Posterior Polar Annular Choroidal Dystrophy: Genetic Insights and Differential Diagnosis in Inherited Retinal Diseases
Abstract
:1. Introduction
2. PPACD Diagnostic Approaches
2.1. Fundus Examination
2.2. Fundus Autofluorescence
2.3. Fluorescein Angiography
2.4. Optical Coherence Tomography
2.5. Optical Coherence Tomography Angiography
2.6. Perimetric Testing
2.7. Full-Field Electroretinography
2.8. Laser Speckle Flowgraphy
3. Genetic Basis of PPACD
4. Differential Diagnoses and Their Genetic Patterns
4.1. Diagnostic Differences between Retinitis Pigmentosa and PPACD
4.2. Diagnostic Differences between Choroideremia and PPACD
4.3. Diagnostic Differences between Gyrate Atrophy of the Choroid and Retina and PPACD
4.4. Diagnostic Differences between Central Areolar Choroidal Dystrophy and PPACD
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gala, J.M.; Narayanan, R. Posterior Polar Annular Choroidal Dystrophy. BMJ Case Rep. 2019, 12, e230495. [Google Scholar] [CrossRef]
- Sone, R.; Noda, K.; Hirooka, K.; Saito, M.; Ishida, S. Insidious Progression of Atrophic Lesions in a Case of Posterior Polar Annular Choroidal Dystrophy. Am. J. Ophthalmol. Case Rep. 2022, 28, 101708. [Google Scholar] [CrossRef]
- Tabbaa, T.; Daroszewski, D.; Sobol, W. Posterior Polar Hemispheric Choroidal Dystrophy: Case Report and Presentation of Genetic Screening. J. VitreoRetinal Dis. 2022, 6, 485–490. [Google Scholar] [CrossRef]
- Yannuzzi, L.A.; Bailey Freund, K.; Sarraf, D.; Mieler, W.F. The Retinal Atlas, 2nd ed.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Del Valle-Nava, F.; Sánchez-Ramos, J.; Hernández-Vázquez, A.; Gonzalez-Saldivar, G.; Ramirez-Estudillo, A. Posterior Polar Annular Choroidal Dystrophy Association with Cystoid Macular Edema. Clin. Case Rep. 2019, 7, 389–390. [Google Scholar] [CrossRef]
- Narayanan, R. Posterior Polar Annular and Hemispheric Choroidal and Retinal Dystrophy: Optical Coherence Tomographic Angiography Description of a Rare Case. Indian J. Ophthalmol. 2018, 66, 1874–1876. [Google Scholar] [CrossRef]
- Forte, R.; Aptel, F.; Feldmann, A.; Chiquet, C. Multimodal Imaging of Posterior Polar Annular Choroidal Dystrophy. Retin. Cases Brief Rep. 2018, 12, 29–32. [Google Scholar] [CrossRef]
- Bommakanti, N.; Besirli, C.G.; Zhao, P.Y. Retinal Neovascularization in Posterior Polar Annular Choroidal Dystrophy. JAMA Ophthalmol. 2023, 141, 102–104. [Google Scholar] [CrossRef]
- Azzolini, C.; Pagani, I.S.; Pirrone, C.; Borroni, D.; Donati, S.; Al Oum, M.; Pigni, D.; Chiaravalli, A.M.; Vinciguerra, R.; Simonelli, F.; et al. Expression of VEGF-A, Otx Homeobox and P53 Family Genes in Proliferative Vitreoretinopathy. Mediat. Inflamm. 2013, 2013, 857380. [Google Scholar] [CrossRef]
- Lenis, T.L.; Klufas, M.A.; Randhawa, S.; Sharma, M.; Sarraf, D. Posterior Polar Annular Choroidal Dystrophy: A Case Series. Retin. Cases Brief Rep. 2017, 11 (Suppl. S1), S24–S27. [Google Scholar] [CrossRef]
- Tsang, S.H.; Sharma, T. Fundus Autofluorescence. Adv. Exp. Med. Biol. 2018, 1085, 15–16. [Google Scholar] [CrossRef]
- Drexler, W.; Liu, M.; Kumar, A.; Kamali, T.; Unterhuber, A.; Leitgeb, R.A. Optical Coherence Tomography Today: Speed, Contrast, and Multimodality. J. Biomed. Opt. 2014, 19, 071412. [Google Scholar] [CrossRef]
- Huang, Y.; Lan, J.; Zang, X.; Huan, Y.; Xie, L. Optical Coherence Tomography-Guided Intracameral Air Injection for Treatment of Extensive Descemet’s Membrane Detachment. Br. J. Ophthalmol. 2012, 96, 1441–1443. [Google Scholar] [CrossRef]
- Gregori, N.Z.; Lam, B.L.; Gregori, G.; Ranganathan, S.; Stone, E.M.; Morante, A.; Abukhalil, F.; Aroucha, P.R. Wide-Field Spectral-Domain Optical Coherence Tomography in Patients and Carriers of X-Linked Retinoschisis. Ophthalmology 2013, 120, 169–174. [Google Scholar] [CrossRef]
- Lu, Y.; Zhou, H.; Zhou, X.; Chen, Y.; Wang, R.K. Correlation Between Laser Speckle Flowgraphy and OCT-Derived Retinal and Choroidal Metrics in Healthy Human Eye. Transl. Vis. Sci. Technol. 2022, 11, 15. [Google Scholar] [CrossRef]
- Satam, H.; Joshi, K.; Mangrolia, U.; Waghoo, S.; Zaidi, G.; Rawool, S.; Thakare, R.P.; Banday, S.; Mishra, A.K.; Das, G.; et al. Next-Generation Sequencing Technology: Current Trends and Advancements. Biology 2023, 12, 997. [Google Scholar] [CrossRef]
- Sharon, D.; Blackshaw, S.; Cepko, C.L.; Dryja, T.P. Profile of the Genes Expressed in the Human Peripheral Retina, Macula, and Retinal Pigment Epithelium Determined through Serial Analysis of Gene Expression (SAGE). Proc. Natl. Acad. Sci. USA 2002, 99, 315–320. [Google Scholar] [CrossRef]
- Schorderet, D.F.; Escher, P. NR2E3 Mutations in Enhanced S-Cone Sensitivity Syndrome (ESCS), Goldmann-Favre Syndrome (GFS), Clumped Pigmentary Retinal Degeneration (CPRD), and Retinitis Pigmentosa (RP). Hum. Mutat. 2009, 30, 1475–1485. [Google Scholar] [CrossRef]
- Hamel, C. Retinitis Pigmentosa. Orphanet J. Rare Dis. 2006, 1, 40. [Google Scholar] [CrossRef]
- Connor, B.; Titialii-Torres, K.; Rockenhaus, A.E.; Passamonte, S.; Morris, A.C.; Lee, Y.-S. Biliverdin Regulates NR2E3 and Zebrafish Retinal Photoreceptor Development. Sci. Rep. 2022, 12, 7310. [Google Scholar] [CrossRef]
- Toms, M.; Ward, N.; Moosajee, M. Nuclear Receptor Subfamily 2 Group E Member 3 (NR2E3): Role in Retinal Development and Disease. Genes 2023, 14, 1325. [Google Scholar] [CrossRef]
- Haider, N.B.; Mollema, N.; Gaule, M.; Yuan, Y.; Sachs, A.J.; Nystuen, A.M.; Naggert, J.K.; Nishina, P.M. Nr2e3-Directed Transcriptional Regulation of Genes Involved in Photoreceptor Development and Cell-Type Specific Phototransduction. Exp. Eye Res. 2009, 89, 365–372. [Google Scholar] [CrossRef]
- Zufiaurre-Seijo, M.; García-Arumí, J.; Duarri, A. Clinical and Molecular Aspects of C2orf71/PCARE in Retinal Diseases. Int. J. Mol. Sci. 2023, 24, 10670. [Google Scholar] [CrossRef]
- Koenekoop, R.K. RPGRIP1 Is Mutated in Leber Congenital Amaurosis: A Mini-Review. Ophthalmic Genet. 2005, 26, 175–179. [Google Scholar] [CrossRef]
- Zou, G.; Zhang, T.; Cheng, X.; Igelman, A.D.; Wang, J.; Qian, X.; Fu, S.; Wang, K.; Koenekoop, R.K.; Fishman, G.A.; et al. Noncoding Mutation in RPGRIP1 Contributes to Inherited Retinal Degenerations. Mol. Vis. 2021, 27, 95–106. [Google Scholar]
- Roepman, R.; Bernoud-Hubac, N.; Schick, D.E.; Maugeri, A.; Berger, W.; Ropers, H.H.; Cremers, F.P.; Ferreira, P.A. The Retinitis Pigmentosa GTPase Regulator (RPGR) Interacts with Novel Transport-like Proteins in the Outer Segments of Rod Photoreceptors. Hum. Mol. Genet. 2000, 9, 2095–2105. [Google Scholar] [CrossRef]
- Suzuki, T.; Fujimaki, T.; Yanagawa, A.; Arai, E.; Fujiki, K.; Wada, Y.; Murakami, A. A Novel Exon 17 Deletion Mutation of RPGRIP1 Gene in Two Siblings with Leber Congenital Amaurosis. Jpn. J. Ophthalmol. 2014, 58, 528–535. [Google Scholar] [CrossRef]
- Cevik, S.; Wangtiraumnuay, N.; Van Schelvergem, K.; Tsukikawa, M.; Capasso, J.; Biswas, S.B.; Bodt, B.; Levin, A.V.; Biswas-Fiss, E. Protein Modeling and in Silico Analysis to Assess Pathogenicity of ABCA4 Variants in Patients with Inherited Retinal Disease. Mol. Vis. 2023, 29, 217–233. [Google Scholar]
- Cremers, F.P.M.; Lee, W.; Collin, R.W.J.; Allikmets, R. Clinical Spectrum, Genetic Complexity and Therapeutic Approaches for Retinal Disease Caused by ABCA4 Mutations. Prog. Retin. Eye Res. 2020, 79, 100861. [Google Scholar] [CrossRef]
- De Angeli, P.; Flores-Tufiño, A.; Stingl, K.; Kühlewein, L.; Roschi, E.; Wissinger, B.; Kohl, S. Splicing Defects and CRISPR-Cas9 Correction in Isogenic Homozygous Photoreceptor Precursors Harboring Clustered Deep-Intronic ABCA4 Variants. Mol. Ther. Nucleic Acids 2024, 35, 102113. [Google Scholar] [CrossRef]
- Fujinami, K.; Zernant, J.; Chana, R.K.; Wright, G.A.; Tsunoda, K.; Ozawa, Y.; Tsubota, K.; Webster, A.R.; Moore, A.T.; Allikmets, R.; et al. ABCA4 Gene Screening by Next-Generation Sequencing in a British Cohort. Investig. Ophthalmol. Vis. Sci. 2013, 54, 6662–6674. [Google Scholar] [CrossRef]
- Michaelides, M.; Chen, L.L.; Brantley, M.A.; Andorf, J.L.; Isaak, E.M.; Jenkins, S.A.; Holder, G.E.; Bird, A.C.; Stone, E.M.; Webster, A.R. ABCA4 Mutations and Discordant ABCA4 Alleles in Patients and Siblings with Bull’s-Eye Maculopathy. Br. J. Ophthalmol. 2007, 91, 1650–1655. [Google Scholar] [CrossRef] [PubMed]
- Molday, R.S. Insights into the Molecular Properties of ABCA4 and Its Role in the Visual Cycle and Stargardt Disease. Prog. Mol. Biol. Transl. Sci. 2015, 134, 415–431. [Google Scholar] [PubMed]
- Singuri, S.; DeBenedictis, M.J.; Traboulsi, E.I.; Yuan, A.; Schur, R.M. BEST1 Variant Associated with an Atypical Macular and Peripheral Retinal Phenotype. Retin. Cases Brief Rep. 2023. [Google Scholar] [CrossRef] [PubMed]
- Mulders, T.; van der Zanden, L.; Klevering, B.J.; Hoyng, C.; Theelen, T. Structure-Function Correlation of Retinal Photoreceptors in PRPH2-Associated Central Areolar Choroidal Dystrophy Patients Assessed by High-Resolution Scanning Laser Imaging and Microperimetry. Acta Ophthalmol. 2023. Early View. [Google Scholar] [CrossRef]
- Yusuf, I.H.; Garrett, A.M.; MacLaren, R.E.; Charbel Issa, P. Retinal Cadherins and the Retinal Cadherinopathies: Current Concepts and Future Directions. Prog. Retin. Eye Res. 2022, 90, 101038. [Google Scholar] [CrossRef] [PubMed]
- Al Zubi, K.; Mwafi, N.; Alrawashdeh, H.M.; Al Sarireh, F.; Somkuwar, A.; Abdulmannan, D.M. The First Reported Case of CDH3-Related Hypotrichosis with Juvenile Macular Dystrophy from Jordan: A Case Report. Ophthalmic Genet. 2022, 43, 420–424. [Google Scholar] [CrossRef]
- Lin, S.; Vermeirsch, S.; Pontikos, N.; Martin-Gutierrez, M.P.; Varela, M.D.; Malka, S.; Schiff, E.; Knight, H.; Wright, G.; Jurkute, N.; et al. Spectrum of Genetic Variants in the Commonest Genes Causing Inherited Retinal Disease in a Large Molecularly Characterised UK Cohort. Ophthalmol. Retina 2024, in press. [Google Scholar] [CrossRef] [PubMed]
- Nwagbo, U.; Bernstein, P.S. Understanding the Roles of Very-Long-Chain Polyunsaturated Fatty Acids (VLC-PUFAs) in Eye Health. Nutrients 2023, 15, 3096. [Google Scholar] [CrossRef]
- Alabdulrazzaq, F.; Alanzi, T.; Al-Balool, H.H.; Gardham, A.; Wakeling, E.; Leitch, H.G.; AlSayed, M.; Abdulrahim, M.; Aladwani, A.; Romito, A.; et al. Expanding the Allelic Spectrum of ELOVL4-Related Autosomal Recessive Neuro-Ichthyosis. Mol. Genet. Genom. Med. 2023, 11, e2256. [Google Scholar] [CrossRef]
- Gyening, Y.K.; Boris, K.; Cyril, M.; Brush, R.S.; Nassogne, M.-C.; Agbaga, M.-P. A Novel ELOVL4 Variant, L168S, Causes Early Childhood-Onset Spinocerebellar Ataxia-34 and Retinal Dysfunction: A Case Report. Acta Neuropathol. Commun. 2023, 11, 131. [Google Scholar] [CrossRef]
- Olivier, G.; Brabet, P.; Pirot, N.; Broyon, M.; Guillou, L.; Cazevieille, C.; Sar, C.; Quiles, M.; Sarzi, E.; Pequignot, M.; et al. SPACR Encoded by IMPG1 Is Essential for Photoreceptor Survival by Interplaying between the Interphotoreceptor Matrix and the Retinal Pigment Epithelium. Genes 2022, 13, 1508. [Google Scholar] [CrossRef]
- Mitchell, B.; Coulter, C.; Geldenhuys, W.J.; Rhodes, S.; Salido, E.M. Interphotoreceptor Matrix Proteoglycans IMPG1 and IMPG2 Proteolyze in the SEA Domain and Reveal Localization Mutual Dependency. Sci. Rep. 2022, 12, 15535. [Google Scholar] [CrossRef]
- Olivier, G.; Corton, M.; Intartaglia, D.; Verbakel, S.K.; Sergouniotis, P.I.; Le Meur, G.; Dhaenens, C.-M.; Naacke, H.; Avila-Fernández, A.; Hoyng, C.B.; et al. Pathogenic Variants in IMPG1 Cause Autosomal Dominant and Autosomal Recessive Retinitis Pigmentosa. J. Med. Genet. 2021, 58, 570–578. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.N.; Draper, A.; Lang, P.F.; Lewis, T.R.; Smith, A.L.; Mayerl, S.J.; Rougié, M.; Simon, J.M.; Arshavsky, V.Y.; Greenwald, S.H.; et al. Heterogeneity in the Progression of Retinal Pathologies in Mice Harboring Patient Mimicking Impg2 Mutations. Hum. Mol. Genet. 2023, ddad199. [Google Scholar] [CrossRef] [PubMed]
- Birtel, J.; Caswell, R.; De Silva, S.R.; Herrmann, P.; Rehman, S.; Lotery, A.J.; Mahroo, O.A.; Michaelides, M.; Webster, A.R.; MacLaren, R.E.; et al. IMPG2-Related Maculopathy. Am. J. Ophthalmol. 2024, 258, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Ribarich, N.; Rivolta, M.C.; Sacconi, R.; Querques, G. Novel IMPG2 Variant Causing Adult Macular Vitelliform Dystrophy: A Case Report. Eur. J. Ophthalmol. 2023. Online First. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.; Kang, S.W.; Jang, J.-H.; Kim, S.J. Genetic and Clinical Characteristics of PROM1-Related Retinal Degeneration in Korean. Sci. Rep. 2023, 13, 21877. [Google Scholar] [CrossRef] [PubMed]
- Shigesada, N.; Shikada, N.; Shirai, M.; Toriyama, M.; Higashijima, F.; Kimura, K.; Kondo, T.; Bessho, Y.; Shinozuka, T.; Sasai, N. Combination of Blockade of Endothelin Signalling and Compensation of IGF1 Expression Protects the Retina from Degeneration. Cell. Mol. Life Sci. CMLS 2024, 81, 51. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Xiong, Y.; Deng, C.; Hu, C.; Li, M.; Quan, R.; Yu, X. NDRG2 Alleviates Photoreceptor Apoptosis by Regulating the STAT3/TIMP3/MMP Pathway in Mice with Retinal Degenerative Disease. FEBS J. 2023. Early View. [Google Scholar] [CrossRef] [PubMed]
- Lähteenoja, L.; Häkli, S.; Tuupanen, S.; Kuismin, O.; Palosaari, T.; Rahikkala, E.; Falck, A. A Novel Frameshift Variant in CEP78 Associated with Nonsyndromic Retinitis Pigmentosa, and a Review of CEP78-Related Phenotypes. Ophthalmic Genet. 2022, 43, 152–158. [Google Scholar] [CrossRef]
- Boon, C.J.F.; Klevering, B.J.; Cremers, F.P.M.; Zonneveld-Vrieling, M.N.; Theelen, T.; Den Hollander, A.I.; Hoyng, C.B. Central Areolar Choroidal Dystrophy. Ophthalmology 2009, 116, 771–782. [Google Scholar] [CrossRef]
- Corral-Serrano, J.C.; Lamers, I.J.C.; van Reeuwijk, J.; Duijkers, L.; Hoogendoorn, A.D.M.; Yildirim, A.; Argyrou, N.; Ruigrok, R.A.A.; Letteboer, S.J.F.; Butcher, R.; et al. PCARE and WASF3 Regulate Ciliary F-Actin Assembly That Is Required for the Initiation of Photoreceptor Outer Segment Disk Formation. Proc. Natl. Acad. Sci. USA 2020, 117, 9922–9931. [Google Scholar] [CrossRef] [PubMed]
- Verbakel, S.K.; van Huet, R.A.C.; Boon, C.J.F.; den Hollander, A.I.; Collin, R.W.J.; Klaver, C.C.W.; Hoyng, C.B.; Roepman, R.; Klevering, B.J. Non-Syndromic Retinitis Pigmentosa. Prog. Retin. Eye Res. 2018, 66, 157–186. [Google Scholar] [CrossRef] [PubMed]
- Palma-Carvajal, F.; Salazar-Villegas, Á.; Alé-Chilet, A.; Bernal-Morales, C.; Dotti-Boada, M.; Figueroa-Vercellino, J.P.; Alforja, S. Sector Retinitis Pigmentosa. J. Fr. Ophtalmol. 2020, 43, 186–188. [Google Scholar] [CrossRef]
- Daiger, S.P.; Bowne, S.J.; Sullivan, L.S. Perspective on Genes and Mutations Causing Retinitis Pigmentosa. Arch. Ophthalmol. Chic. Ill 1960 2007, 125, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liu, S.; Li, P.; Yao, K. Retinitis Pigmentosa: Progress in Molecular Pathology and Biotherapeutical Strategies. Int. J. Mol. Sci. 2022, 23, 4883. [Google Scholar] [CrossRef]
- Gb, B. Su Alcune Forme Atipiche o Rare Di Degenerazione Retinica (Degenerazione Tappetoretiniche e Quadri Morbosi Similari). Boll. D’oculistica 1937, 16, 1159. [Google Scholar]
- Grover, S.; Fishman, G.A.; Anderson, R.J.; Tozatti, M.S.; Heckenlively, J.R.; Weleber, R.G.; Edwards, A.O.; Brown, J. Visual Acuity Impairment in Patients with Retinitis Pigmentosa at Age 45 Years or Older. Ophthalmology 1999, 106, 1780–1785. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Yadav, A.; Yadav, M.; Tanwar, M. Genetic Dissection of Non-Syndromic Retinitis Pigmentosa. Indian J. Ophthalmol. 2022, 70, 2355–2385. [Google Scholar]
- Tsang, S.H.; Sharma, T. X-Linked Choroideremia. Adv. Exp. Med. Biol. 2018, 1085, 37–42. [Google Scholar] [CrossRef]
- Cehajic Kapetanovic, J.; Barnard, A.R.; MacLaren, R.E. Molecular Therapies for Choroideremia. Genes 2019, 10, 738. [Google Scholar] [CrossRef] [PubMed]
- Brambati, M.; Borrelli, E.; Sacconi, R.; Bandello, F.; Querques, G. Choroideremia: Update on Clinical Features and Emerging Treatments. Clin. Ophthalmol. 2019, 13, 2225–2231. [Google Scholar] [CrossRef]
- Lam, B.L.; Davis, J.L.; Gregori, N.Z. Choroideremia Gene Therapy. Int. Ophthalmol. Clin. 2021, 61, 185–193. [Google Scholar] [CrossRef]
- Wilson, D.J.; Weleber, R.G.; Green, W.R. Ocular Clinicopathologic Study of Gyrate Atrophy. Am. J. Ophthalmol. 1991, 111, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Valle, D.; Kaiser-Kupfer, M.I.; Del Valle, L.A. Gyrate Atrophy of the Choroid and Retina: Deficiency of Ornithine Aminotransferase in Transformed Lymphocytes. Proc. Natl. Acad. Sci. USA 1977, 74, 5159–5161. [Google Scholar] [CrossRef]
- Tripathy, K.; Chawla, R.; Sharma, Y.R.; Gogia, V. Ultrawide Field Fluorescein Angiogram in a Family with Gyrate Atrophy and Foveoschisis. Oman J. Ophthalmol. 2016, 9, 104–106. [Google Scholar] [CrossRef]
- Simell, O.; Takki, K. Raised Plasma-Ornithine and Gyrate Atrophy of the Choroid and Retina. Lancet 1973, 1, 1031–1033. [Google Scholar] [CrossRef]
- Brody, L.C.; Mitchell, G.A.; Obie, C.; Michaud, J.; Steel, G.; Fontaine, G.; Robert, M.F.; Sipila, I.; Kaiser-Kupfer, M.; Valle, D. Ornithine Delta-Aminotransferase Mutations in Gyrate Atrophy. Allelic Heterogeneity and Functional Consequences. J. Biol. Chem. 1992, 267, 3302–3307. [Google Scholar] [CrossRef]
- Montioli, R.; Bellezza, I.; Desbats, M.A.; Borri Voltattorni, C.; Salviati, L.; Cellini, B. Deficit of Human Ornithine Aminotransferase in Gyrate Atrophy: Molecular, Cellular, and Clinical Aspects. Biochim. Biophys. Acta Proteins Proteom. 2021, 186, 140555. [Google Scholar] [CrossRef] [PubMed]
- Hayasaka, S.; Kodama, T.; Ohira, A. Retinal Risks of High-Dose Ornithine Supplements: A Review. Br. J. Nutr. 2011, 106, 801–811. [Google Scholar] [CrossRef] [PubMed]
- Noble, K.G. Central Areolar Choroidal Dystrophy. Am. J. Ophthalmol. 1977, 84, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Sorsby, A.; Crick, R.P. Central Areolar Choroidal Sclerosis. Br. J. Ophthalmol. 1953, 37, 129–139. [Google Scholar] [CrossRef]
- Ponjavic, V.; Andréasson, S.; Ehinger, B. Full-Field Electroretinograms in Patients with Central Areolar Choroidal Dystrophy. Acta Ophthalmol. 1994, 72, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Hughes, A.E.; Lotery, A.J.; Silvestri, G. Fine Localisation of the Gene for Central Areolar Choroidal Dystrophy on Chromosome 17p. J. Med. Genet. 1998, 35, 770–772. [Google Scholar] [CrossRef] [PubMed]
Imaging Modality | PPACD Appearance |
---|---|
Fundus Examination | Peripapillary chorioretinal atrophy reaches out towards the temporal vascular arcade, creating an annular pattern while leaving the foveal area unaffected asymmetricity is often found [1,2,3,5,6,10]. |
FAF | Annular pattern of hypoautofluorescence in a peripapillary distribution, extending in a concentric pattern to the temporal arcades that corresponds to the area of atrophy of the chorioretina. A perifoveal hyperautofluorescent border frequently demarcates the transition from healthy to atrophic retinal tissue [1,2,3,5,10]. |
FA | Window defect with visualization of the underlying choroidal vasculature attributable to an absence of perfusion in the retinal and choroidal vessels, along with staining in the late frames in a concentric configuration surrounding the optic disc and central macula. Areas of late leakage surrounding the fovea in one case [3]. |
SD-OCT | Thinning of the outer retina and choriocapillaris in regions exhibiting atrophic changes. Additionally, disturbances in the organization of the outer retinal structures and alterations in the EZ have been observed [3]. Involvement of the parafovea with parafoveal cystic intraretinal fluid was reported in one case [3]. Only one case [5] presented cystoid macular edema and outer retinal atrophy leaving the subfoveal area unaffected. |
SS-OCT | Physiological foveal and subfoveal choroid, with marked thinning of the retina with complete disorganization of retinal layers in the atrophic chorioretinal area. In the atrophic regions, there is typically a notable decrease in the thickness of the choroid, characterized by the absence of Sattler’s layer and diminished choroidal vascularity [1,2,6]. |
OCTA | In the context of retinal atrophy, imaging often reveals the preservation of normal vascularization within the foveal and subfoveal choroidal regions. Conversely, there is a notable diminution in the depth of the capillary plexus, along with an evident depletion of the choriocapillaris corresponding to the atrophic zones observed in both eyes [5,6]. |
Perimetric Testing | Two cases [2,3] showed superior arcuate scotomas in botheyes. In the two cases reported by Lenis and colleagues, the authors reported enlarged blind spots in perimetric testing correlating with the pattern of peripapillary atrophy [10]. In the case reported by Narayanan and colleagues in 2019, perimetric testing demonstrated generalized depressed points, predominantly in the pericentral area [1]. |
ERG | Predominately depressed cone responses with normal rod responses, and not only in the atrophy region. In the case reported by Narayanan and colleagues in 2019, each eye exhibited a diminished response in both scotopic and photopic a-wave and b-wave amplitudes, alongside a decrease in the 30 Hz flicker response and oscillatory potentials, coupled with a prolongation of implicit times [1]. Sone and colleagues reported a case of mild reduction of a-wave amplitudes in scotopic and combined rod–cone responses in both eyes. |
LSFG | LSFG was conducted in only one case and it showed diminished warmth in the coloration at the posterior pole in both eyes [2]. |
Gene | Biological Role | Associated Retinal Processes | Chromosomal Location |
---|---|---|---|
ABCA4 | ATP-binding cassette transporter [28,29,30,31,32,33] | Protein involved in the visual cycle of photoreceptors [28,29,30,31,32,33] | 1p22.1 [28,29,32] |
BEST1 | Integral membrane protein [34] | Involved in ion transport across RPE [34] | 11q13 [34] |
PRPH2 | Cell-surface protein [35] | Plays a role in the visual phototransduction process and in the structural integrity of photoreceptor outer segments [35] | 6p21.1 [35] |
CDH3 | Cell–cell adhesion glycoprotein [36,37] | Cadherin-related protein, may play a role in cell adhesion [36,37] | 16q22.1 [36,37] |
EFEMP1 | Extracellular matrix protein [38] | Associated with the extracellular matrix and may influence eye development [38] | 2p16.1 [38] |
ELOVL4 | Membrane-bound protein [39,40] | Involved in the elongation of very long-chain fatty acids [39,40,41] | 6q14.1 [39,40,41] |
IMPG1 | Matrix proteoglycan [42,43,44] | Plays a role in the homeostasis and function of the retinal pigment epithelium [42,43,44] | 6q14.2 [42,43,44] |
IMPG2 | Matrix proteoglycan [45,46,47] | Involved in the structural integrity of the photoreceptor outer segment [45,46,47] | 3q12.3 [45,46,47] |
PROM1 | Transmembrane protein [48,49] | Involved in photoreceptor disk morphogenesis [48,49] | 4p15.32 [48,49] |
TIMP3 | Metallopeptidase inhibitor [50] | Involved in ocular development [50] | 22q12.3 [50] |
CCD2D2A | Binding domain protein [3] | Uncertain significance, possibly related to cilia structure and function [3] | 4q21.1 [3] |
CEP78 | Centrosomal protein [51] | May be involved in ciliary functions [51] | 9q21.13 [51] |
NR2E3 | Nuclear receptor [3,21,22,52] | Key transcription factor for photoreceptor development [3,21,22,52] | 15q23 [21,22] |
PCARE | Ciliary and actin-associated protein [3,23,53] | Probably associated with the primary cilium of the outer segment [3,23,53] | 2p23.2 [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruggeri, F.; Ciancimino, C.; Guillot, A.; Fumi, D.; Tizio, F.D.; Fragiotta, S.; Abdolrahimzadeh, S. Posterior Polar Annular Choroidal Dystrophy: Genetic Insights and Differential Diagnosis in Inherited Retinal Diseases. Curr. Issues Mol. Biol. 2024, 46, 1383-1397. https://doi.org/10.3390/cimb46020089
Ruggeri F, Ciancimino C, Guillot A, Fumi D, Tizio FD, Fragiotta S, Abdolrahimzadeh S. Posterior Polar Annular Choroidal Dystrophy: Genetic Insights and Differential Diagnosis in Inherited Retinal Diseases. Current Issues in Molecular Biology. 2024; 46(2):1383-1397. https://doi.org/10.3390/cimb46020089
Chicago/Turabian StyleRuggeri, Francesco, Chiara Ciancimino, Antonio Guillot, Daniele Fumi, Federico Di Tizio, Serena Fragiotta, and Solmaz Abdolrahimzadeh. 2024. "Posterior Polar Annular Choroidal Dystrophy: Genetic Insights and Differential Diagnosis in Inherited Retinal Diseases" Current Issues in Molecular Biology 46, no. 2: 1383-1397. https://doi.org/10.3390/cimb46020089
APA StyleRuggeri, F., Ciancimino, C., Guillot, A., Fumi, D., Tizio, F. D., Fragiotta, S., & Abdolrahimzadeh, S. (2024). Posterior Polar Annular Choroidal Dystrophy: Genetic Insights and Differential Diagnosis in Inherited Retinal Diseases. Current Issues in Molecular Biology, 46(2), 1383-1397. https://doi.org/10.3390/cimb46020089