Construction of an Integration Vector with a Chimeric Signal Peptide for the Expression of Monoclonal Antibodies in Mammalian Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plasmid Vectors and Cell Cultures
2.2. Construction of the Integration Vector pVEAL3-10H10ch
2.3. Generation of the Producer Strain CHO-K1-10H10ch
2.4. Roller Cultivation of the CHO-K1-10H10ch Producer Strain
2.5. Affinity Purification of Chimeric Full-Length Antibody 10H10ch
2.6. Purification of Mouse 10H10 Antibody with Caprylic Acid from Ascites Fluid
2.7. Enzyme-Linked Immunosorbent Assay (ELISA)
2.8. Statistical Analysis
3. Results and Discussion
3.1. Design and Construction of the Integration Vector pVEAL3-10H10ch
3.2. Obtaining a Stable Producer Strain CHO-K1-10H10ch
3.3. Evaluation of the Immunochemical Properties of the Full-Length 10H10ch Antibody
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hunter, M.; Yuan, P.; Vavilala, D.; Fox, M. Optimization of Protein Expression in Mammalian Cells. Curr. Protoc. Protein Sci. 2019, 95, e77. [Google Scholar] [CrossRef]
- Zhang, J.H.; Shan, L.L.; Liang, F.; Du, C.Y.; Li, J.J. Strategies and Considerations for Improving Recombinant Antibody Production and Quality in Chinese Hamster Ovary Cells. Front. Bioeng. Biotechnol. 2022, 10, 856049. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.M.; Fan, Z.L.; Wang, X.Y.; Wang, T.Y. Factors Affecting the Expression of Recombinant Protein and Improvement Strategies in Chinese Hamster Ovary Cells. Front. Bioeng. Biotechnol. 2022, 10, 880155. [Google Scholar] [CrossRef]
- Carrara, S.C.; Fiebig, D.; Bogen, J.P.; Grzeschik, J.; Hock, B.; Kolmar, H. Recombinant antibody production using a dual-promoter single plasmid system. Antibodies 2021, 10, 18. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, M.; Mahboudi, F.; Akbari Eidgahi, M.R.; Nasr, R.; Davami, F. Evaluating the efficiency of phiC31 integrase-mediated monoclonal antibody expression in CHO cells. Biotechnol. Prog. 2016, 32, 1570–1576. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.M.; Wang, M.; Wang, T.Y.; Wei, Y.G.; Dou, Y.Y. Effects of different 2A peptides on transgene expression mediated by tricistronic vectors in transfected CHO cells. Mol. Biol. Rep. 2020, 47, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Ebadat, S.; Ahmadi, S.; Ahmadi, M.; Nematpour, F.; Mahboudi, F. Evaluating the efficiency of CHEF and CMV promoter with IRES and Furin/2A linker sequences for monoclonal antibody expression in CHO cells. PLoS ONE 2017, 12, e0185967. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Hung, C.Y.; Bhattacharya, C.; Nichols, S.; Xie, J. An effective way of producing fully assembled antibody in transgenic tobacco plants by linking heavy and light chains via a self-cleaving 2a peptide. Front. Plant Sci. 2018, 9, 1379. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Ma, B.; Ma, J.; Zhu, R. RB1 5′UTR contains an IRES related to cell cycle control and cancer progression. Gene 2023, 887, 147724. [Google Scholar] [CrossRef]
- Fitzgerald, K.D.; Semler, B.L. Bridging IRES elements in mRNAs to the eukaryotic translation apparatus. Biochim. Biophys. Acta Gene Regul. Mech. 2009, 1789, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Chen, Z.; Zhang, M.; Zou, L.; He, S.; Liu, J.; Wu, J. DeepIRES: A hybrid deep learning model for accurate identification of internal ribosome entry sites in cellular and viral mRNAs. Brief. Bioinform. 2024, 25, bbae439. [Google Scholar] [CrossRef]
- López-Ulloa, B.; Fuentes, Y.; Pizarro-Ortega, M.S.; López-Lastra, M. RNA-Binding Proteins as Regulators of Internal Initiation of Viral mRNA Translation. Viruses 2022, 14, 188. [Google Scholar] [CrossRef]
- Andreev, D.E.; Niepmann, M.; Shatsky, I.N. Elusive Trans-Acting Factors Which Operate with Type I (Poliovirus-like) IRES Elements. Int. J. Mol. Sci. 2022, 23, 15497. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Liu, J.; Sun, L.; Zhang, J.; Hou, J. Developing polycistronic expression tool in Yarrowia lipolytica. Synth. Syst. Biotechnol. 2025, 10, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Lin, Q.; Berro, J. 2A peptide from ERBV-1 efficiently separates endogenous protein domains in the fission yeast Schizosaccharomyces pombe. Micropubl. Biol. 2023, 1, 2–7. [Google Scholar] [CrossRef]
- de Lima, J.G.S.; Lanza, D.C.F. 2a and 2a-like sequences: Distribution in different virus species and applications in biotechnology. Viruses 2021, 13, 2160. [Google Scholar] [CrossRef]
- Luke, G.A.; Ryan, M.D. Using the 2A protein coexpression system: Multicistronic 2A vectors expressing gene(s) of interest and reporter proteins. Methods Mol. Biol. 2018, 1755, 31–48. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Yan, F.; Doronina, V.A.; Escuin-Ordinas, H.; Ryan, M.D.; Brown, J.D. 2A peptides provide distinct solutions to driving stop-carry on translational recoding. Nucleic Acids Res. 2012, 40, 3143–3151. [Google Scholar] [CrossRef] [PubMed]
- Luke, G.A.; Ross, L.S.; Lo, Y.; Wu, H.; Ryan, M.D. Picornavirus Evolution: Genomes Encoding Multiple 2ANPGP Sequences—Biomedical and Biotechnological Utility. Viruses 2024, 16, 1587. [Google Scholar] [CrossRef]
- Toporova, V.A.; Argentova, V.V.; Aliev, T.K.; Panina, A.A.; Dolgikh, D.A.; Kirpichnikov, M.P. Optimization of recombinant antibody production based on the vector design and the level of metabolites for generation of Ig- producing stable cell lines. Genet. Eng. Biotechnol. 2023, 21, 23. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Menzel, C.; Meier, D.; Zhang, C.; Dübel, S.; Jostock, T. A comparative study of different vector designs for the mammalian expression of recombinant IgG antibodies. Immunol. Methods 2007, 318, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Fallahee, I.; Hawiger, D. Episomal Vectors for Stable Production of Recombinant Proteins and Engineered Antibodies. Antibodies 2024, 13, 18. [Google Scholar] [CrossRef]
- Kangro, K.; Roose, E.; Vandenbulcke, A.; Dekimpe, C.; Vanhoorelbeke, K. Improvement of recombinant ADAMTS13 production through a more optimal signal peptide or an N-terminal fusion protein. Thromb. Haemost. 2022, 20, 2379–2385. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Han, Z.; Cheng, W.; Niu, S.; Wang, T.; Wang, X. Improvement strategies for transient gene expression in mammalian cells. Appl. Microbiol. Biotechnol. 2024, 108, 480. [Google Scholar] [CrossRef]
- Yang, C.H.; Li, H.C.; Lo, S.Y. Enhancing recombinant antibody yield in Chinese hamster ovary cells. Tzu Chi Med. 2024, 36, 240–250. [Google Scholar] [CrossRef]
- Шaньшин, Д.B.; Щepбaкoв, Д.H.; Hecмeянoвa, B.C.; Иcaeвa, А.А.; Лoктeв, B.Б.; Пpoтoпoпoвa, Е.B. Плaзмиднaя гeнeтичecкaя кoнcтpyкция pVEAL3-10H10ch, штaмм peкoмбинaнтнoй клeтoчнoй линии CHO-K1-10H10ch и химepнoe aнтитeлo 10H10ch пpoтив виpyca клeщeвoгo энцeфaлитa, пpoдyциpyeмoe yкaзaнным штaммoм клeтoчнoй линии CHO-K1-10H10ch. Пaтeнт нa изoбpeтeниe RU 2800471 C1, 21.07.2023. Заявка № 2022126714 oт 13.10.2022. Available online: https://elibrary.ru/item.asp?id=54232012 (accessed on 25 November 2024).
- Li, Y.; Tian, Z.; Xu, D.; Wang, X.; Wang, T. Construction strategies for developing expression vectors for recombinant monoclonal antibody production in CHO cells. Mol. Biol. Rep. 2018, 45, 2907–2912. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.Y.; Guo, X. Expression vector cassette engineering for recombinant therapeutic production in mammalian cell systems. Appl. Microbiol. Biotechnol. 2020, 104, 5673–5688. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.C.; Bardor, M.; Feng, H.; Tong, Y.W.; Song, Z.; Yap, M.G.; Yang, Y. IRES-mediated Tricistronic vectors for enhancing generation of high monoclonal antibody expressing CHO cell lines. Biotechnology 2012, 157, 130–139. [Google Scholar] [CrossRef]
- Shanshin, D.V.; Nesmeyanova, V.S.; Protopopova, E.V.; Shelemba, A.A.; Loktev, V.B.; Shcherbakov, D.N. Preparation and Construction of Chimeric Humanized Broadly Reactive Antibody 10H10 to Protein E of Tick-Borne Encephalitis Virus. Bull. Exp. Biol. Med. 2024, 177, 770–773. [Google Scholar] [CrossRef] [PubMed]
- Haбepeжнoв, Д.C. Cpaвнитeльный aнaлиз пpoмoтopoв, иcпoльзyeмых для экcпpeccии тpaнcгeнoв в клeткaх млeкoпитaющих. Hayкocфepa 2021, 9, 15–21. [Google Scholar] [CrossRef]
- Csató-Kovács, E.; Salamon, P.; Fikó-Lászlo, S.; Kovács, K.; Koka, A.; András-Korodi, M.; Albert, B. Development of a Mammalian Cell Line for Stable Production of Anti-PD-1. Antibodies 2024, 13, 82. [Google Scholar] [CrossRef] [PubMed]
- Bochkov, Y.A.; Palmenberg, A.C. Translational efficiency of EMCV IRES in bicistronic vectors is dependent upon IRES sequence and gene location. Biotechniques 2006, 41, 283–292. [Google Scholar] [CrossRef]
- Wang, X.; Marchisio, M.A. Synthetic polycistronic sequences in eukaryotes. Synth. Syst. Biotechnol. 2021, 6, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Van der Weken, H.; Cox, E.; Devriendt, B. Rapid production of a chimeric antibody-antigen fusion protein based on 2A-peptide cleavage and green fluorescent protein expression in CHO cells. MAbs 2019, 11, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.; Buck, L.; Daris, K.; Welborn, B.; Luo, Q.; Wypych, J. Investigation of the free heavy chain homodimers of a monoclonal antibody. Biotechnol. Prog. 2018, 34, 738–745. [Google Scholar] [CrossRef]
- Borgoyakova, M.B.; Karpenko, L.I.; Rudometov, A.P.; Shanshin, D.V.; Ilyichev, A.A. Immunogenic properties of the DNA construct encoding the receptor-binding domain of the SARS-CoV-2 spike protein. Mol. Biol. 2021, 55, 987–998. [Google Scholar] [CrossRef] [PubMed]
- Ha, T.K.; Kim, D.; Kim, C.L.; Grav, L.M.; Lee, G.M. Factors affecting the quality of therapeutic proteins in recombinant Chinese hamster ovary cell culture. Biotechnol. Adv. 2022, 54, 107831. [Google Scholar] [CrossRef] [PubMed]
- Hussain, H.; Patel, T.; Ozanne, A.M.; Vito, D.; Ellis, M.; Smales, C.M. A comparative analysis of recombinant Fab and full-length antibody production in Chinese hamster ovary cells. Biotechnol. Bioeng. 2021, 118, 4815–4828. [Google Scholar] [CrossRef]
- Choa JB, D.; Sasaki, T.; Kajiura, H.; Ikuta, K.; Fujiyama, K.; Misaki, R. Effects of various disaccharide adaptations on recombinant IgA1 production in CHO-K1 suspension cells. Cytotechnology 2023, 75, 219–229. [Google Scholar] [CrossRef]
- Pirkalkhoran, S.; Grabowska, W.R.; Kashkoli, H.H.; Mirhassani, R.; Guiliano, D.; Dolphin, C.; Khalili, H. Bioengineering of Antibody Fragments: Challenges and Opportunities. Bioengineering 2023, 10, 122. [Google Scholar] [CrossRef]
- Ochmann, M.T.; Ivics, Z. Jumping ahead with sleeping beauty: Mechanistic insights into cut-and-paste transposition. Viruses 2021, 13, 76. [Google Scholar] [CrossRef]
- Ruf, S.; Symmons, O.; Uslu, V.V.; Dolle, D.; Hot, C.; Ettwiller, L.; Spitz, F. Large-scale analysis of the regulatory architecture of the mouse genome with a transposon-associated sensor. Nat. Genet. 2011, 43, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Ivics, Z.; Izsvák, Z.; Medrano, G.; Chapman, K.M.; Hamra, F.K. Sleeping Beauty transposon mutagenesis in rat spermatogonial stem cells. Nat. Protoc. 2011, 6, 1521–1535. [Google Scholar] [CrossRef] [PubMed]
- Protopopova, Y.V.; Khusainova, A.D.; Konovalova, S.N.; Loktev, V.B. Preparation and study of properties of anti-idiotypic antibodies, carrying hemagglutinating paratopes of tick-borne encephalitis virus on their surface. Vopr. Virusol. 1996, 41, 50–53. Available online: https://europepmc.org/article/med/8686271 (accessed on 23 May 2024). [PubMed]
- Frenzel, A.; Hust, M.; Schirrmann, T. Expression of recombinant antibodies. Front. Immunol. 2013, 4, 217. [Google Scholar] [CrossRef] [PubMed]
- Shanshin, D.V.; Borisevich, S.S.; Bondar, A.A.; Porozov, Y.B.; Shcherbakov, D.N. Can Modern Molecular Modeling Methods Help Find the Area of Potential Vulnerability of Flaviviruses? Int. J. Mol. Sci. 2022, 23, 7721. [Google Scholar] [CrossRef]
- Ormundo, L.F.; Barreto, C.T.; Tsuruta, L.R. Development of Therapeutic Monoclonal Antibodies for Emerging Arbovirus Infections. Viruses 2023, 15, 2177. [Google Scholar] [CrossRef] [PubMed]
- Kandari, D.; Bhatnagar, R. Antibody engineering and its therapeutic applications. Int. Rev. Immunol. 2023, 42, 156–183. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nesmeyanova, V.S.; Shanshin, D.V.; Murashkin, D.E.; Shcherbakov, D.N. Construction of an Integration Vector with a Chimeric Signal Peptide for the Expression of Monoclonal Antibodies in Mammalian Cells. Curr. Issues Mol. Biol. 2024, 46, 14464-14475. https://doi.org/10.3390/cimb46120868
Nesmeyanova VS, Shanshin DV, Murashkin DE, Shcherbakov DN. Construction of an Integration Vector with a Chimeric Signal Peptide for the Expression of Monoclonal Antibodies in Mammalian Cells. Current Issues in Molecular Biology. 2024; 46(12):14464-14475. https://doi.org/10.3390/cimb46120868
Chicago/Turabian StyleNesmeyanova, Valentina S., Daniil V. Shanshin, Denis E. Murashkin, and Dmitriy N. Shcherbakov. 2024. "Construction of an Integration Vector with a Chimeric Signal Peptide for the Expression of Monoclonal Antibodies in Mammalian Cells" Current Issues in Molecular Biology 46, no. 12: 14464-14475. https://doi.org/10.3390/cimb46120868
APA StyleNesmeyanova, V. S., Shanshin, D. V., Murashkin, D. E., & Shcherbakov, D. N. (2024). Construction of an Integration Vector with a Chimeric Signal Peptide for the Expression of Monoclonal Antibodies in Mammalian Cells. Current Issues in Molecular Biology, 46(12), 14464-14475. https://doi.org/10.3390/cimb46120868