The Complete Mitochondrial Genomes of Penthe kochi (Coleoptera: Tetratomidae) with Its Phylogenetic Implications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling, Identification, and DNA Extraction
2.2. Mitogenome Assembly, Annotation and Analysis
2.3. Phylogenetic Analysis
3. Results and Discussion
3.1. Genome Organization and Base Composition
3.2. Protein-Coding Genes and Codon Usage
3.3. Transfer and Ribosomal RNA Genes
3.4. A + T-Rich Region
4. Phylogenetic Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lawrence, J.F.; Leschen, R.A.B. Tetratomidae Billberg. In Handbook of Zoology, Arthropoda: Insecta, Coleoptera, Beetles. Volume 2: Morphology and Systematics (Elateroidea, Bostrichiformia, Cucujiformia partim), 2nd ed.; Leschen, R.A.B., Beutel, R.G., Lawrence, J.F., Eds.; Walter de Gruyter: Berlin, Germany; Boston, MA, USA, 2016; pp. 514–520. [Google Scholar]
- Nikitsky, N.B. Generic Classification of the Beetle Family Tetratomidae (Coleoptera, Tenebrionoidea) of the World, with Description of New Taxa; Pensoft Series Faunistica No. 9; BioInform Services, Ltd.: Moscow, Russia, 1998; pp. 1–80. [Google Scholar]
- Nikitsky, N.B. The beetles of the subfamily Tetratominae Billberg, 1820 (Coleoptera, Tetratomidae) of the world fauna. Byulleten’ Mosk. Obs. Ispyt. Prir. Otd. Biol. 2004, 109, 25–36, (In Russian with English Summary). [Google Scholar]
- Nikitsky, N.B. The beetles of the subfamily Penthinae Lacordaire, 1859 (Coleoptera, Tenebrionoidea, Tetratomidae) of the world fauna. Byulleten’ Mosk. Obs. Ispyt. Prir. Otd. Biol. 2005, 110, 16–26, (In Russian with English Summary). [Google Scholar]
- Johnson, P.J.; Löbl, I.; Smetana, A. Catalogue of Palaearctic Coleoptera. Volume 3: Scarabaeoidea–Scirtoidea–Dascilloidea–Buprestoidea–Byrrhoidea; and Volume 4: Elateroidea–Derodontoidea–Bostrichoidea–Lymexyloidea–Cleroidea–Cucujoidea. Ann. Entomol. Soc. Am. 2009, 102, 735–736. [Google Scholar] [CrossRef]
- Nikitsky, N. A new species of the genus Tetratoma Fabricius (Coleoptera, Tetratomidae) from China. Zootaxa 2016, 4154, 346–350. [Google Scholar] [CrossRef] [PubMed]
- Pollock, D. Review of the Eustrophinae (Coleoptera, Tetratomidae) of America north of Mexico. ZooKeys 2012, 188, 1–153. [Google Scholar] [CrossRef]
- Hsiao, Y.; Pollock, D.A.; Barclay, M.V.L. Two new species of Cyanopenthe Nikitsky from Taiwan (Coleoptera, Tetratomidae, Penthinae). Zootaxa 2015, 4058, 578–588. [Google Scholar] [CrossRef]
- Saitô, M.; Konvička, O. A new species of Holostrophus (Paraholostrophus) (Coleoptera: Tetratomidae) from central Honshu Island, Japan. Acta Musei Silesiae Sci. Nat. 2017, 66, 1–5. [Google Scholar] [CrossRef]
- Ji, Q.; Ren, G. Two new species of the genus Cyanopenthe Nikitsky, 1998 (Coleoptera, Tetratomidae) from southwest China. ZooKeys 2019, 874, 19–30. [Google Scholar] [CrossRef]
- Lawrence, J.F.; Newton, A.F. Evolution and classification of beetles. Annu. Rev. Ecol. Syst. 1982, 13, 261–290. [Google Scholar] [CrossRef]
- Hunt, T.; Bergsten, J.; Levkanicova, Z.; Papadopoulou, A.; John, O.S.; Wild, R.; Hammond, P.M.; Ahrens, D.; Balke, M.; Caterino, M.S.; et al. A Comprehensive Phylogeny of Beetles Reveals the Evolutionary Origins of a Superradiation. Science 2007, 318, 1913–1916. [Google Scholar] [CrossRef]
- McKenna, D.D.; Farrell, B.D. Beetles (Coleoptera). In The Timetree of Life; Hedges, S.B., Kumar, S., Eds.; Oxford University Press: Oxford, UK, 2009; pp. 278–289. [Google Scholar]
- Gunter, N.L.; Levkaničová, Z.; Weir, T.H.; Ślipiński, A.; Cameron, S.L.; Bocak, L. Towards a phylogeny of the Tenebrionoidea (Coleoptera). Mol. Phylogenetics Evol. 2014, 79, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Mckenna, D.D.; Wild, A.L.; Kanda, K.; Bellamy, C.L.; Beutel, R.G.; Caterino, M.S.; Farnum, C.W.; Hawks, D.C.; Ivie, M.A.; Jameson, M.L.; et al. The beetle tree of life reveals that Coleoptera survived end-permian mass extinction to diversify during the Cretaceous terrestrial revolution. Syst. Entomol. 2015, 40, 835–880. [Google Scholar] [CrossRef]
- McKenna, D.D.; Shin, S.; Ahrens, D.; Balke, M.; Beza-Beza, C.; Clarke, D.J.; Donath, A.; Escalona, H.E.; Friedrich, F.; Letsch, H.; et al. The evolution and genomic basis of beetle diversity. Proc. Natl. Acad. Sci. USA 2019, 116, 24729–24737. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Tihelka, E.; Giacomelli, M.; Lawrence, J.F.; Ślipiński, A.; Kundrata, R.; Yamamoto, S.; Thayer, M.K.; Newton, A.F.; Leschen, R.A.B.; et al. Integrated phylogenomics and fossil data illuminate the evolution of beetles. R. Soc. Open Sci. 2022, 9, 211771. [Google Scholar] [CrossRef]
- Cameron, S.L. Insect mitochondrial genomics: Implications for evolution and phylogeny. Annu. Rev. Entomol. 2014, 59, 95–117. [Google Scholar] [CrossRef]
- Qin, J.; Zhang, Y.; Zhou, X.; Kong, X.; Wei, S.; Ward, R.D.; Zhang, A.-B. Mitochondrial phylogenomics and genetic relationships of closely related pine moth (Lasiocampidae: Dendrolimus) species in China, using whole mitochondrial genomes. BMC Genom. 2015, 16, 428. [Google Scholar] [CrossRef]
- Wang, W.; Huang, Y.; Bartlett, C.R.; Zhou, F.; Meng, R.; Qin, D. Characterization of the complete mitochondrial genomes of two species of the genus Aphaena Guérin-Méneville (Hemiptera: Fulgoridae) and its phylogenetic implications. Int. J. Biol. Macromol. 2019, 141, 29–40. [Google Scholar] [CrossRef]
- Song, F.; Li, H.; Liu, G.-H.; Wang, W.; James, P.; Colwell, D.D.; Tran, A.; Gong, S.; Cai, W.; Shao, R. Mitochondrial genome fragmentation unites the parasitic lice of Eutherian mammals. Syst. Biol. 2018, 68, 430–440. [Google Scholar] [CrossRef]
- Mařan, J. Norý druh rodu Penthe newm. z činy. Novae speciei generis Penthe newm. Descr. (Coleoptera: Melandryidae). Časopis Ceskoslov. Společnosti Entomol. 1940, 37, 87–88. [Google Scholar]
- Hahn, C.; Bachmann, L.; Chevreux, B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—A baiting and iterative mapping approach. Nucleic Acids Res. 2013, 41, e129. [Google Scholar] [CrossRef]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Lowe, T.M.; Eddy, S.R. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997, 25, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Bernt, M.; Donath, A.; Jühling, F.; Externbrink, F.; Florentz, C.; Fritzsch, G.; Pütz, J.; Middendorf, M.; Stadler, P.F. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenetics Evol. 2012, 69, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Greiner, S.; Lehwark, P.; Bock, R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: Expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 2019, 47, W59–W64. [Google Scholar] [CrossRef]
- Benson, G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999, 27, 573–580. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef]
- Timmermans, M.J.T.N.; Barton, C.; Haran, J.; Ahrens, D.; Culverwell, C.L.; Ollikainen, A.; Dodsworth, S.; Foster, P.G.; Bocak, L.; Vogler, A.P. Family-level sampling of mitochondrial genomes in Coleoptera: Compositional heterogeneity and phylogenetics. Genome Biol. Evol. 2016, 8, 161–175. [Google Scholar] [CrossRef]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef]
- Capella-Gutiérrez, S.; Silla-Martínez, J.M.; Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef]
- Zhang, D.; Gao, F.; Jakovlić, I.; Zhou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2019, 20, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Linard, B.; Arribas, P.; Andújar, C.; Crampton-Platt, A.; Vogler, A.P. Lessons from genome skimming of arthropod-preserving ethanol. Mol. Ecol. Resour. 2016, 16, 1365–1377. [Google Scholar] [CrossRef] [PubMed]
- Cameron, S.L.; Sullivan, J.; Song, H.; Miller, K.B.; Whiting, M.F. A mitochondrial genome phylogeny of the Neuropterida (lace-wings, alderflies and snakeflies) and their relationship to the other holometabolous insect orders. Zool. Scr. 2009, 38, 575–590. [Google Scholar] [CrossRef]
- Timmermans, M.J.T.N.; Dodsworth, S.; Culverwell, C.L.; Bocak, L.; Ahrens, D.; Littlewood, D.T.J.; Pons, J.; Vogler, A.P. Why barcode? High-throughput multiplex sequencing of mitochondrial genomes for molecular systematics. Nucleic Acids Res. 2010, 38, e197. [Google Scholar] [CrossRef] [PubMed]
- Rider, S.D. The complete mitochondrial genome of the desert darkling beetle Asbolus verrucosus (Coleoptera, Tenebrionidae). Mitochondrial DNA Part A 2015, 27, 2447–2449. [Google Scholar] [CrossRef] [PubMed]
- Sheffield, N.C.; Song, H.; Cameron, S.L.; Whiting, M.F. Nonstationary evolution and compositional heterogeneity in beetle mitochondrial phylogenomics. Syst. Biol. 2009, 58, 381–394. [Google Scholar] [CrossRef]
- Liu, L.-N.; Wang, C.-Y. Complete mitochondrial genome of yellow meal worm (Tenebrio molitor). Zool. Res. 2014, 35, 537–545. [Google Scholar] [CrossRef]
- Ou, J.; Yao, F.-J.; Li, Y.-X.; Yang, Y.; Jin, C.; Wei, Z.-M. The complete mitochondrial genome of the confused flour beetle Tribolium confusum (Coleoptera: Tenebrionidae). Mitochondrial DNA Part A 2015, 27, 3297–3298. [Google Scholar] [CrossRef]
- Song, N.; Liu, H.-Y.; Yang, X.-J.; Zhao, X.-C.; Lin, A.-L. Complete mitochondrial genome of the darkling beetle Gonocephalum outreyi (Coleoptera: Tenebrionidae) with phylogenetic implications. J. Asia-Pac. Entomol. 2018, 21, 721–730. [Google Scholar] [CrossRef]
- Clary, D.O.; Wolstenholme, D.R. The mitochondrial DNA molecule of Drosophila yakuba: Nucleotide sequence, gene organization, and genetic code. J. Mol. Evol. 1985, 22, 252–271. [Google Scholar] [CrossRef]
- Sheffield, N.C.; Song, H.; Cameron, S.L.; Whiting, M.F. A comparative analysis of mitochondrial genomes in Coleoptera (Arthropoda: Insecta) and genome descriptions of six new beetles. Mol. Biol. Evol. 2008, 25, 2499–2509. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Wei, Z.; Shi, A. The complete mitochondrial genome of the jewel beetle, Anthaxia chinensis (Coleoptera: Buprestidae). Mitochondrial DNA Part B 2021, 6, 2962–2963. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.D.; Kamiński, M.J.; Kanda, K.; Sweet, A.D.; Betancourt, J.L.; Holmgren, C.A.; Hempel, E.; Alberti, F.; Hofreiter, M. Recovery and analysis of ancient beetle DNA from subfossil packrat middens using high-throughput sequencing. Sci. Rep. 2021, 11, 12635. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Ge, X.; Xie, G.; Liu, H.; Yang, Y. First complete mitochondrial genome of Melyridae (Coleoptera, Cleroidea): Genome description and phylogenetic implications. Insects 2021, 12, 87. [Google Scholar] [CrossRef]
- Wei, Z. The complete mitochondrial genomes of five Agrilinae (Coleoptera, Buprestidae) species and phylogenetic implications. ZooKeys 2022, 1092, 195–212. [Google Scholar] [CrossRef]
- Miya, M.; Kawaguchi, A.; Nishida, M. Mitogenomic exploration of higher Teleostean phylogenies: A case study for moderate-scale evolutionary genomics with 38 newly determined complete mitochondrial DNA sequences. Mol. Biol. Evol. 2001, 18, 1993–2009. [Google Scholar] [CrossRef]
- Hurst, L.D. The Ka/Ks ratio: Diagnosing the form of sequence evolution. Trends Genet. 2002, 18, 486–487. [Google Scholar] [CrossRef]
- Mori, S.; Matsunami, M. Signature of positive selection in mitochondrial DNA in Cetartiodactyla. Genes Genet. Syst. 2018, 93, 65–73. [Google Scholar] [CrossRef]
- Park, J.S.; Cho, Y.; Kim, M.J.; Nam, S.-H.; Kim, I. Description of complete mitochondrial genome of the black-veined white, Aporia crataegi (Lepidoptera: Papilionoidea), and comparison to papilionoid species. J. Asia-Pac. Entomol. 2012, 15, 331–341. [Google Scholar] [CrossRef]
- Yan, L.; Zhang, M.; Gao, Y.; Pape, T.; Zhang, D. First mitogenome for the subfamily Miltogramminae (Diptera: Sarcophagidae) and its phylogenetic implications. Eur. J. Entomol. 2017, 114, 422–429. [Google Scholar] [CrossRef]
- Yu, P.; Cheng, X.; Ma, Y.; Yu, D.; Zhang, J. The complete mitochondrial genome of Brachythemis contaminata (Odonata: Libellulidae). Mitochondrial DNA Part A 2014, 27, 2272–2273. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Shu, X.; Li, X.; Meng, L.; Li, B. Comparative mitogenome analysis of three species and monophyletic inference of Catantopinae (Orthoptera: Acridoidea). Genomics 2018, 111, 1728–1735. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.-H.; Jia, J.-G.; Murphy, R.W.; Huang, D.-W. Rapid evolution of the mitochondrial genome in chalcidoid wasps (Hymenoptera: Chalcidoidea) driven by parasitic lifestyles. PLoS ONE 2011, 6, e26645. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.-X.; Szymura, J.M.; Hewitt, G.M. Evolution and structural conservation of the control region of insect mitochondrial DNA. J. Mol. Evol. 1995, 40, 382–391. [Google Scholar] [CrossRef]
- Zhang, D.-X.; Hewitt, G.M. Insect mitochondrial control region: A review of its structure, evolution and usefulness in evolutionary studies. Biochem. Syst. Ecol. 1997, 25, 99–120. [Google Scholar] [CrossRef]
Family | Sufamily | Species | GenBank No. | References |
---|---|---|---|---|
Tetratomidae | Penthinae | Penthe kochi | ON113044 | This study |
Tetratomidae | Tetratominae | Tetratoma fungorum | NC_036276 | [35] |
Mordellidae | Mordellinae | Mordella atrata | NC_013254 | [36] |
Mordellidae | Mordellidae sp. | JX412844 | [31] | |
Mycteridae | Hemipeplinae | Hemipeplus sp. | JX412852 | [31] |
Mycteridae | Lacconotinae | Stilponotus mexicanus | JX412811 | [31] |
Mycetophagidae | Mycetophaginae | Mycetophagus quadripustulatus | HQ232824 | [37] |
Anthicidae | Anthicinae | Formicomus sp. | JX412857 | [31] |
Anthicidae | Anthicinae | Omonadus floralis | HQ232825 | [37] |
Boridae | Borinae | Boros schneideri | HQ232823 | [37] |
Meloidae | Meloinae | Mylabris sp. | JX412732 | [31] |
Oedemeridae | Oedemerinae | Oedemera virescens | HQ232826 | [37] |
Oedemeridae | Oedemerinae | Ischnomera cyanea | JX412790 | [31] |
Prostomidae | Prostominae | Prostomis sp. | JX412787 | [31] |
Pyrochroidae | Ischaliinae | Ischalia sp. | HQ232827 | [37] |
Scraptiidae | Anaspidinae | Anaspis sp. | HQ232806 | [37] |
Scraptiidae | Anaspidinae | Anaspis sp. | JX412856 | [31] |
Melandryidae | Melandryinae | Mikadonius gracilis | JX412823 | [31] |
Melandryidae | Melandryinae | Osphya bipunctata | JX313675 | [31] |
Ciidae | Ciidae sp. | JX412846 | [31] | |
Tenebrionidae | Pimeliinae | Asbolus verrucosus | NC_027256 | [38] |
Tenebrionidae | Tenebrioninae | Eutrapela sp. | JX412754 | Unpublished |
Tenebrionidae | Lagriinae | Adelium sp. | FJ613422 | [39] |
Tenebrionidae | Lagriinae | Eutrapela ruficollis | HQ232805 | [37] |
Tenebrionidae | Tenebrioninae | Tenebrio molitor | NC_024633 | [40] |
Tenebrionidae | Tenebrioninae | Tribolium confusum | NC_026702 | [41] |
Tenebrionidae | Blaptinae | Gonocephalum outreyi | KU236386 | [42] |
Tenebrionidae | Alleculinae | Paramarygmus sp. | JX412775 | [31] |
Tenebrionidae | Diaperinae | Platydema sp. | JX412842 | [31] |
Tenebrionidae | Stenochiinae | Strongylium suspicax | JX412780 | [31] |
Tenebrionidae | Paramarygmus sp. | JX412808 | [31] | |
Lymexylidae (outgroups) | Hylecoetinae | Lymexylon navale | KX087311 | Unpublished |
Melittommatinae | Hyloecetus dermestoides | HQ232820 | [37] |
Genes | Strand | Position | Size | Start Condon | Stop Codon | IGN | Anticodon | |
---|---|---|---|---|---|---|---|---|
from | to | |||||||
trnI | J | 1 | 65 | 65 | − | GAT | ||
trnQ | N | 63 | 131 | 69 | 0 | AAG | ||
trnM | J | 132 | 200 | 69 | 0 | CAT | ||
nad2 | J | 201 | 1208 | 1008 | ATA | TAA | −2 | |
trnW | J | 1207 | 1273 | 67 | 34 | ACA | ||
trnC | N | 1308 | 1368 | 61 | 0 | GCA | ||
trnY | N | 1369 | 1431 | 63 | <2 | GAA | ||
cox1 | J | <1433 | 2966 | >1534 | ?/?/? | T(AA) | 0 | |
trnL2 | J | 2967 | 3030 | 64 | 0 | AAA | ||
cox2 | J | 3031 | 3718 | 688 | ATT | T(AA) | 0 | |
trnK | J | 3719 | 3789 | 71 | −1 | CAA | ||
trnD | J | 3789 | 3853 | 65 | 0 | GAC | ||
atp8 | J | 3854 | 4009 | 156 | ATT | TAA | −7 | |
atp6 | J | 4003 | 4674 | 672 | ATG | TAA | 5 | |
cox3 | J | 4680 | 5468 | 789 | ATG | TAA | −1 | |
trnG | J | 5468 | 5530 | 63 | 0 | ACC | ||
nad3 | J | 5531 | 5884 | 354 | TTG | TAG | −2 | |
trnA | J | 5883 | 5947 | 65 | −1 | AGC | ||
trnR | J | 5947 | 6009 | 63 | −1 | ACG | ||
trnN | J | 6009 | 6071 | 63 | 0 | GAA | ||
trnS1 | J | 6072 | 6129 | 58 | 0 | ACA | ||
trnE | J | 6130 | 6193 | 64 | −1 | AAC | ||
trnF | N | 6193 | 6256 | 64 | 0 | GAA | ||
nad5 | N | 6257 | 7969 | 1713 | ATT | TAA | 0 | |
trnH | N | 7970 | 8032 | 63 | 0 | GAG | ||
nad4 | N | 8033 | 9365 | 1333 | ATG | T(AA) | −7 | |
nad4l | N | 9359 | 9646 | 288 | ATG | TAA | 2 | |
trnT | J | 9649 | 9711 | 63 | 0 | AGA | ||
trnP | N | 9712 | 9775 | 9775 | 2 | AGG | ||
nad6 | J | 9778 | 10,284 | 507 | ATT | TAA | −1 | |
cytb | J | 10,284 | 11,420 | 1137 | ATG | TAA | 1 | |
trnS2 | J | 11,422 | 11,486 | 65 | 17 | AGA | ||
nad1 | N | 11,503 | 12,453 | 951 | TTG | TAG | 0 | |
trnL1 | N | 12,454 | 12,515 | 62 | 0 | AAG | ||
rrnL | N | 12,516 | 13,800 | 1285 | 0 | |||
trnV | N | 13,801 | 13,865 | 65 | 0 | AAC | ||
rrnS | N | 13,866 | 14,600 | 735 | 0 | |||
A + T-rich region | 14,601 | 16,719 | 2119 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, B.; Li, Y.; Wang, J.; Wei, Z.; Shi, A. The Complete Mitochondrial Genomes of Penthe kochi (Coleoptera: Tetratomidae) with Its Phylogenetic Implications. Curr. Issues Mol. Biol. 2024, 46, 10795-10805. https://doi.org/10.3390/cimb46100641
Ouyang B, Li Y, Wang J, Wei Z, Shi A. The Complete Mitochondrial Genomes of Penthe kochi (Coleoptera: Tetratomidae) with Its Phylogenetic Implications. Current Issues in Molecular Biology. 2024; 46(10):10795-10805. https://doi.org/10.3390/cimb46100641
Chicago/Turabian StyleOuyang, Bowen, Yingying Li, Jieqiong Wang, Zhonghua Wei, and Aimin Shi. 2024. "The Complete Mitochondrial Genomes of Penthe kochi (Coleoptera: Tetratomidae) with Its Phylogenetic Implications" Current Issues in Molecular Biology 46, no. 10: 10795-10805. https://doi.org/10.3390/cimb46100641
APA StyleOuyang, B., Li, Y., Wang, J., Wei, Z., & Shi, A. (2024). The Complete Mitochondrial Genomes of Penthe kochi (Coleoptera: Tetratomidae) with Its Phylogenetic Implications. Current Issues in Molecular Biology, 46(10), 10795-10805. https://doi.org/10.3390/cimb46100641