN1 316+, CAPN1 4753+, and CAPN1 530+ |
[112] | Hanwoo | Longissimus lumborum | CAPN1:c.1589G > A+, CAPN1:c.658C > T+, CAPN1:c.948G > C+, and CAPN1:c.580A > G+ |
[113] | B. taurus, B. indicus, and crosses | Longissimus dorsi | CAPN1 316+ and CAPN1 4751+ |
[114] | Brahman | Longissimus dorsi | CAPN316+ and CAPN4751+ |
[115] | Nellore | Longissimus dorsi | CAPN1 316+, CAPN1 4751+, CAPN1 530+, and CAPN1 4753+ |
[116] | Nellore | Longissimus dorsi | CAPN1 4751− |
[117] | Nellore | Longissimus dorsi | CAPN1 4751+ |
[118] | Turkish Grey | Longissimus dorsi | CAPN1 316+ and CAPN1 4751+ |
[119] | Parda de Montaña and Pirenaica | Longissimus thoracis | CAPN1 316−, CAPN1 530−, and CAPN1 4751− |
Reference | Breed | Muscle | CAST SNP |
---|---|---|---|
[108] | Angus, Charolaise, Brahman, and Nguni | Longissimus thoracis et lumborum | CAST 736+ and CAST 763+ |
[109] | Charolaise, Limousine, and Retinta | Longissimus dorsi | CAST+ |
[106] | Jersey–Limousine cross, Angus–Hereford, and other crosses | Longissimus dorsi | CAST: c.2959A > G+ |
[111] | Angus, Red Angus, Beefmaster, Brangus, Hereford, Bonsmara, Romosinuano, Brahman Limousine, Charolaise, Gelbvieh, and Simmental | No data | CAST+ |
[112] | Hanwoo | Longissimus lumborum | CAST:c.182A > G+, CAST:c.1985G > C+, and CAST:c.1526T > C+ |
[113] | B. taurus, B. indicus, and crosses | Longissimus dorsi | CAST-T1− |
[114] | Brahman | Longissimus dorsi | CAST+ |
[115] | Nellore | Longissimus dorsi | UOGCAST+ and WSUCAST+ |
[117] | Nellore | Longissimus dorsi | UOGCAST+ |
[118] | Turkish Grey | Longissimus dorsi | UOGCAST+ |
[119] | Parda de Montaña and Pirenaica | Longissimus thoracis | CAST1+, CAST2+, CAST3−, CAST4+, and CAST5− |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostusiak, P.; Slósarz, J.; Gołębiewski, M.; Grodkowski, G.; Puppel, K. Polymorphism of Genes and Their Impact on Beef Quality. Curr. Issues Mol. Biol. 2023, 45, 4749-4762. https://doi.org/10.3390/cimb45060302
Kostusiak P, Slósarz J, Gołębiewski M, Grodkowski G, Puppel K. Polymorphism of Genes and Their Impact on Beef Quality. Current Issues in Molecular Biology. 2023; 45(6):4749-4762. https://doi.org/10.3390/cimb45060302
Chicago/Turabian StyleKostusiak, Piotr, Jan Slósarz, Marcin Gołębiewski, Grzegorz Grodkowski, and Kamila Puppel. 2023. "Polymorphism of Genes and Their Impact on Beef Quality" Current Issues in Molecular Biology 45, no. 6: 4749-4762. https://doi.org/10.3390/cimb45060302
APA StyleKostusiak, P., Slósarz, J., Gołębiewski, M., Grodkowski, G., & Puppel, K. (2023). Polymorphism of Genes and Their Impact on Beef Quality. Current Issues in Molecular Biology, 45(6), 4749-4762. https://doi.org/10.3390/cimb45060302