Sequencing Analysis of MUC6 and MUC16 Gene Fragments in Patients with Oropharyngeal Squamous Cell Carcinoma Reveals Novel Mutations: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Samples
2.2. MUC 6 and MUC16 Sequencing
2.2.1. RNA Extraction
2.2.2. Complementary DNA (cDNA) Synthesis
2.2.3. Amplification of Selected Fragments of MUC6 and MUC16 Genes
2.2.4. Purification of the Selected MUC6 and MUC16 Gene Amplificated Fragments
2.2.5. Cycle Sequencing Reaction
2.2.6. Purification of the Templates and Capillary Electrophoresis
2.3. Bioinformatic Analysis
2.4. Statistical Analysis and Data Visualisation
3. Results
3.1. Study Group
3.2. Sequencing Analysis
3.2.1. Sequencing Analysis of MUC6
3.2.2. Sequencing Analysis of MUC16
3.3. HPV Presence and MUC6 and MUC16 Mutations
3.4. Impact of the Common Occurrences of MUC6 and MUC16 Mutations on Clinicopathological and Demographic Characteristics of the Study Groups
3.5. Mutation Clustering
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hansson, G.C. Mucins and the Microbiome. Annu. Rev. Biochem. 2020, 89, 769–793. [Google Scholar] [CrossRef] [PubMed]
- Linden, S.K.; Sutton, P.; Karlsson, N.G.; Korolik, V.; McGuckin, M.A. Mucins in the mucosal barrier to infection. Mucosal. Immunol. 2008, 1, 183–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, C.V.; Janakiram, N.B.; Mohammed, A. Molecular Pathways: Mucins and Drug Delivery in Cancer. Clin. Cancer Res. 2017, 23, 1373–1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollingsworth, M.A.; Swanson, B.J. Mucins in cancer: Protection and control of the cell surface. Nat. Rev. Cancer 2004, 4, 45–60. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Dong, Z.; Lu, Y.; Ma, J.; Ma, Z.; Wang, H. Prognostic Value of MUC16 Mutation and Its Correlation with Immunity in Hepatocellular Carcinoma Patients. Evid. Based Complement. Altern. Med. 2022, 2022, 3478861. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Pasche, B.; Zhang, W.; Chen, K. Association of MUC16 Mutation With Tumor Mutation Load and Outcomes in Patients With Gastric Cancer. JAMA Oncol. 2018, 4, 1691–1698. [Google Scholar] [CrossRef]
- Aithal, A.; Rauth, S.; Kshirsagar, P.; Shah, A.; Lakshmanan, I.; Junker, W.M.; Jain, M.; Ponnusamy, M.P.; Batra, S.K. MUC16 as a novel target for cancer therapy. Expert Opin. Ther. Targets 2018, 22, 675–686. [Google Scholar] [CrossRef]
- Gipson, I.K.; Spurr-Michaud, S.; Tisdale, A.; Menon, B.B. Comparison of the transmembrane mucins MUC1 and MUC16 in epithelial barrier function. PLoS ONE 2014, 9, e100393. [Google Scholar] [CrossRef]
- Blalock, T.D.; Spurr-Michaud, S.J.; Tisdale, A.S.; Heimer, S.R.; Gilmore, M.S.; Ramesh, V.; Gipson, I.K. Functions of MUC16 in corneal epithelial cells. Investig. Ophthalmol. Vis. Sci. 2007, 48, 4509–4518. [Google Scholar] [CrossRef] [Green Version]
- Syed, Z.A.; Zhang, L.; Ten Hagen, K.G. In vivo models of mucin biosynthesis and function. Adv. Drug Deliv. Rev. 2022, 184, 114182. [Google Scholar] [CrossRef]
- Morozov, V.; Borkowski, J.; Hanisch, F.G. The Double Face of Mucin-Type O-Glycans in Lectin-Mediated Infection and Immunity. Molecules 2018, 23, 1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatia, R.; Gautam, S.K.; Cannon, A.; Thompson, C.; Hall, B.R.; Aithal, A.; Banerjee, K.; Jain, M.; Solheim, J.C.; Kumar, S.; et al. Cancer-associated mucins: Role in immune modulation and metastasis. Cancer Metastasis Rev. 2019, 38, 223–236. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.E.; Burtness, B.; Leemans, C.R.; Lui, V.W.Y.; Bauman, J.E.; Grandis, J.R. Head and neck squamous cell carcinoma. Nat. Rev. Dis. Primers. 2020, 6, 92. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.Z.; Jou, J.; Cohen, E. Vaccine Strategies for Human Papillomavirus-Associated Head and Neck Cancers. Cancers 2021, 14, 33. [Google Scholar] [CrossRef]
- Windon, M.J.; D’Souza, G.; Rettig, E.M.; Westra, W.H.; van Zante, A.; Wang, S.J.; Ryan, W.R.; Mydlarz, W.K.; Ha, P.K.; Miles, B.A.; et al. Increasing prevalence of human papillomavirus-positive oropharyngeal cancers among older adults. Cancer 2018, 124, 2993–2999. [Google Scholar] [CrossRef] [Green Version]
- Carlander, A.F.; Jakobsen, K.K.; Bendtsen, S.K.; Garset-Zamani, M.; Lynggaard, C.D.; Jensen, J.S.; Grønhøj, C.; Buchwald, C.V. A Contemporary Systematic Review on Repartition of HPV-Positivity in Oropharyngeal Cancer Worldwide. Viruses 2021, 13, 1326. [Google Scholar] [CrossRef]
- Mahal, B.A.; Catalano, P.J.; Haddad, R.I.; Hanna, G.J.; Kass, J.I.; Schoenfeld, J.D.; Tishler, R.B.; Margalit, D.N. Incidence and Demographic Burden of HPV-Associated Oropharyngeal Head and Neck Cancers in the United States. Cancer Epidemiol. Biomark. Prev. 2019, 28, 1660–1667. [Google Scholar] [CrossRef] [Green Version]
- Lechner, M.; Liu, J.; Masterson, L.; Fenton, T.R. HPV-associated oropharyngeal cancer: Epidemiology, molecular biology and clinical management. Nat. Rev. Clin. Oncol. 2022, 19, 306–327. [Google Scholar] [CrossRef]
- Farah, C.S. Molecular landscape of head and neck cancer and implications for therapy. Ann. Transl. Med. 2021, 9, 915. [Google Scholar] [CrossRef]
- Stransky, N.; Egloff, A.M.; Tward, A.D.; Kostic, A.D.; Cibulskis, K.; Sivachenko, A.; Kryukov, G.V.; Lawrence, M.S.; Sougnez, C.; McKenna, A.; et al. The mutational landscape of head and neck squamous cell carcinoma. Science 2011, 333, 1157–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nichols, A.C.; Chan-Seng-Yue, M.; Yoo, J.; Xu, W.; Dhaliwal, S.; Basmaji, J.; Szeto, C.C.; Dowthwaite, S.; Todorovic, B.; Starmans, M.H.; et al. A Pilot Study Comparing HPV-Positive and HPV-Negative Head and Neck Squamous Cell Carcinomas by Whole Exome Sequencing. ISRN Oncol. 2012, 2012, 809370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobin, L.H.; Gospodarowicz, M.K.; Wittekind, C.; International Union Against Cancer. TNM Classification of Malignant Tumours, 7th ed.; Wiley-Blackwell: Chichester, UK; Hoboken, NJ, USA, 2010. [Google Scholar]
- Rausch, T.; Fritz, M.H.-Y.; Untergasser, A.; Benes, V. Tracy: Basecalling, alignment, assembly and deconvolution of sanger chromatogram trace files. BMC Genom. 2020, 21, 230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, P.C.; Henikoff, S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003, 31, 3812–3814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and server for predicting damaging missense mutations. Nat. Methods 2010, 7, 248–249. [Google Scholar] [CrossRef] [Green Version]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef] [Green Version]
- Ou, J.; Zhu, L.J. trackViewer: A Bioconductor package for interactive and integrative visualization of multi-omics data. Nat. Methods 2019, 16, 453–454. [Google Scholar] [CrossRef] [PubMed]
- Warnes, G.; Bolker, B.; Bonebakker, L.; Gentleman, R.; Huber, W.; Liaw, A.; Lumley, T.; Maechler, M.; Magnusson, A.; Moeller, S.; et al. Gplots: Various R Programming Tools for Plotting Data. R Package Version 3.1.3. 2022. Available online: https://CRAN.R-project.org/package=gplots (accessed on 7 February 2023).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; ISBN 3-900051-07-0. Available online: http://www.R-project.org/ (accessed on 7 February 2023).
- Strzelczyk, J.K.; Biernacki, K.; Gaździcka, J.; Chełmecka, E.; Miśkiewicz-Orczyk, K.; Zięba, N.; Strzelczyk, J.; Misiołek, M. The Prevalence of High- and Low-Risk Types of HPV in Patients with Squamous Cell Carcinoma of the Head and Neck, Patients with Chronic Tonsillitis, and Healthy Individuals Living in Poland. Diagnostics 2021, 11, 2180. [Google Scholar] [CrossRef] [PubMed]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef]
- The National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC29783/ (accessed on 17 March 2022).
- Kannan, A.; Hertweck, K.L.; Philley, J.V.; Wells, R.B.; Dasgupta, S. Genetic Mutation and Exosome Signature of Human Papilloma Virus Associated Oropharyngeal Cancer. Sci. Rep. 2017, 7, 46102. [Google Scholar] [CrossRef] [Green Version]
- Ährlund-Richter, A.; Holzhauser, S.; Dalianis, T.; Näsman, A.; Mints, M. Whole-Exome Sequencing of HPV Positive Tonsillar and Base of Tongue Squamous Cell Carcinomas Reveals a Global Mutational Pattern along with Relapse-Specific Somatic Variants. Cancers 2021, 14, 77. [Google Scholar] [CrossRef] [PubMed]
- Haft, S.; Ren, S.; Xu, G.; Mark, A.; Fisch, K.; Guo, T.W.; Khan, Z.; Pang, J.; Ando, M.; Liu, C.; et al. Mutation of chromatin regulators and focal hotspot alterations characterize human papillomavirus-positive oropharyngeal squamous cell carcinoma. Cancer 2019, 125, 2423–2434. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Hu, F.F.; Zhang, Q.; Hu, H.; Ye, Z.; Tang, Q.; Guo, A.Y. Genomic landscape and mutational impacts of recurrently mutated genes in cancers. Mol. Genet. Genom. Med. 2018, 6, 910–923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, I.S.; Fichtner, M.; McNamara, D.A.; Kay, E.W.; Prehn, J.H.M.; Burke, J.P. Mucin glycoproteins block apoptosis; promote invasion, proliferation, and migration; and cause chemoresistance through diverse pathways in epithelial cancers. Cancer Metastasis Rev. 2019, 38, 237–257. [Google Scholar] [CrossRef]
- King, R.J.; Yu, F.; Singh, P.K. Genomic alterations in mucins across cancers. Oncotarget 2017, 8, 67152–67168. [Google Scholar] [CrossRef] [Green Version]
- Catalogue of Somatic Mutations in Cancer. Available online: https://cancer.sanger.ac.uk/cosmic (accessed on 14 October 2022).
- Giannakis, M.; Mu, X.J.; Shukla, S.A.; Qian, Z.R.; Cohen, O.; Nishihara, R.; Bahl, S.; Cao, Y.; Amin-Mansour, A.; Yamauchi, M.; et al. Genomic Correlates of Immune-Cell Infiltrates in Colorectal Carcinoma. Cell Rep. 2016, 15, 857–865. [Google Scholar] [CrossRef] [Green Version]
- Sharpe, H.J.; Pau, G.; Dijkgraaf, G.J.; Basset-Seguin, N.; Modrusan, Z.; Januario, T.; Tsui, V.; Durham, A.B.; Dlugosz, A.A.; Haverty, P.M.; et al. Genomic analysis of smoothened inhibitor resistance in basal cell carcinoma. Cancer Cell 2015, 27, 327–341. [Google Scholar] [CrossRef] [Green Version]
- Rokutan, H.; Abe, H.; Nakamura, H.; Ushiku, T.; Arakawa, E.; Hosoda, F.; Yachida, S.; Tsuji, Y.; Fujishiro, M.; Koike, K.; et al. Initial and crucial genetic events in intestinal-type gastric intramucosal neoplasia. J. Pathol. 2019, 247, 494–504. [Google Scholar] [CrossRef]
- Chiang, N.J.; Hou, Y.C.; Tan, K.T.; Tsai, H.W.; Lin, Y.J.; Yeh, Y.C.; Chen, L.T.; Hou, Y.F.; Chen, M.H.; Shan, Y.S. The immune microenvironment features and response to immunotherapy in EBV-associated lymphoepithelioma-like cholangiocarcinoma. Hepatol. Int. 2022, 16, 1137–1149. [Google Scholar] [CrossRef]
- Hou, S.; Xie, X.; Zhao, J.; Wu, C.; Li, N.; Meng, Z.; Cai, C.; Tan, J. Downregulation of miR-146b-3p Inhibits Proliferation and Migration and Modulates the Expression and Location of Sodium/Iodide Symporter in Dedifferentiated Thyroid Cancer by Potentially Targeting MUC20. Front. Oncol. 2021, 10, 566365. [Google Scholar] [CrossRef]
- Cho, S.H.; Yoon, S.; Lee, D.H.; Kim, S.W.; Kim, K. Recurrence-associated gene signature in patients with stage I non-small-cell lung cancer. Sci. Rep. 2021, 11, 19596. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Zhang, W.; Hu, B.; Wang, Y.; Zhang, Z.; Sun, Y.; Mao, G.; Li, C.; Lu, S. Whole-exome sequencing identifies a set of genes as markers of hepatocellular carcinoma early recurrence. Hepatol. Int. 2022, 17, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Pierik, A.S.; Leemans, C.R.; Brakenhoff, R.H. Resection margins in head and neck cancer surgery: An update of residual disease and field cancerization. Cancers 2021, 13, 2635. [Google Scholar] [CrossRef] [PubMed]
- Kloss-Brandstätter, A.; Weissensteiner, H.; Erhart, G.; Schäfer, G.; Forer, L.; Schönherr, S.; Pacher, D.; Seifarth, C.; Stöckl, A.; Fendt, L.; et al. Validation of Next-Generation Sequencing of Entire Mitochondrial Genomes and the Diversity of Mitochondrial DNA Mutations in Oral Squamous Cell Carcinoma. PLoS ONE 2015, 10, e0135643. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yu, X.; Krauthammer, M.; Hugo, W.; Duan, C.; Kanetsky, P.A.; Teer, J.K.; Thompson, Z.J.; Kalos, D.; Tsai, K.Y.; et al. The Association of MUC16 Mutation with Tumor Mutation Burden and Its Prognostic Implications in Cutaneous Melanoma. Cancer Epidemiol. Biomark. Prev. 2020, 29, 1792–1799. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, J.; Chen, Y.; Xu, R.; Zhao, Q.; Guo, W. MUC4, MUC16, and TTN genes mutation correlated with prognosis, and predicted tumor mutation burden and immunotherapy efficacy in gastric cancer and pan-cancer. Clin. Transl. Med. 2020, 10, e155. [Google Scholar] [CrossRef]
- Bersani, C.; Sivars, L.; Haeggblom, L.; DiLorenzo, S.; Mints, M.; Ährlund-Richter, A.; Tertipis, N.; Munck-Wikland, E.; Näsman, A.; Ramqvist, T.; et al. Targeted sequencing of tonsillar and base of tongue cancer and human papillomavirus positive unknown primary of the head and neck reveals prognostic effects of mutated FGFR3. Oncotarget 2017, 8, 35339–35350. [Google Scholar] [CrossRef] [Green Version]
- Plath, M.; Gass, J.; Hlevnjak, M.; Li, Q.; Feng, B.; Hostench, X.P.; Bieg, M.; Schroeder, L.; Holzinger, D.; Zapatka, M.; et al. Unraveling most abundant mutational signatures in head and neck cancer. Int. J. Cancer 2021, 148, 115–127. [Google Scholar] [CrossRef]
- Gillison, M.L.; Akagi, K.; Xiao, W.; Jiang, B.; Pickard, R.K.L.; Li, J.; Swanson, B.J.; Agrawal, A.D.; Zucker, M.; Stache-Crain, B.; et al. Human papillomavirus and the landscape of secondary genetic alterations in oral cancers. Genome Res. 2019, 29, 1–17. [Google Scholar] [CrossRef] [Green Version]
Gene | Forward Primer 5′—3′ | Reverse Primer 5′—3′ |
---|---|---|
MUC6 fragment (606 bp) | GAAGGATGTTGCCGTCATGG | ACTGAATACACAACGCCCCA |
MUC16 fragment (653 bp) | ACAGGCTGGGTCACAAGTTC | GGCGAGGTTGTAGCATGGAT |
Parameter | n | % |
---|---|---|
T1 | 3 | 16.67 |
T2 | 6 | 33.33 |
T3 | 9 | 50.00 |
N0 | 7 | 38.89 |
N1 | 1 | 5.56 |
N2 | 9 | 50.00 |
N3 | 1 | 5.56 |
G1 | 4 | 22.22 |
G2 | 8 | 44.44 |
G3 | 6 | 33.33 |
Type Tissue (ID Sample) | POS | REF | ALT | HGVSc | HGVSp | Consequence |
---|---|---|---|---|---|---|
tumour (11, 29, 39, 45, 47, 53, 55, 57, 61, 79); margin (16, 34, 42, 48, 50, 54, 58, 62, 64, 90) | 1018257 | A | T | ENST00000421673.7:c.4544C>A | ENSP00000406861.2:p.Leu1515Ter | stop gained |
margin (11) | 1018258 | C | T | ENST00000421673.7:c.4543T>A | ENSP00000406861.2:p.Ala1515Thr | missense variant |
margin (34) | 1018465 | T | C | ENST00000421673.7:c.4336C>G | ENSP00000406861.2:p.Asn1446Asp | missense variant |
tumour (39) | 1018322 | A | G | ENST00000421673.7:c.4479A>C | ENSP00000406861.2:p.Thr1493%3D | synonymous variant |
tumour (39) | 1018506 | C | T,A | ENST00000421673.7:c.4295C>A | ENSP00000406861.2:p.Ser1432Asn | missense variant |
margin (42) | 1018543 | A | G | ENST00000421673.7:c.4258G>C | ENSP00000406861.2:p.Cys1420Arg | missense variant |
tumour (45) | 1018111 | C | T,A | ENST00000421673.7:c.4690G>A | ENSP00000406861.2:p.Ala1564Thr | missense variant |
tumour (47) | 1018243 | C | T | ENST00000421673.7:c.4558G>A | ENSP00000406861.2:p.Glu1520Lys | missense variant |
tumour (55) | 1018180 | C | T | ENST00000421673.7:c.4621T>A | ENSP00000406861.2:p.Ala1541Thr | missense variant |
margin (56) | 1018381 | C | T | ENST00000421673.7:c.4420G>A | ENSP00000406861.2:p.Ala1474Thr | missense variant |
margin (56) | 1018513 | C | A,T | ENST00000421673.7:c.4288A>T | ENSP00000406861.2:p.Ala1430Ser | missense variant |
margin (58) | 1018297 | G | A | ENST00000421673.7:c.4504A>T | ENSP00000406861.2:p.Leu1502%3D | synonymous variant |
margin (90) | 1018276 | T | C,A | ENST00000421673.7:c.4525A>G | ENSP00000406861.2:p.Thr1509Ala | missense variant |
Fragment | Sample | n (%) | Mean | SD | Minimum | Maximum | p-Value |
---|---|---|---|---|---|---|---|
MUC6 cDNA | Tumour | 10 (62.5%) | 1.00 | 0.97 | 0 | 3 | 0.568 |
Margin | 11 (78.57%) | 1.14 | 0.77 | 0 | 2 | 0.568 | |
MUC16 cDNA | Tumour | 7 (43.75%) | 0.75 | 0.93 | 0 | 2 | 0.946 |
Margin | 8 (57.14%) | 0.64 | 0.63 | 0 | 2 | 0.946 |
Type Tissue (ID Sample) | POS | REF | ALT | HGVSc | HGVSp | Consequence |
---|---|---|---|---|---|---|
tumour (11, 15, 33, 37, 47, 57, 63); margin (16, 30, 48, 56, 62, 64, 80, 90) | 8964498 | A | T | ENST00000397910.8:c.12272T>A | ENSP00000381008.2:p.Met4091Lys | missense variant |
tumour (11); margin (16) | 8964755 | A | C/G,T | ENST00000397910.8:c.12015T>G | ENSP00000381008.2:p.Ala4005%3D | synonymous variant |
tumour (15, 33, 37, 63); margin (64) | 8964627 | A | T | ENST00000397910.8:c.12143G>A | ENSP00000381008.2:p.Ile4048Lys | missense variant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaździcka, J.; Biernacki, K.; Salatino, S.; Gołąbek, K.; Hudy, D.; Świętek, A.; Miśkiewicz-Orczyk, K.; Koniewska, A.; Misiołek, M.; Strzelczyk, J.K. Sequencing Analysis of MUC6 and MUC16 Gene Fragments in Patients with Oropharyngeal Squamous Cell Carcinoma Reveals Novel Mutations: A Preliminary Study. Curr. Issues Mol. Biol. 2023, 45, 5645-5661. https://doi.org/10.3390/cimb45070356
Gaździcka J, Biernacki K, Salatino S, Gołąbek K, Hudy D, Świętek A, Miśkiewicz-Orczyk K, Koniewska A, Misiołek M, Strzelczyk JK. Sequencing Analysis of MUC6 and MUC16 Gene Fragments in Patients with Oropharyngeal Squamous Cell Carcinoma Reveals Novel Mutations: A Preliminary Study. Current Issues in Molecular Biology. 2023; 45(7):5645-5661. https://doi.org/10.3390/cimb45070356
Chicago/Turabian StyleGaździcka, Jadwiga, Krzysztof Biernacki, Silvia Salatino, Karolina Gołąbek, Dorota Hudy, Agata Świętek, Katarzyna Miśkiewicz-Orczyk, Anna Koniewska, Maciej Misiołek, and Joanna Katarzyna Strzelczyk. 2023. "Sequencing Analysis of MUC6 and MUC16 Gene Fragments in Patients with Oropharyngeal Squamous Cell Carcinoma Reveals Novel Mutations: A Preliminary Study" Current Issues in Molecular Biology 45, no. 7: 5645-5661. https://doi.org/10.3390/cimb45070356
APA StyleGaździcka, J., Biernacki, K., Salatino, S., Gołąbek, K., Hudy, D., Świętek, A., Miśkiewicz-Orczyk, K., Koniewska, A., Misiołek, M., & Strzelczyk, J. K. (2023). Sequencing Analysis of MUC6 and MUC16 Gene Fragments in Patients with Oropharyngeal Squamous Cell Carcinoma Reveals Novel Mutations: A Preliminary Study. Current Issues in Molecular Biology, 45(7), 5645-5661. https://doi.org/10.3390/cimb45070356