SARS-CoV-2 and Environmental Changes: The Perfect Storm
Abstract
:1. Introduction
2. Climate Change and Diseases
3. SARS-CoV-2 and Climate Change
3.1. Cardiovascular System
3.2. Gastrointestinal System
3.3. Neurological and Psychiatric Disorders
4. Emergent Variants of SARS-CoV-2: Mutations and Immunological Escape
5. Future Strategies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hemo, M.K.M.; Islam, A. JN.1 as a New Variant of COVID-19—Editorial. Ann. Med. Surg. 2024, 86, 1833–1835. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lu, L.; Jiang, S. SARS-CoV-2 Omicron Subvariant BA.2.86: Limited Potential for Global Spread. Signal Transduct. Target. Ther. 2023, 8, 439. [Google Scholar] [CrossRef]
- Saleh, S.A.K.; Adly, H.M. Impact of Ambient Air Pollution Exposure on Long COVID-19 Symptoms: A Cohort Study within the Saudi Arabian Population. Infect. Dis. Rep. 2023, 15, 642–661. [Google Scholar] [CrossRef]
- Filippini, T. Adverse Human Health Effects of Climate Change: An Update. Ann. Ig. Med. Prev. E Comunità 2024, 36, 281–291. [Google Scholar] [CrossRef]
- Van Daalen, K.R.; Tonne, C.; Semenza, J.C.; Rocklöv, J.; Markandya, A.; Dasandi, N.; Jankin, S.; Achebak, H.; Ballester, J.; Bechara, H.; et al. The 2024 Europe Report of the Lancet Countdown on Health and Climate Change: Unprecedented Warming Demands Unprecedented Action. Lancet Public Health 2024, 9, e495–e522. [Google Scholar] [CrossRef] [PubMed]
- Stefkovics, Á.; Ágoston, C.; Bukovenszki, E.; Dúll, A.; Hortay, O.; Varga, A. Climate Change Worry in the Times of the COVID-19 Pandemic. Evidence from Two Large-Scale European Surveys. Clim. Risk Manag. 2024, 44, 100599. [Google Scholar] [CrossRef]
- Gupta, S.; Rouse, B.T.; Sarangi, P.P. Did Climate Change Influence the Emergence, Transmission, and Expression of the COVID-19 Pandemic? Front. Med. 2021, 8, 769208. [Google Scholar] [CrossRef] [PubMed]
- Weaver, A.K.; Head, J.R.; Gould, C.F.; Carlton, E.J.; Remais, J.V. Environmental Factors Influencing COVID-19 Incidence and Severity. Annu. Rev. Public Health 2022, 43, 271–291. [Google Scholar] [CrossRef] [PubMed]
- Luschkova, D.; Ludwig, A.; Traidl-Hoffmann, C. Klimakrise und deren Auswirkungen auf die menschliche Gesundheit. DMW Dtsch. Med. Wochenschr. 2021, 146, 1636–1641. [Google Scholar] [CrossRef]
- Rocque, R.J.; Beaudoin, C.; Ndjaboue, R.; Cameron, L.; Poirier-Bergeron, L.; Poulin-Rheault, R.-A.; Fallon, C.; Tricco, A.C.; Witteman, H.O. Health Effects of Climate Change: An Overview of Systematic Reviews. BMJ Open 2021, 11, e046333. [Google Scholar] [CrossRef]
- Andersen, Z.J.; Vicedo-Cabrera, A.M.; Hoffmann, B.; Melén, E. Climate Change and Respiratory Disease: Clinical Guidance for Healthcare Professionals. Breathe 2023, 19, 220222. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.-Z.; Jalaludin, B.B.; Antó, J.M.; Hess, J.J.; Huang, C.-R. Climate Change, Air Pollution, and Allergic Respiratory Diseases: A Call to Action for Health Professionals. Chin. Med. J. 2020, 133, 1552–1560. [Google Scholar] [CrossRef] [PubMed]
- D’Amato, G.; Chong-Neto, H.J.; Monge Ortega, O.P.; Vitale, C.; Ansotegui, I.; Rosario, N.; Haahtela, T.; Galan, C.; Pawankar, R.; Murrieta-Aguttes, M.; et al. The Effects of Climate Change on Respiratory Allergy and Asthma Induced by Pollen and Mold Allergens. Allergy 2020, 75, 2219–2228. [Google Scholar] [CrossRef] [PubMed]
- The Lancet Respiratory Medicine. Breathing on a Hot Planet. Lancet Respir. Med. 2018, 6, 647. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Bellander, T.; Bergström, A.; Dillner, J.; Eneroth, K.; Engardt, M.; Georgelis, A.; Kull, I.; Ljungman, P.; Pershagen, G.; et al. Association of Short-Term Air Pollution Exposure With SARS-CoV-2 Infection Among Young Adults in Sweden. JAMA Netw. Open 2022, 5, e228109. [Google Scholar] [CrossRef]
- Thi Khanh, H.N.; De Troeyer, K.; Smith, P.; Demoury, C.; Casas, L. The Impact of Ambient Temperature and Air Pollution on SARS-CoV2 Infection and Post COVID-19 Condition in Belgium (2021–2022). Environ. Res. 2024, 246, 118066. [Google Scholar] [CrossRef]
- McCormack, M.C.; Belli, A.J.; Waugh, D.; Matsui, E.C.; Peng, R.D.; Williams, D.L.; Paulin, L.; Saha, A.; Aloe, C.M.; Diette, G.B.; et al. Respiratory Effects of Indoor Heat and the Interaction with Air Pollution in Chronic Obstructive Pulmonary Disease. Ann. Am. Thorac. Soc. 2016, 13, 2125–2131. [Google Scholar] [CrossRef]
- Lee, H.; Yoon, H.-Y. Impact of Ambient Temperature on Respiratory Disease: A Case-Crossover Study in Seoul. Respir. Res. 2024, 25, 73. [Google Scholar] [CrossRef]
- Liao, H.; Lyon, C.J.; Ying, B.; Hu, T. Climate Change, Its Impact on Emerging Infectious Diseases and New Technologies to Combat the Challenge. Emerg. Microbes Infect. 2024, 13, 2356143. [Google Scholar] [CrossRef]
- Menhat, M.; Ariffin, E.H.; Dong, W.S.; Zakaria, J.; Ismailluddin, A.; Shafril, H.A.M.; Muhammad, M.; Othman, A.R.; Kanesan, T.; Ramli, S.P.; et al. Rain, Rain, Go Away, Come Again Another Day: Do Climate Variations Enhance the Spread of COVID-19? Glob. Health 2024, 20, 43. Available online: https://globalizationandhealth.biomedcentral.com/articles/10.1186/s12992-024-01044-w (accessed on 25 September 2024). [CrossRef]
- Lagtayi, R.; Lairgi, L.; Daya, A.; Khouya, A. The Impact of the Average Temperature, Humidity, Wind Speed, Altitude, and Population Density on Daily COVID-19 Infection Evolution. Med. Sci. Forum 2021, 4, 30. [Google Scholar] [CrossRef]
- Byun, W.S.; Heo, S.W.; Jo, G.; Kim, J.W.; Kim, S.; Lee, S.; Park, H.E.; Baek, J.-H. Is Coronavirus Disease (COVID-19) Seasonal? A Critical Analysis of Empirical and Epidemiological Studies at Global and Local Scales. Environ. Res. 2021, 196, 110972. [Google Scholar] [CrossRef]
- Diao, Y.; Kodera, S.; Anzai, D.; Gomez-Tames, J.; Rashed, E.A.; Hirata, A. Influence of Population Density, Temperature, and Absolute Humidity on Spread and Decay Durations of COVID-19: A Comparative Study of Scenarios in China, England, Germany, and Japan. One Health Amst. Neth. 2021, 12, 100203. [Google Scholar] [CrossRef]
- Yang, H.-Y.; Lee, J.K.W. The Impact of Temperature on the Risk of COVID-19: A Multinational Study. Int. J. Environ. Res. Public. Health 2021, 18, 4052. [Google Scholar] [CrossRef] [PubMed]
- Martins, L.D.; da Silva, I.; Batista, W.V.; de Fátima Andrade, M.; de Freitas, E.D.; Martins, J.A. How Socio-Economic and Atmospheric Variables Impact COVID-19 and Influenza Outbreaks in Tropical and Subtropical Regions of Brazil. Environ. Res. 2020, 191, 110184. [Google Scholar] [CrossRef]
- Smith, T.P.; Mishra, S.; Dorigatti, I.; Dixit, M.K.; Tristem, M.; Pearse, W.D. Differential Responses of SARS-CoV-2 Variants to Environmental Drivers during Their Selective Sweeps. Sci. Rep. 2024, 14, 13326. [Google Scholar] [CrossRef] [PubMed]
- Rendana, M.; Idris, W.M.R. New COVID-19 Variant (B.1.1.7): Forecasting the Occasion of Virus and the Related Meteorological Factors. J. Infect. Public Health 2021, 14, 1320–1327. [Google Scholar] [CrossRef]
- Volz, E.; Mishra, S.; Chand, M.; Barrett, J.C.; Johnson, R.; Geidelberg, L.; Hinsley, W.R.; Laydon, D.J.; Dabrera, G.; O’Toole, Á.; et al. Assessing Transmissibility of SARS-CoV-2 Lineage B.1.1.7 in England. Nature 2021, 593, 266–269. [Google Scholar] [CrossRef]
- Mlcochova, P.; Kemp, S.A.; Dhar, M.S.; Papa, G.; Meng, B.; Ferreira, I.A.T.M.; Datir, R.; Collier, D.A.; Albecka, A.; Singh, S.; et al. SARS-CoV-2 B.1.617.2 Delta Variant Replication and Immune Evasion. Nature 2021, 599, 114–119. [Google Scholar] [CrossRef]
- Nyberg, T.; Ferguson, N.M.; Nash, S.G.; Webster, H.H.; Flaxman, S.; Andrews, N.; Hinsley, W.; Bernal, J.L.; Kall, M.; Bhatt, S.; et al. Comparative Analysis of the Risks of Hospitalisation and Death Associated with SARS-CoV-2 Omicron (B.1.1.529) and Delta (B.1.617.2) Variants in England: A Cohort Study. Lancet 2022, 399, 1303–1312. [Google Scholar] [CrossRef]
- Chaguza, C.; Coppi, A.; Earnest, R.; Ferguson, D.; Kerantzas, N.; Warner, F.; Young, H.P.; Breban, M.I.; Billig, K.; Koch, R.T.; et al. Rapid Emergence of SARS-CoV-2 Omicron Variant Is Associated with an Infection Advantage over Delta in Vaccinated Persons. Med 2022, 3, 325–334.e4. [Google Scholar] [CrossRef] [PubMed]
- Prévost, J.; Richard, J.; Gasser, R.; Ding, S.; Fage, C.; Anand, S.P.; Adam, D.; Gupta Vergara, N.; Tauzin, A.; Benlarbi, M.; et al. Impact of Temperature on the Affinity of SARS-CoV-2 Spike Glycoprotein for Host ACE2. J. Biol. Chem. 2021, 297, 101151. [Google Scholar] [CrossRef] [PubMed]
- Gong, S.Y.; Ding, S.; Benlarbi, M.; Chen, Y.; Vézina, D.; Marchitto, L.; Beaudoin-Bussières, G.; Goyette, G.; Bourassa, C.; Bo, Y.; et al. Temperature Influences the Interaction between SARS-CoV-2 Spike from Omicron Subvariants and Human ACE2. Viruses 2022, 14, 2178. [Google Scholar] [CrossRef]
- Chong, C.; Wee, L.E.; Jin, X.; Zhang, M.; Malek, M.I.A.; Ong, B.; Lye, D.; Chiew, C.J.; Tan, K.B. Risks of Severe Acute Respiratory Syndrome Coronavirus 2 JN.1 Infection and Coronavirus Disease 2019–Associated Emergency Department Visits/Hospitalizations Following Updated Boosters and Prior Infection: A Population-Based Cohort Study. Clin. Infect. Dis. 2024, ciae339. [Google Scholar] [CrossRef]
- Driggin, E.; Madhavan, M.V.; Bikdeli, B.; Chuich, T.; Laracy, J.; Biondi-Zoccai, G.; Brown, T.S.; Der Nigoghossian, C.; Zidar, D.A.; Haythe, J.; et al. Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic. J. Am. Coll. Cardiol. 2020, 75, 2352–2371. [Google Scholar] [CrossRef]
- Modin, D.; Claggett, B.; Sindet-Pedersen, C.; Lassen, M.C.H.; Skaarup, K.G.; Jensen, J.U.S.; Fralick, M.; Schou, M.; Lamberts, M.; Gerds, T.; et al. Acute COVID-19 and the Incidence of Ischemic Stroke and Acute Myocardial Infarction. Circulation 2020, 142, 2080–2082. [Google Scholar] [CrossRef]
- Giustino, G.; Pinney, S.P.; Lala, A.; Reddy, V.Y.; Johnston-Cox, H.A.; Mechanick, J.I.; Halperin, J.L.; Fuster, V. Coronavirus and Cardiovascular Disease, Myocardial Injury, and Arrhythmia: JACC Focus Seminar. J. Am. Coll. Cardiol. 2020, 76, 2011–2023. [Google Scholar] [CrossRef] [PubMed]
- Kesici, S.; Aykan, H.H.; Orhan, D.; Bayrakci, B. Fulminant COVID-19-Related Myocarditis in an Infant. Eur. Heart J. 2020, 41, 3021. [Google Scholar] [CrossRef] [PubMed]
- Luetkens, J.A.; Isaak, A.; Zimmer, S.; Nattermann, J.; Sprinkart, A.M.; Boesecke, C.; Rieke, G.J.; Zachoval, C.; Heine, A.; Velten, M.; et al. Diffuse Myocardial Inflammation in COVID-19 Associated Myocarditis Detected by Multiparametric Cardiac Magnetic Resonance Imaging. Circ. Cardiovasc. Imaging 2020, 13, e010897. [Google Scholar] [CrossRef]
- The Task Force for the management of COVID-19 of the European Society of Cardiology; Baigent, C.; Windecker, S.; Andreini, D.; Arbelo, E.; Barbato, E.; Bartorelli, A.L.; Baumbach, A.; Behr, E.R.; Berti, S.; et al. European Society of Cardiology Guidance for the Diagnosis and Management of Cardiovascular Disease during the COVID-19 Pandemic: Part 1—Epidemiology, Pathophysiology, and Diagnosis. Eur. Heart J. 2022, 43, 1033–1058. [Google Scholar] [CrossRef]
- Ferrante, G.; Fazzari, F.; Cozzi, O.; Maurina, M.; Bragato, R.; D’Orazio, F.; Torrisi, C.; Lanza, E.; Indolfi, E.; Donghi, V.; et al. Risk Factors for Myocardial Injury and Death in Patients with COVID-19: Insights from a Cohort Study with Chest Computed Tomography. Cardiovasc. Res. 2020, 116, 2239–2246. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Guo, X.; Hao, W.; Wu, Y.; Ji, Y.; Zhao, Y.; Liu, F.; Xie, X. The Relationship between Serum Interleukins and T-Lymphocyte Subsets in Patients with Severe Acute Respiratory Syndrome. Chin. Med. J. 2003, 116, 981–984. [Google Scholar] [PubMed]
- Nagozir, S.; Shakouri Khomartash, M.; Parsania, M.; Vahidi, M.; Ghorbani, M. Association between Genetic Variants in the CD209 Gene and Susceptibility to COVID-19 in Iranian Population. Hum. Gene 2023, 38, 201215. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
- Lazovic, B.; Dmitrovic, R.; Simonovic, I.; Esquinas, A.M. Cytokine Release Syndrome (CRS) in Severe COVID-19 Patients: Two Controversial and Interesting Case Reports and Literature Review. Tanaffos 2023, 22, 167–171. [Google Scholar]
- Pareek, M.; Singh, A.; Vadlamani, L.; Eder, M.; Pacor, J.; Park, J.; Ghazizadeh, Z.; Heard, A.; Cruz-Solbes, A.S.; Nikooie, R.; et al. Relation of Cardiovascular Risk Factors to Mortality and Cardiovascular Events in Hospitalized Patients With Coronavirus Disease 2019 (from the Yale COVID-19 Cardiovascular Registry). Am. J. Cardiol. 2021, 146, 99–106. [Google Scholar] [CrossRef]
- Freaney, P.M.; Shah, S.J.; Khan, S.S. COVID-19 and Heart Failure With Preserved Ejection Fraction. JAMA 2020, 324, 1499–1500. [Google Scholar] [CrossRef]
- Shoar, S.; Hosseini, F.; Naderan, M.; Mehta, J.L. Meta-Analysis of Cardiovascular Events and Related Biomarkers Comparing Survivors Versus Non-Survivors in Patients With COVID-19. Am. J. Cardiol. 2020, 135, 50–61. [Google Scholar] [CrossRef]
- Kemerley, A.; Gupta, A.; Thirunavukkarasu, M.; Maloney, M.; Burgwardt, S.; Maulik, N. COVID-19 Associated Cardiovascular Disease—Risks, Prevention and Management: Heart at Risk Due to COVID-19. Curr. Issues Mol. Biol. 2024, 46, 1904–1920. [Google Scholar] [CrossRef]
- Bavishi, C.; Bonow, R.O.; Trivedi, V.; Abbott, J.D.; Messerli, F.H.; Bhatt, D.L. Special Article—Acute Myocardial Injury in Patients Hospitalized with COVID-19 Infection: A Review. Prog. Cardiovasc. Dis. 2020, 63, 682–689. [Google Scholar] [CrossRef]
- Muhl, L.; He, L.; Sun, Y.; Mäe, M.A.; Pietilä, R.; Liu, J.; Genové, G.; Zhang, L.; Xie, Y.; Leptidis, S.; et al. The SARS-CoV-2 Receptor ACE2 Is Expressed in Mouse Pericytes but Not Endothelial Cells: Implications for COVID-19 Vascular Research. Stem Cell Rep. 2022, 17, 1089–1104. [Google Scholar] [CrossRef]
- Xie, Y.; Xu, E.; Bowe, B.; Al-Aly, Z. Long-Term Cardiovascular Outcomes of COVID-19. Nat. Med. 2022, 28, 583–590. Available online: https://pubmed.ncbi.nlm.nih.gov/35132265/ (accessed on 1 September 2024). [CrossRef] [PubMed]
- Ayoubkhani, D.; Khunti, K.; Nafilyan, V.; Maddox, T.; Humberstone, B.; Diamond, I.; Banerjee, A. Post-COVID Syndrome in Individuals Admitted to Hospital with COVID-19: Retrospective Cohort Study. BMJ 2021, 372, n693. [Google Scholar] [CrossRef] [PubMed]
- Pozzer, A.; Dominici, F.; Haines, A.; Witt, C.; Münzel, T.; Lelieveld, J. Regional and Global Contributions of Air Pollution to Risk of Death from COVID-19. Cardiovasc. Res. 2020, 116, 2247–2253. Available online: https://pubmed.ncbi.nlm.nih.gov/33236040/ (accessed on 17 September 2024). [CrossRef] [PubMed]
- Montone, R.A.; Rinaldi, R.; Bonanni, A.; Severino, A.; Pedicino, D.; Crea, F.; Liuzzo, G. Impact of Air Pollution on Ischemic Heart Disease: Evidence, Mechanisms, Clinical Perspectives. Atherosclerosis 2023, 366, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Montone, R.A.; Iannaccone, G.; Meucci, M.C.; Gurgoglione, F.; Niccoli, G. Myocardial and Microvascular Injury Due to Coronavirus Disease 2019. Eur. Cardiol. 2020, 15, e52. [Google Scholar] [CrossRef]
- Bikdeli, B.; Madhavan, M.V.; Jimenez, D.; Chuich, T.; Dreyfus, I.; Driggin, E.; Nigoghossian, C.D.; Ageno, W.; Madjid, M.; Guo, Y.; et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 75, 2950–2973. [Google Scholar] [CrossRef]
- Stefanini, G.G.; Montorfano, M.; Trabattoni, D.; Andreini, D.; Ferrante, G.; Ancona, M.; Metra, M.; Curello, S.; Maffeo, D.; Pero, G.; et al. ST-Elevation Myocardial Infarction in Patients With COVID-19: Clinical and Angiographic Outcomes. Circulation 2020, 141, 2113–2116. [Google Scholar] [CrossRef]
- Kazi, D.S.; Katznelson, E.; Liu, C.-L.; Al-Roub, N.M.; Chaudhary, R.S.; Young, D.E.; McNichol, M.; Mickley, L.J.; Kramer, D.B.; Cascio, W.E.; et al. Climate Change and Cardiovascular Health: A Systematic Review. JAMA Cardiol. 2024, 9, 748. [Google Scholar] [CrossRef]
- Benedetti, F.; Pachetti, M.; Marini, B.; Ippodrino, R.; Gallo, R.C.; Ciccozzi, M.; Zella, D. Inverse Correlation between Average Monthly High Temperatures and COVID-19-Related Death Rates in Different Geographical Areas. J. Transl. Med. 2020, 18, 251. [Google Scholar] [CrossRef]
- Ndlovu, N.; Chungag, B.N. Impact of Heat Stress on Cardiovascular Health Outcomes of Older Adults: A Mini Review. Aging Health Res. 2024, 4, 100189. [Google Scholar] [CrossRef]
- Zhang, S.; Rai, M.; Matthies-Wiesler, F.; Breitner-Busch, S.; Stafoggia, M.; de’Donato, F.; Agewall, S.; Atar, D.; Mohammad, M.A.; Peters, A.; et al. Climate Change and Cardiovascular Disease—The Impact of Heat and Heat-Health Action Plans. Eur. Soc. Cardiol. 2022, 22, 18. Available online: https://www.escardio.org/Journals/E-Journal-of-Cardiology-Practice/Volume-22/climate-change-and-cardiovascular-disease-the-impact-of-heat-and-heat-health-a#THM4 (accessed on 7 September 2024).
- Desai, Y.; Khraishah, H.; Alahmad, B. Heat and the Heart. Yale J. Biol. Med. 2023, 96, 197–203. [Google Scholar] [CrossRef]
- Ohashi, Y.; Takane, Y.; Nakajima, K. Impact of the COVID-19 Pandemic on Changes in Temperature-Sensitive Cardiovascular and Respiratory Disease Mortality in Japan. PLoS ONE 2022, 17, e0275935. [Google Scholar] [CrossRef] [PubMed]
- Malhi, J.K.; McEvoy, J.W.; Blumenthal, R.S.; Jacobsen, A.P. Climate Change and Cardiovascular Health: Recent Updates and Actions for Healthcare. Am. Heart J. Plus Cardiol. Res. Pract. 2024, 45, 100443. [Google Scholar] [CrossRef]
- Xu, J.; Chu, M.; Zhong, F.; Tan, X.; Tang, G.; Mai, J.; Lai, N.; Guan, C.; Liang, Y.; Liao, G. Digestive Symptoms of COVID-19 and Expression of ACE2 in Digestive Tract Organs. Cell Death Discov. 2020, 6, 76. [Google Scholar] [CrossRef]
- Zuo, T.; Zhan, H.; Zhang, F.; Liu, Q.; Tso, E.Y.K.; Lui, G.C.Y.; Chen, N.; Li, A.; Lu, W.; Chan, F.K.L.; et al. Alterations in Fecal Fungal Microbiome of Patients With COVID-19 During Time of Hospitalization until Discharge. Gastroenterology 2020, 159, 1302–1310.e5. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Ichiki, T.; Yamakawa, T.; Tsuji, Y.; Kuronuma, K.; Takahashi, S.; Narimatsu, E.; Katanuma, A.; Nakase, H. Gut Microbiota and Metabolites in Patients with COVID-19 Are Altered by the Type of SARS-CoV-2 Variant. Front. Microbiol. 2024, 15, 1358530. [Google Scholar] [CrossRef]
- Leddin, D. The Impact of Climate Change, Pollution, and Biodiversity Loss on Digestive Health and Disease. Gastro Hep Adv. 2024, 3, 519–534. [Google Scholar] [CrossRef]
- Yousef, M.; Rob, M.; Varghese, S.; Rao, S.; Zamir, F.; Paul, P.; Chaari, A. The Effect of Microbiome Therapy on COVID-19-Induced Gut Dysbiosis: A Narrative and Systematic Review. Life Sci. 2024, 342, 122535. [Google Scholar] [CrossRef]
- Hasbey, I.; Ufuk, F.; Kaya, F.; Celik, M. Cardiac MRI Findings in Patients with Crohn’s Disease. Ir. J. Med. Sci. 2021, 191, 1161–1169. Available online: https://link.springer.com/article/10.1007/s11845-021-02717-w (accessed on 4 September 2024). [CrossRef] [PubMed]
- Masi, P.; Hékimian, G.; Lejeune, M.; Chommeloux, J.; Desnos, C.; Pineton De Chambrun, M.; Martin-Toutain, I.; Nieszkowska, A.; Lebreton, G.; Bréchot, N.; et al. Systemic Inflammatory Response Syndrome Is a Major Contributor to COVID-19–Associated Coagulopathy: Insights from a Prospective, Single-Center Cohort Study. Circulation 2020, 142, 611–614. Available online: https://www.ahajournals.org/doi/full/10.1161/CIRCULATIONAHA.120.048925 (accessed on 4 September 2024). [CrossRef] [PubMed]
- Udeh, R.; Advani, S.; de Guadiana Romualdo, L.G.; Dolja-Gore, X. Calprotectin, an Emerging Biomarker of Interest in COVID-19: A Systematic Review and Meta-Analysis. J. Clin. Med. 2021, 10, 775. Available online: https://www.mdpi.com/2077-0383/10/4/775 (accessed on 4 September 2024). [CrossRef]
- Mohandas, S.; Vairappan, B. Severe Acute Respiratory Syndrome Coronavirus-2 Infection and the Gut–Liver Axis. J. Dig. Dis. 2020, 21, 687–695. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1111/1751-2980.12951 (accessed on 4 September 2024). [CrossRef]
- Aoyama, T.; Paik, Y.H.; Seki, E. Toll-Like Receptor Signaling and Liver Fibrosis. Gastroenterol. Res. Pract. 2010, 2010, 192543. Available online: https://onlinelibrary.wiley.com/doi/full/10.1155/2010/192543 (accessed on 4 September 2024). [CrossRef]
- Ganesan, R.; Jeong, J.J.; Kim, D.J.; Suk, K.T. Recent Trends of Microbiota-Based Microbial Metabolites Metabolism in Liver Disease. Front. Med. 2022, 9, 841281. Available online: https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2022.841281/full (accessed on 4 September 2024). [CrossRef]
- Gunawan, W.B.; Abadi, M.N.P.; Fadhillah, F.S.; Nurkolis, F.; Pramono, A. The Interlink between Climate Changes, Gut Microbiota, and Aging Processes. Hum. Nutr. Metab. 2023, 32, 200193. [Google Scholar] [CrossRef]
- Rio, P.; Caldarelli, M.; Gasbarrini, A.; Gambassi, G.; Cianci, R. The Impact of Climate Change on Immunity and Gut Microbiota in the Development of Disease. Diseases 2024, 12, 118. [Google Scholar] [CrossRef] [PubMed]
- Mattoo, R.; Mallikarjuna, S. Soil Microbiome Influences Human Health In the Context of Climate Change. Future Microbiol. 2023, 18, 845–859. Available online: https://www.tandfonline.com/doi/abs/10.2217/fmb-2023-0098 (accessed on 13 October 2024). [CrossRef]
- Genton, L.; Cani, P.D.; Schrenzel, J. Alterations of Gut Barrier and Gut Microbiota in Food Restriction, Food Deprivation and Protein-Energy Wasting. Clin. Nutr. 2015, 34, 341–349. [Google Scholar] [CrossRef]
- Presbitero, A.; Melnikov, V.R.; Krzhizhanovskaya, V.V.; Sloot, P.M.A. A Unifying Model to Estimate the Effect of Heat Stress in the Human Innate Immunity during Physical Activities. Sci. Rep. 2021, 11, 16688. [Google Scholar] [CrossRef] [PubMed]
- Crawford, M.S.; Nordgren, T.M.; McCole, D.F. Every Breath You Take: Impacts of Environmental Dust Exposure on Intestinal Barrier Function–from the Gut-Lung Axis to COVID-19. Am. J. Physiol. Gastrointest. Liver Physiol. 2021, 320, G586–G600. [Google Scholar] [CrossRef]
- Fanzo, J.; Davis, C.; McLaren, R.; Choufani, J. The Effect of Climate Change across Food Systems: Implications for Nutrition Outcomes. Glob. Food Secur. 2018, 18, 12–19. [Google Scholar] [CrossRef]
- Owino, V.; Kumwenda, C.; Ekesa, B.; Parker, M.E.; Ewoldt, L.; Roos, N.; Lee, W.T.; Tome, D. The Impact of Climate Change on Food Systems, Diet Quality, Nutrition, and Health Outcomes: A Narrative Review. Front. Clim. 2022, 4, 941842. Available online: https://www.frontiersin.org/journals/climate/articles/10.3389/fclim.2022.941842/full (accessed on 13 October 2024). [CrossRef]
- Naidu, A.S.; Wang, C.-K.; Rao, P.; Mancini, F.; Clemens, R.A.; Wirakartakusumah, A.; Chiu, H.-F.; Yen, C.-H.; Porretta, S.; Mathai, I.; et al. Precision Nutrition to Reset Virus-Induced Human Metabolic Reprogramming and Dysregulation (HMRD) in Long-COVID. npj Sci. Food 2024, 8, 19. [Google Scholar] [CrossRef]
- Naidu, S.A.G.; Clemens, R.A.; Naidu, A.S. SARS-CoV-2 Infection Dysregulates Host Iron (Fe)-Redox Homeostasis (Fe-R-H): Role of Fe-Redox Regulators, Ferroptosis Inhibitors, Anticoagulants, and Iron-Chelators in COVID-19 Control. J. Diet. Suppl. 2023, 20, 312–371. [Google Scholar] [CrossRef]
- Turner, S.; Khan, M.A.; Putrino, D.; Woodcock, A.; Kell, D.B.; Pretorius, E. Long COVID: Pathophysiological Factors and Abnormalities of Coagulation. Trends Endocrinol. Metab. TEM 2023, 34, 321–344. [Google Scholar] [CrossRef]
- Crook, H.; Raza, S.; Nowell, J.; Young, M.; Edison, P. Long COVID-Mechanisms, Risk Factors, and Management. BMJ 2021, 374, n1648. Available online: https://pubmed.ncbi.nlm.nih.gov/34312178/ (accessed on 13 October 2024). [CrossRef] [PubMed]
- Méndez-Guerrero, A.; Laespada-García, M.I.; Gómez-Grande, A.; Ruiz-Ortiz, M.; Blanco-Palmero, V.A.; Azcarate-Diaz, F.J.; Rábano-Suárez, P.; Álvarez-Torres, E.; de Fuenmayor-Fernández de la Hoz, C.P.; Vega Pérez, D.; et al. Acute Hypokinetic-Rigid Syndrome Following SARS-CoV-2 Infection. Neurology 2020, 95, e2109–e2118. [Google Scholar] [CrossRef]
- Lang, K. What Do We Know about COVID-19’s Effects on the Gut? BMJ 2024, 385, q842. [Google Scholar] [CrossRef]
- Ghosh, R.; Dubey, S.; Mandal, A.; Ray, B.K.; Benito-León, J. Complex Movement Disorders in SARS-CoV-2 Infection Induced Acute Disseminated Encephalomyelitis. J. Neuroimmunol. 2021, 358, 577655. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.-Y.D.; Liang, K.; Shetty, A.K. Complications of COVID-19 on the Central Nervous System: Mechanisms and Potential Treatment for Easing Long COVID. Aging Dis. 2023, 14, 1492–1510. [Google Scholar] [CrossRef] [PubMed]
- Sideratou, C.-M.; Papaneophytou, C. Persisting Shadows: Unraveling the Impact of Long COVID-19 on Respiratory, Cardiovascular, and Nervous Systems. Infect. Dis. Rep. 2023, 15, 806–830. [Google Scholar] [CrossRef]
- Vanderheiden, A.; Hill, J.D.; Jiang, X.; Deppen, B.; Bamunuarachchi, G.; Soudani, N.; Joshi, A.; Cain, M.D.; Boon, A.C.M.; Klein, R.S. Vaccination Reduces Central Nervous System IL-1β and Memory Deficits after COVID-19 in Mice. Nat. Immunol. 2024, 25, 1158–1171. [Google Scholar] [CrossRef]
- Louis, S.; Carlson, A.K.; Suresh, A.; Rim, J.; Mays, M.; Ontaneda, D.; Dhawan, A. Impacts of Climate Change and Air Pollution on Neurologic Health, Disease, and Practice: A Scoping Review. Neurology 2023, 100, 474–483. [Google Scholar] [CrossRef]
- Amiri, M.; Peinkhofer, C.; Othman, M.H.; De Vecchi, T.; Nersesjan, V.; Kondziella, D. Global Warming and Neurological Practice: Systematic Review. PeerJ 2021, 9, e11941. [Google Scholar] [CrossRef] [PubMed]
- Zammit, C.; Torzhenskaya, N.; Ozarkar, P.D.; Calleja Agius, J. Neurological Disorders Vis-à-Vis Climate Change. Early Hum. Dev. 2021, 155, 105217. [Google Scholar] [CrossRef] [PubMed]
- Ruszkiewicz, J.A.; Tinkov, A.A.; Skalny, A.V.; Siokas, V.; Dardiotis, E.; Tsatsakis, A.; Bowman, A.B.; Da Rocha, J.B.T.; Aschner, M. Brain Diseases in Changing Climate. Environ. Res. 2019, 177, 108637. [Google Scholar] [CrossRef]
- Chakraborty, C.; Chatterjee, S.B.; Bhattacharya, M.; Chopra, H.; Bhattacharya, P.; Islam, A.; Dhama, K. The D614G Mutation Helps to Increase the Transmissibility and Reduce the Virulence of SARS-CoV-2 Variants through Natural Selection. Int. J. Surg. 2023, 109, 171–174. [Google Scholar] [CrossRef]
- Volz, E.; Hill, V.; McCrone, J.T.; Price, A.; Jorgensen, D.; O’Toole, Á.; Southgate, J.; Johnson, R.; Jackson, B.; Nascimento, F.F.; et al. Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity. Cell 2021, 184, 64–75. [Google Scholar] [CrossRef]
- Manirambona, E.; Okesanya, O.J.; Olaleke, N.O.; Oso, T.A.; Lucero-Prisno, D.E. Evolution and Implications of SARS-CoV-2 Variants in the Post-Pandemic Era. Discov. Public Health 2024, 21, 16. [Google Scholar] [CrossRef]
- Copernicus: 2023 Is the Hottest Year on Record, with Global Temperatures Close to the 1.5 °C Limit|Copernicus. Available online: https://climate.copernicus.eu/copernicus-2023-hottest-year-record (accessed on 10 October 2024).
- Wang, Q.; Guo, Y.; Liu, L.; Schwanz, L.T.; Li, Z.; Nair, M.S.; Ho, J.; Zhang, R.M.; Iketani, S.; Yu, J.; et al. Antigenicity and Receptor Affinity of SARS-CoV-2 BA.2.86 Spike. Nature 2023, 624, 639–644. Available online: https://www.nature.com/articles/s41586-023-06750-w (accessed on 31 August 2024). [CrossRef] [PubMed]
- Kaku, Y.; Okumura, K.; Padilla-Blanco, M.; Kosugi, Y.; Uriu, K.; Hinay, A.A.; Chen, L.; Plianchaisuk, A.; Kobiyama, K.; Ishii, K.J.; et al. Virological Characteristics of the SARS-CoV-2 JN.1 Variant. Lancet Infect. Dis. 2024, 24, e82. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Yu, Y.; Xu, Y.; Jian, F.; Song, W.; Yisimayi, A.; Wang, P.; Wang, J.; Liu, J.; Yu, L.; et al. Fast Evolution of SARS-CoV-2 BA.2.86 to JN.1 under Heavy Immune Pressure. Lancet Infect. Dis. 2024, 24, e70–e72. [Google Scholar] [CrossRef]
- Gangavarapu, K.; Latif, A.A.; Mullen, J.L.; Alkuzweny, M.; Hufbauer, E.; Tsueng, G.; Haag, E.; Zeller, M.; Aceves, C.M.; Zaiets, K.; et al. Outbreak.Info Genomic Reports: Scalable and Dynamic Surveillance of SARS-CoV-2 Variants and Mutations. Nat. Methods 2023, 20, 512–522. [Google Scholar] [CrossRef]
- Li, P.; Faraone, J.N.; Hsu, C.C.; Chamblee, M.; Zheng, Y.-M.; Carlin, C.; Bednash, J.S.; Horowitz, J.C.; Mallampalli, R.K.; Saif, L.J.; et al. Characteristics of JN.1-Derived SARS-CoV-2 Subvariants SLip, FLiRT, and KP.2 in Neutralization Escape, Infectivity and Membrane Fusion. bioRxiv 2024, 2024-05. [Google Scholar] [CrossRef]
- Qu, P.; Xu, K.; Faraone, J.N.; Goodarzi, N.; Zheng, Y.-M.; Carlin, C.; Bednash, J.S.; Horowitz, J.C.; Mallampalli, R.K.; Saif, L.J.; et al. Immune Evasion, Infectivity, and Fusogenicity of SARS-CoV-2 BA.2.86 and FLip Variants. Cell 2024, 187, 585–595.e6. [Google Scholar] [CrossRef]
- Jian, F.; Feng, L.; Yang, S.; Yu, Y.; Wang, L.; Song, W.; Yisimayi, A.; Chen, X.; Xu, Y.; Wang, P.; et al. Convergent Evolution of SARS-CoV-2 XBB Lineages on Receptor-Binding Domain 455-456 Synergistically Enhances Antibody Evasion and ACE2 Binding. PLoS Pathog. 2023, 19, e1011868. [Google Scholar] [CrossRef]
- Wang, Q.; Ye, S.-B.; Zhou, Z.-J.; Song, A.-L.; Zhu, X.; Peng, J.-M.; Liang, R.-M.; Yang, C.-H.; Yu, X.-W.; Huang, X.; et al. Key Mutations in the Spike Protein of SARS-CoV-2 Affecting Neutralization Resistance and Viral Internalization. J. Med. Virol. 2023, 95, e28407. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, S.; Ma, W.; Li, X.; Wei, K.; Xie, F.; Zhao, C.; Zhao, X.; Wang, S.; Li, C.; et al. Enhanced Neutralization of SARS-CoV-2 Variant BA.2.86 and XBB Sub-Lineages by a Tetravalent COVID-19 Vaccine Booster. Cell Host Microbe 2024, 32, 25–34.e5. [Google Scholar] [CrossRef]
- Quarleri, J.; Delpino, M.V.; Galvan, V. Anticipating the Future of the COVID-19 Pandemic: Insights into the Emergence of SARS-CoV-2 Variant JN.1 and Its Projected Impact on Older Adults. GeroScience 2024, 46, 2879–2883. [Google Scholar] [CrossRef]
- Li, P.; Liu, Y.; Faraone, J.N.; Hsu, C.C.; Chamblee, M.; Zheng, Y.-M.; Carlin, C.; Bednash, J.S.; Horowitz, J.C.; Mallampalli, R.K.; et al. Distinct Patterns of SARS-CoV-2 BA.2.87.1 and JN.1 Variants in Immune Evasion, Antigenicity, and Cell-Cell Fusion. mBio 2024, 15, e0075124. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Jackson, C.B.; Mou, H.; Ojha, A.; Rangarajan, E.S.; Izard, T.; Farzan, M.; Choe, H. The D614G Mutation in the SARS-CoV-2 Spike Protein Reduces S1 Shedding and Increases Infectivity. bioRxiv 2020, 148726. [Google Scholar] [CrossRef]
- Yurkovetskiy, L.; Wang, X.; Pascal, K.E.; Tomkins-Tinch, C.; Nyalile, T.; Wang, Y.; Baum, A.; Diehl, W.E.; Dauphin, A.; Carbone, C.; et al. Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant. Cell 2020, 183, 739–751. [Google Scholar] [CrossRef]
- Korber, B.; Fischer, W.M.; Gnanakaran, S.; Yoon, H.; Theiler, J.; Abfalterer, W.; Hengartner, N.; Giorgi, E.E.; Bhattacharya, T.; Foley, B.; et al. Tracking Changes in SARS-CoV-2 Spike: Evidence That D614G Increases Infectivity of the COVID-19 Virus. Cell 2020, 182, 812–827.e19. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, M.; Gao, J. Enhanced Receptor Binding of SARS-CoV-2 through Networks of Hydrogen-Bonding and Hydrophobic Interactions. Proc. Natl. Acad. Sci. USA 2020, 117, 13967–13974. [Google Scholar] [CrossRef]
- Liu, C.; Zhou, D.; Dijokaite-Guraliuc, A.; Supasa, P.; Duyvesteyn, H.M.E.; Ginn, H.M.; Selvaraj, M.; Mentzer, A.J.; Das, R.; de Silva, T.I.; et al. A Structure-Function Analysis Shows SARS-CoV-2 BA.2.86 Balances Antibody Escape and ACE2 Affinity. Cell Rep. Med. 2024, 5, 101553. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Zhao, X.; Tao, Z.; Zou, J.; Yu, W.; He, M.; Gu, D.; Zhang, S.; Zhang, W.; Ho, H. Global Infectious Diseases between January and March 2024: Periodic Analysis. Zoonoses 2024, 4, 981. [Google Scholar] [CrossRef]
- Shousha, H.I.; Ayman, H.; Hashem, M.B. Climate Changes and COVID-19. Adv. Exp. Med. Biol. 2024, 1458, 217–231. [Google Scholar] [CrossRef]
- Attur, M.; Petrilli, C.; Adhikari, S.; Iturrate, E.; Li, X.; Tuminello, S.; Hu, N.; Chakravarti, A.; Beck, D.; Abramson, S.B. Interleukin-1 Receptor Antagonist Gene (IL1RN) Variants Modulate the Cytokine Release Syndrome and Mortality of COVID-19. J. Infect. Dis. 2024, 229, 1740–1749. [Google Scholar] [CrossRef]
- Soudani, N.; Bricker, T.L.; Darling, T.; Seehra, K.; Patel, N.; Guebre-Xabier, M.; Smith, G.; Davis-Gardner, M.; Suthar, M.S.; Ellebedy, A.H.; et al. Immunogenicity and Efficacy of XBB.1.5 rS Vaccine against the EG.5.1 Variant of SARS-CoV-2 in Syrian Hamsters. J. Virol. 2024, 98, e0052824. [Google Scholar] [CrossRef]
- Di Renzo, L.; Gualtieri, P.; Frank, G.; Cianci, R.; Caldarelli, M.; Leggeri, G.; Raffaelli, G.; Pizzocaro, E.; Cirillo, M.; De Lorenzo, A. Exploring the Exposome Spectrum: Unveiling Endogenous and Exogenous Factors in Non-Communicable Chronic Diseases. Diseases 2024, 12, 176. [Google Scholar] [CrossRef] [PubMed]
GM of COVID-19 Patients | Changes Observed | Reference |
---|---|---|
α-diversity | decreased | [69] |
β diversity | no significant differences | |
short-chain fatty-acid-producing bacteria (Catenibacterium, Ruminococcus, and Eubacterium) | more abundant in patients infected with the Alpha strain compared to the Delta | [69] |
species that generate high levels of ammonia (Clostridium and Peptostreptococcus) | increased | [76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caldarelli, M.; Rio, P.; Giambra, V.; Palucci, I.; Gasbarrini, A.; Gambassi, G.; Cianci, R. SARS-CoV-2 and Environmental Changes: The Perfect Storm. Curr. Issues Mol. Biol. 2024, 46, 11835-11852. https://doi.org/10.3390/cimb46110703
Caldarelli M, Rio P, Giambra V, Palucci I, Gasbarrini A, Gambassi G, Cianci R. SARS-CoV-2 and Environmental Changes: The Perfect Storm. Current Issues in Molecular Biology. 2024; 46(11):11835-11852. https://doi.org/10.3390/cimb46110703
Chicago/Turabian StyleCaldarelli, Mario, Pierluigi Rio, Vincenzo Giambra, Ivana Palucci, Antonio Gasbarrini, Giovanni Gambassi, and Rossella Cianci. 2024. "SARS-CoV-2 and Environmental Changes: The Perfect Storm" Current Issues in Molecular Biology 46, no. 11: 11835-11852. https://doi.org/10.3390/cimb46110703
APA StyleCaldarelli, M., Rio, P., Giambra, V., Palucci, I., Gasbarrini, A., Gambassi, G., & Cianci, R. (2024). SARS-CoV-2 and Environmental Changes: The Perfect Storm. Current Issues in Molecular Biology, 46(11), 11835-11852. https://doi.org/10.3390/cimb46110703