An Evaluation of the Anti-Inflammatory Effects of a Thai Traditional Polyherbal Recipe TPDM6315 in LPS-Induced RAW264.7 Macrophages and TNF-α-Induced 3T3-L1 Adipocytes
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Materials
2.3. Preparation of the Extracts
2.3.1. Ethanolic Extract
2.3.2. Aqueous Extract
2.4. HPLC Chromatogram
2.5. Evaluation of Anti-Inflammatory Activities of the Extracts in RAW264.7 Macrophages
2.6. The Effects of the Extracts on 3T3-L1 Adipocytes
2.6.1. Cell Culture and Differentiation of 3T3-L1 Adipocytes
2.6.2. Determination of the Effect of Extracts on Lipid Accumulation in 3T3-L1 Adipocytes
2.6.3. Effect of the Extracts on TNF-α-Induced 3T3-L1 Adipocytes
2.7. qPCR Analysis in LPS-Induced RAW264.7 Macrophages and TNF-α-Induced 3T3-L1 Adipocytes
2.8. Statistical Analysis
3. Results
3.1. Characterization of the Recipe Extracts
3.2. Anti-Inflammatory Effects on RAW264.7 Macrophages
3.2.1. NO Inhibitory Activity of TPDM6315 Extracts
3.2.2. Effect of TPDM6315 Extracts on Gene Expression in LPS-Induced RAW264.7 Macrophages
3.3. Reduction of Lipid Accumulation in 3T3-L1-Adipocytes
3.4. Effects of TPDM6315 Extracts on TNF-α-Induced 3T3-L1 Adipocytes
3.4.1. Effect on Gene Expression
3.4.2. Effect of TPDM6315 Extracts on Glucose Uptake in TNF-α-Induced 3T3-L1 Adipocytes
4. Discussion
4.1. Characterization of the Extracts
4.2. Anti-Inflammation Effect of TPDM6315 Extracts
4.3. Effect of AE and EE on Lipid Accumulation of 3T3-L1 Adipocyte
4.4. Effect of AE and EE on TNF-α-Induced 3T3-L1 Adipocytes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zampronio, A.R.; Soares, D.M.; Souza, G.E. Central mediators involved in the febrile response: Effects of antipyretic drugs. Temperature 2015, 2, 506–521. [Google Scholar] [CrossRef]
- Lee, J.E.; Schmidt, H.; Lai, B.; Ge, K. Transcriptional and epigenomic regulation of adipogenesis. Mol. Cell. Biol. 2019, 39, e00601-18. [Google Scholar] [CrossRef]
- da Cruz Nascimento, S.S.; Carvalho de Queiroz, J.L.; Fernandes de Medeiros, A.; de França Nunes, A.C.; Piuvezam, G.; Lima Maciel, B.L.; Souza Passos, T.; Morais, A.H.D.A. Anti-inflammatory agents as modulators of the inflammation in adipose tissue: A systematic review. PLoS ONE 2022, 17, e0273942. [Google Scholar] [CrossRef]
- Stephens, J.M.; Lee, J.; Pilch, P.F. Tumor necrosis factor-alpha-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction. J. Biol. Chem. 1997, 272, 971–976. [Google Scholar] [CrossRef]
- Budluang, P.; Pitchakarn, P.; Ting, P.; Temviriyanukul, P.; Wongnoppawich, A.; Imsumrna, A. Anti-inflammatory and anti-insulin resistance activities of aqueous extract from Anoectochilus burmannicus. Food Sci. Nutr. 2017, 5, 486–496. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Chang, W.C.; Yang, H.J.; Wu, J.S.B.; Shen, S.C. Gallic acid alleviates hypertriglyceridemia and fat accumulation via modulating glycolysis and lipolysis pathways in perirenal adipose tissues of rats fed a high-fructose diet. Int. J. Mol. Sci. 2018, 19, 254. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.Q.; Song, Y.L.; Zhu, Z.X.; Su, C.; Zhang, X.; Wang, J.; Shi, S.P.; Tu, P.F. Anti-inflammatory dimeric furanocoumarins from the roots of Angelica dahurica. Fitoterapia 2015, 105, 187–193. [Google Scholar] [CrossRef]
- Lu, X.; Yuan, Z.Y.; Yan, X.J.; Lei, F.; Jiang, J.F.; Yu, X.; Yang, X.W.; Xing, D.M.; Du, L.J. Effects of Angelica dahurica on obesity and fatty liver in mice. Chin. J. Nat. Med. 2016, 14, 641–652. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.S.; Hong, Y.; Lee, H.H.; Ryu, B.; Cho, Y.W.; Kim, N.J.; Jang, D.S.; Lee, K.T. Fulgidic Acid Isolated from the rhizomes of Cyperus rotundus suppresses LPS-Induced iNOS, COX-2, TNF-α, and IL-6 expression by AP-1 inactivation in RAW264.7 macrophages. Biol. Pharm. Bull. 2015, 38, 1081–1086. [Google Scholar] [CrossRef]
- Wongchum, N.; Dechakhamphu, A.; Panya, P.; Pinlaor, S.; Pinmongkhonkul, S.; Tanomtong, A. Hydroethanolic Cyperus rotundus L. extract exhibits antiobesity property and increases lifespan expectancy in Drosophila melanogaster fed a high-fat diet. J. Herbmed. Pharmacol. 2022, 11, 296–304. [Google Scholar] [CrossRef]
- Majeed, M.; Nagabhushanam, K.; Bhat, B.; Ansari, M.; Pandey, A.; Bani, S.; Mundkur, L. The anti-obesity potential of Cyperus rotundus extract containing piceatannol, scirpusin A and scirpusin B from rhizomes: Preclinical and clinical evaluations. Diabetes Metab. Syndr. Obes. Targets Ther. 2022, 15, 369–382. [Google Scholar] [CrossRef]
- Reanmongkol, W.; Subhadhirasakul, S.; Bouking, P. Antinociceptive and antipyretic activities of extracts and fractions from Dracaena loureiri in experimental animals. Songklanakarin J. Sci. Technol. 2003, 25, 467–476. [Google Scholar]
- Jaijoy, K.; Soonthornchareonnon, N.; Panthong, A.; Sireeratawong, S. Anti-inflammatory and analgesic activities of the water extract from the fruit of Phyllanthus emblica Linn. Int. J. Appl. Res. Nat. Prod. 2010, 3, 28–35. [Google Scholar]
- Balusamy, S.R.; Veerappan, K.; Ranjan, A.; Kim, Y.-J.; Chellappan, D.K.; Dua, K.; Lee, J.; Perumalsamy, H. Phyllanthus emblica fruit extract attenuates lipid metabolism in 3T3-L1 adipocytes via activating apoptosis mediated cell death. Phytomedicine 2019, 66, 153129. [Google Scholar] [CrossRef]
- Kumar, R.; Gupta, Y.K.; Singh, S.; Raj, A. Anti-inflammatory effect of Picrorhiza kurroa in experimental models of inflammation. Planta Med. 2016, 82, 1403–1409. [Google Scholar] [CrossRef]
- Khandekar, S.; Pansare, T.; Pachpor, A.G.; Maurya, S. Role of katuka (Picrorhiza kurroa Royle ex Benth.) in obesity W.S.R to Ayurvedic and modern aspect: A review. Int. J. Herb. Med. 2019, 7, 31–35. [Google Scholar]
- Deb, P.K.; Ghosh, R.; Chakraverty, R.; Debnath, R.; Das, L.; Bhakta, T. Phytochemical and pharmacological evaluation of fruits of Solanum indicum L. Int. J. Pharm. Sci. Rev. Res. 2014, 25, 28–32. [Google Scholar]
- Epoh, N.J.; Dongmo, O.L.M.; Mache, R.A.; Telefo, P.B.; Tchouanguep, F.M. Evaluation of anti-obesity effect of aqueous extract of Solanum indicum L. fruits on high fat diet-induced obese rat. Eur. J. Pharm. Med. Res. 2020, 7, 118–128. [Google Scholar]
- Ganesan, K.; Ramasamy, M.; Gani, S.B. Antihyperlipideamic effect of Solanum trilobatum L. leaves extract on streptozotocin induced diabetic rats. Asian J. Biomed. Pharm. Sci. 2013, 3, 51–57. [Google Scholar]
- Jayesh, K.; Karishma, R.; Vysakh, A.; Gopika, P.; Latha, M.S. Terminalia bellirica (Gaertn) Roxb fruit exerts anti-inflammatory effect via regulating arachidonic acid pathway and pro-inflammatory cytokines in lipopolysaccharide-induced RAW 264.7 macrophages. Inflammopharmacology 2020, 28, 265–274. [Google Scholar]
- Das, C.M.S.; Devi, S.G. Antiobesity activity of ethanolic extract of fruits of Terminalia bellirica on atherogenic diet induced obesity in experimental rats. J. Chem. Pharm. Res. 2016, 8, 191–197. [Google Scholar]
- Shendge, A.K.; Sarkar, R.; Mandal, N. Potent anti-inflammatory Terminalia chebula fruit showed in vitro anticancer activity on lung and breast carcinoma cells through the regulation of Bax/Bcl-2 and caspase-cascade pathways. J. Food Biochem. 2020, 44, e13521. [Google Scholar] [CrossRef]
- Subramanian, G.; Shanmugamprema, D.; Subramani, R.; Muthuswamy, K.; Ponnusamy, V.; Tankay, K.; Velusamy, T.; Krishnan, V.; Subramaniam, S. Anti-obesity effect of T. chebula fruit extract on high fat diet induced obese mice: A possible alternative therapy. Mol. Nutr. Food Res. 2021, 65, 2001224. [Google Scholar] [CrossRef] [PubMed]
- Yokozawa, T.; Wang, T.S.; Chen, C.P.; Hattori, M. Inhibition of nitric oxide release by an aqueous extract of Tinospora tuberculata. Phytother. Res. 2000, 14, 51–53. [Google Scholar] [CrossRef]
- Li, F.; Nitteranon, V.; Tang, X.; Liang, J.; Zhang, G.; Parkin, K.L.; Hu, Q. In vitro antioxidant and anti-inflammatory activities of 1-dehydro-[6]-gingerdione, 6-shogaol, 6-dehydroshogaol and hexahydrocurcumin. Food Chem. 2012, 135, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.H.; Fang, F.; Kang, I. Ginger (Zingiber officinale) attenuates obesity and adipose tissue remodeling in high-fat diet-fed C57BL/6 Mice. Int. J. Environ. Res. Public Health 2021, 18, 631. [Google Scholar] [CrossRef]
- Nualkaew, S. Applied Thai Traditional Pharmacy, 1st ed.; KKU Printing House: Khon Kaen, Thailand, 2020; pp. 178–229. [Google Scholar]
- Srisopon, S.; Burana-Osot, J.; Sotanaphun, U. Botanical identification of Chan-Khao and Chan-Thana by thin-layer chromatography. Thai Pharm. Health Sci. J. 2015, 10, 19–24. [Google Scholar]
- Sabuhom, P.; Subin, P.; Luecha, P.; Nualkaew, S.; Nualkaew, N. Effects of plant part substitution in a Thai traditional recipe on α-glucosidase inhibition. Trop. J. Nat. Prod. Res. 2023, 7, 2919–2925. [Google Scholar]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Waltenberger, B.; Schuster, D.; Paramapojn, S.; Gritsanapan, W.; Wolber, G.; Rollinger, J.M.; Stuppner, H. Predicting cyclooxygenase inhibition by three-dimensional pharmacophoric profiling. Part II: Identification of enzyme inhibitors from Prasaplai, a Thai traditional medicine. Phytomedicine 2011, 18, 119–133. [Google Scholar] [CrossRef]
- Vannabhum, M.; Poopong, S.; Wongwananuruk, T.; Nimmannit, A.; Suwannatrai, U.; Dangrat, C.; Apichartvorakit, A.; Booranasubkajorn, S.; Laohapand, T.; Akaraserenont, P. The efficacy of Thai herbal Prasaplai formula for treatment of primary dysmenorrhea: A short-term randomized controlled trial. Evid. Based Complement. Altern. Med. 2016, 2016, 2096797. [Google Scholar] [CrossRef]
- Tanaka, M.; Kishimoto, Y.; Sasaki, M.; Sato, A.; Kamiya, T.; Kondo, K.; Iida, K. Terminalia bellirica (Gaertn.) Roxb. extract and gallic acid attenuate LPS-induced inflammation and oxidative stress via MAPK/NF- κ B and Akt/AMPK/Nrf2 pathways. Oxid. Med. Cell. Longev. 2018, 1, 25–32. [Google Scholar] [CrossRef]
- Bai, J.; Zhang, Y.; Tang, C.; Hou, Y.; Ai, X.; Chen, X.; Zhang, Y.; Wang, X.; Meng, X. Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed. Pharmacother. 2020, 133, 110985. [Google Scholar] [CrossRef]
- Behera, P.K.; Devi, S.; Mittal, N. Therapeutic potential of gallic acid in obesity: Considerable shift! Obes. Med. 2023, 37, 100473. [Google Scholar] [CrossRef]
- Reddy, D.B.; Reddanna, P. Chebulagic acid (CA) attenuates LPS-induced inflammation by suppressing NF-κB and MAPK activation in RAW 264.7 macrophages. Biochem. Biophys. Res. Commun. 2009, 381, 112–117. [Google Scholar] [CrossRef]
- Shyni, G.L.; Kavitha, S.; Indu, S.; Das Arya, A.; Anusree, S.S.; Vineetha, V.P.; Vandana, S.; Sundaresan, A.; Raghu, K.G. Chebulagic acid from Terminalia chebula enhances insulin mediated glucose uptake in 3T3-L1 adipocytes via PPARγ signaling pathway. Biofactors 2014, 40, 646–657. [Google Scholar]
- Gupta, A.; Kumar, R.; Ganguly, R.; Singh, A.K.; Rana, H.K.; Pandey, A.K. Antioxidant, anti-inflammatory and hepatoprotective activities of Terminalia bellirica and its bioactive component ellagic acid against diclofenac induced oxidative stress and hepatotoxicity. Toxicol. Rep. 2021, 8, 44–52. [Google Scholar] [CrossRef]
- Shiojima, Y.; Takahashi, M.; Kikuchi, M.; Akanuma, M. Effect of ellagic acid on body fat and triglyceride reduction in healthy overweight volunteers: A randomized, double-blind, placebo-controlled parallel group study. J. Funct. Food Health Dis. 2020, 10, 180–194. [Google Scholar] [CrossRef]
- Ghadimi, M.; Foroughi, F.; Hashemipour, S.; Nooshabadi, M.R.; Ahmadi, M.H.; Yari, M.G.; Kavianpour, M.; Haghighian, H.K. Decreased insulin resistance in diabetic patients by influencing Sirtuin1 and Fetuin-A following supplementation with ellagic acid: A randomized controlled trial. Diabetol. Metab. Syndr. 2021, 13, 16. [Google Scholar] [CrossRef]
- Sharma, K.; Kumar, S.; Prakash, R.; Khanka, S.; Mishra, T.; Rathur, R.; Biswas, A.; Verma, S.K.; Bhatta, R.S.; Narender, T.; et al. Chebulinic acid alleviates LPS-induced inflammatory bone loss by targeting the crosstalk between reactive oxygen species/NFκB signaling in osteoblast cells. Free Radic. Biol. Med. 2023, 194, 99–113. [Google Scholar] [CrossRef]
- Kim, J.; Ahn, D.; Chung, S.J. Chebulinic acid suppresses adipogenesis in 3T3-L1 preadipocytes by inhibiting PPP1CB activity. Int. J. Mol. Sci. 2022, 23, 865. [Google Scholar] [CrossRef]
- Yoon, S.-Y.; Kang, H.J.; Ahn, D.; Hwang, J.Y.; Kwon, S.J.; Chung, S.J. Identification of chebulinic acid as a dual targeting inhibitor of protein tyrosine phosphatases. Bioorg. Chem. 2019, 90, 103087. [Google Scholar] [CrossRef]
- Liang, W.H.; Chang, T.W.; Charng, Y.C. Effects of drying methods on contents of bioactive compounds and antioxidant activities of Angelica dahurica. Food Sci. Biotechnol. 2018, 27, 1085–1092. [Google Scholar] [CrossRef]
- Lee, T.Y.; Lee, K.C.; Chen, S.Y.; Chang, H.H. 6-Gingerol inhibits ROS and iNOS through the suppression of PKC-alpha and NF-kappaB pathways in lipopolysaccharide-stimulated mouse macrophages. Biochem. Biophys. Res. Commun. 2009, 382, 134–139. [Google Scholar] [CrossRef]
- Gunawan, S.; Munika, E.; Wulandari, E.T.; Ferdinal, F.; Purwaningsih, E.H.; Wuyung, P.E.; Louisa, M.; Soetikno, V. 6-gingerol ameliorates weight gain and insulin resistance in metabolic syndrome rats by regulating adipocytokines. Saudi Pharm. J. 2023, 31, 351–358. [Google Scholar] [CrossRef]
- Bachar, O.; Adner, M.; Uddman, R.; Cardell, L.O. Toll-like receptor stimulation induces airway hyper-responsiveness to bradykinin, an effect mediated by JNK and NF-kappa B signaling pathways. Eur. J. Immunol. 2004, 34, 1196–1207. [Google Scholar] [CrossRef]
- Aronoff, D.M.; Neilson, E.G. Antipyretics mechanisms of action and clinical use in fever suppression. Am. J. Med. 2001, 111, 304–315. [Google Scholar] [CrossRef]
- Jin, L.; Shi, G.; Ning, G.; Li, X.; Zhang, Z. Andrographolide attenuates tumor necrosis factor alpha induced insulin resistance in 3T3-L1 adipocytes. Mol. Cell. Endocrinol. 2011, 332, 134–139. [Google Scholar] [CrossRef]
- Baek, S.H.; Park, T.; Kang, M.G.; Park, D. Anti-inflammatory activity and ROS regulation effect of sinapaldehyde in LPS-stimulated RAW 264.7 macrophages. Molecules 2020, 25, 4089. [Google Scholar] [CrossRef]
- Guan, F.; Wang, H.; Shan, Y.; Chen, Y.; Wang, M.; Wang, Q.; Yin, M.; Zhao, Y.; Feng, X.; Zhang, J. Inhibition of COX-2 and PGE2 in LPS-stimulated RAW264.7 cells by lonimacranthoide VI, a chlorogenic acid ester saponin. Biomed. Rep. 2014, 2, 760–764. [Google Scholar] [CrossRef]
- Ivanov, A.I.; Pero, R.S.; Scheck, A.C.; Romanovsky, A.A. Prostaglandin E2-synthesizing enzymes in fever: Differential transcriptional regulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 283, R1104–R1117. [Google Scholar] [CrossRef]
- Roth, J.; Blatteis, C.M. Mechanisms of fever production and lysis: Lessons from experimental LPS fever. Compr. Physiol. 2014, 4, 1563–1604. [Google Scholar] [CrossRef]
- BenSaad, L.A.; Kim, K.H.; Quah, C.C.; Kim, W.R.; Shahimi, M. Anti-inflammatory potential of ellagic acid, gallic acid and punicalagin A and B isolated from Punica granatum. BMC Complement. Altern. Med. 2017, 17, 47. [Google Scholar] [CrossRef]
- Juckmeta, T.; Itharat, A. Anti- inflammatory and antioxidant activities of Thai traditional remedy called “Ya-ha-rak”. J. Health Res. 2012, 26, 205–210. [Google Scholar]
- Prommee, N.; Itharat, A.; Thongdeeying, P.; Makchuchit, S.; Pipatrattanaseree, W.; Tasanarong, A.; Ooraikul, B.; Davies, N.M. Exploring in vitro anti-proliferative and anti-inflammatory activities of Prasachandaeng remedy, and its bioactive compounds. BMC Complement. Med. Ther. 2022, 22, 217. [Google Scholar] [CrossRef]
- Sireeratawong, S.; Khonsung, P.; Piyabhan, P.; Nanna, U.; Soonthornchareonnon, N.; Jaijoy, K. Anti-inflammatory and anti-ulcerogenic activities of Chantaleela recipe. Afr. J. Tradit. Complement. Altern. Med. 2012, 9, 485–494. [Google Scholar] [CrossRef]
- Xu, H.; Barnes, G.T.; Yang, Q.; Tan, G.; Yang, D.; Chou, C.J.; Sole, J.; Nichols, A.; Ross, J.S.; Tartaglia, L.A.; et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Investig. 2003, 112, 1821–1830. [Google Scholar] [CrossRef]
- Cave, E.; Crowther, N.J. The Use of 3T3-L1 Murine Preadipocytes as a Model of Adipogenesis. In Pre-Clinical Models: Techniques and Protocols, Methods in Molecular Biology; Guest Paul, C., Ed.; Springer Science Business Media: Berlin/Heidelberg, Germany, 2019; p. 1916. [Google Scholar] [CrossRef]
- Wong-A-Nan, N.; Inthanon, K.; Saiai, A.; Inta, A.; Nimlamool, W.; Chomdej, S.; Kittakoop, P.; Wongkham, W. Lipogenesis inhibition and adipogenesis regulation via PPARc pathway in 3T3-L1 cells by Zingiber cassumunar Roxb. rhizome extracts. Egypt. J. Basic Appl. Sci. 2018, 5, 289–297. [Google Scholar]
- Saraphanchotiwitthaya, A.; Sripalakit, P. Jatupalathika herbal formula inhibits lipid accumulation and induces lipolysis in 3T3-L1 adipocytes. Sci. Asia 2022, 48, 1–7. [Google Scholar] [CrossRef]
- Wang, L.; Li, L.; Ran, X.; Long, M.; Zhang, M.; Tao, Y.; Luo, X.; Wang, Y.; Ma, X.; Halmurati, U.; et al. Ellagic acid reduces adipogenesis through inhibition of differentiation-prevention of the induction of Rb phosphorylation in 3T3-L1 adipocytes. Evid. Based Complement. Altern. Med. 2013, 2013, 287534. [Google Scholar] [CrossRef]
- Tzeng, T.F.; Liu, I.M. 6-Gingerol prevents adipogenesis and the accumulation of cytoplasmic lipid droplets in 3T3-L1 cells. Phytomedicine 2013, 20, 481–487. [Google Scholar] [CrossRef]
- Zatterale, F.; Longo, M.; Naderi, J.; Raciti, G.A.; Desiderio, A.; Miele, C.; Beguinot, F. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes. Front. Physiol. 2020, 10, 1607. [Google Scholar] [CrossRef]
- Yuan, M.; Konstantopoulos, N.; Lee, J.; Hansen, L.; Li, Z.W.; Karin, M.; Shoelson, S.E. Reversal of Obesity- and Diet-Induced Insulin Resistance with Salicylates or Targeted Disruption of Ikkbeta. Science 2001, 293, 1673–1677. [Google Scholar] [CrossRef]
- Jin, D.; Sun, J.; Huang, J.; He, Y.; Yu, A.; Yu, X.; Yang, Z. TNF-α reduces g0s2 expression and stimulates lipolysis through PPAR-γ inhibition in 3T3-L1 adipocytes. Cytokine 2014, 69, 196–205. [Google Scholar] [CrossRef]
- Xing, H.; Northrop, J.P.; Russell Grove, J.; Kilpatrick, K.E.; Jui-Lan, S.U.; Ringold, G.M. TNFα-mediated inhibition and reversal of adipocyte differentiation is accompanied by suppressed expression of PPARγ without effects on Pref-1 expression. Endocrinology 1997, 138, 2776–2783. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, H.; Hegde, V.; Dubuisson, O.; Gao, Z.; Dhurandhar, N.V.; Ye, J. Interplay of pro- and anti-inflammatory cytokines to determine lipid accretion in adipocytes. Int. J. Obes. 2013, 37, 1490–1498. [Google Scholar] [CrossRef]
- Qiao, L.; Kinney, B.; Schaack, J.; Shao, J. Adiponectin inhibits lipolysis in mouse adipocytes. Diabetes 2011, 60, 1519–1527. [Google Scholar] [CrossRef] [PubMed]
- Aljada, A.; Garg, R.; Ghanim, H.; Mohanty, P.; Hamouda, W.; Assian, E.; Dandona, P. Nuclear factor-kappaB suppressive and inhibitor-kappaB stimulatory effects of troglitazone in obese patients with type 2 diabetes: Evidence of an antiinflammatory action? J. Clin. Endocrinol. Metab. 2001, 86, 3250–3256. [Google Scholar] [PubMed]
- Małodobra-Mazur, M.; Cierzniak, A.; Ryba, M.; Sozański, T.; Piórecki, N.; Kucharska, A.Z. Increases glucose uptake and the expression of PPARG in insulin-resistant adipocytes. Nutrients 2022, 14, 2307. [Google Scholar] [CrossRef]
- Szalkowski, D.; White-Carrington, S.; Berger, J.; Zhang, B. Antidiabetic thiazolidinediones block the inhibitory effect of tumor necrosis factor-alpha on differentiation, insulin-stimulated glucose uptake, and gene expression in 3T3-L1 cells. Endocrinology 1995, 136, 1474–1481. [Google Scholar] [CrossRef] [PubMed]
Botanical Name | Part | Traditional Use as Anti-Fever * | Anti-Inflammation and Antipyretic | Anti-Obesity |
---|---|---|---|---|
Angelica dahurica (Fisch. Ex Hoffm.) Benth. & Hook. f. ex Franch. & Sav. | Root | / | [7] | [8] |
Cyperus rotundus L. | Rhizome | - | [9] | [10,11] |
Digitaria ciliaris (Retz.) Koeler | Whole plant | / | - | - |
Dracaena loureiroi Gagnep. | Stem | / | [12] | - |
Gymnopetalum chinense (Lour.) Merr. | Whole fruit | / | - | - |
Gymnopetalum integrifolium Kurz | Root | / | - | - |
Phyllanthus emblica L | Whole fruit | - | [13] | [14] |
Picrorhiza kurrooa Royle ex Benth. | Root and rhizome | / | [15] | [16] |
Santalum spicatum L. | Stem | / | - | - |
Solanum indicum L. | Root | / | [17] | [18] |
Solanum trilobatum L. | Root | / | - | [19] |
Terminalia bellirica (Gaertn.) Roxb. | Whole fruit | / | [20] | [21] |
Terminalia chebula Retz. | Whole fruit | / | [22] | [23] |
Tinospora crispa (L.) Miers ex Hook. f. & Thomson | Stem | / | [24] | - |
Zingiber officinale Roscoe. | Rhizome | / | [25] | [26] |
Gene | Forward Primer | Reverse Primer |
---|---|---|
iNOS (112 bp) | 5′ CTGCCAGGGTCACAACTTTAC 3′ | 5′ AACAGCTCAGTCCCTTCACC 3′ |
PGE2 (143 bp) | 5′ TGACAGCCGTGGGTAAAGAC 3′ | 5′ CCAAGGCTGGATGTGTGAGT 3′ |
TNFα (128 bp) | 5′ GATCGGTCCCCAAAGGGATG 3′ | 5′ TTGCTACGACGTGGGCTAC 3′ |
IL6 (154 bp) | 5′ GTCCTTCCTACCCCAATTTCCA 3′ | 5′ TAACGCACTAGGTTTGCCGA 3′ |
Adiponectin (146 bp) | 5′ TGACGACACCAAAAGGGCTC 3′ | 5′ ACCTGCACAAGTTCCCTTGG 3′ |
GLUT1 (139 bp) | 5′ CAATGGCGGCGGTCCTATAA 3′ | 5′ TGTAACTATGCGTCTCCCGC 3′ |
GLUT4 (200 bp) | 5′ TCTGACGTAAGGATGGGGAAC 3′ | 5′ TTGTGGGATGGAATCCGGTC 3′ |
β-Actin (196 bp) | 5′ GACACGAGTTGGTTGGAGCA 3′ | 5′ GCGACCATCCTCCTCTTAGG 3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subin, P.; Sabuhom, P.; Naladta, A.; Luecha, P.; Nualkaew, S.; Nualkaew, N. An Evaluation of the Anti-Inflammatory Effects of a Thai Traditional Polyherbal Recipe TPDM6315 in LPS-Induced RAW264.7 Macrophages and TNF-α-Induced 3T3-L1 Adipocytes. Curr. Issues Mol. Biol. 2023, 45, 4891-4907. https://doi.org/10.3390/cimb45060311
Subin P, Sabuhom P, Naladta A, Luecha P, Nualkaew S, Nualkaew N. An Evaluation of the Anti-Inflammatory Effects of a Thai Traditional Polyherbal Recipe TPDM6315 in LPS-Induced RAW264.7 Macrophages and TNF-α-Induced 3T3-L1 Adipocytes. Current Issues in Molecular Biology. 2023; 45(6):4891-4907. https://doi.org/10.3390/cimb45060311
Chicago/Turabian StyleSubin, Phetpawi, Pattraporn Sabuhom, Alisa Naladta, Prathan Luecha, Somsak Nualkaew, and Natsajee Nualkaew. 2023. "An Evaluation of the Anti-Inflammatory Effects of a Thai Traditional Polyherbal Recipe TPDM6315 in LPS-Induced RAW264.7 Macrophages and TNF-α-Induced 3T3-L1 Adipocytes" Current Issues in Molecular Biology 45, no. 6: 4891-4907. https://doi.org/10.3390/cimb45060311
APA StyleSubin, P., Sabuhom, P., Naladta, A., Luecha, P., Nualkaew, S., & Nualkaew, N. (2023). An Evaluation of the Anti-Inflammatory Effects of a Thai Traditional Polyherbal Recipe TPDM6315 in LPS-Induced RAW264.7 Macrophages and TNF-α-Induced 3T3-L1 Adipocytes. Current Issues in Molecular Biology, 45(6), 4891-4907. https://doi.org/10.3390/cimb45060311