Next Article in Journal
ALA Promotes Sucrose Accumulation in Early Peach Fruit by Regulating SPS Activity
Next Article in Special Issue
Aquaporin Modulation by Cations, a Review
Previous Article in Journal
Injection of Adipose-Derived Mesenchymal Stem/Stromal Cells Suppresses Muscle Atrophy Markers and Adipogenic Markers in a Rat Fatty Muscle Degeneration Model
Previous Article in Special Issue
Targeting β-Cell Plasticity: A Promising Approach for Diabetes Treatment
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Capsaicin: Emerging Pharmacological and Therapeutic Insights

by
Elena Madalina Petran
1,2,†,
Argyrios Periferakis
3,4,5,†,
Lamprini Troumpata
3,
Aristodemos-Theodoros Periferakis
3,5,
Andreea-Elena Scheau
6,
Ioana Anca Badarau
3,
Konstantinos Periferakis
4,7,
Ana Caruntu
8,9,
Ilinca Savulescu-Fiedler
10,11,*,
Romina-Marina Sima
12,13,
Daniela Calina
14,
Carolina Constantin
15,16,
Monica Neagu
15,16,17,
Constantin Caruntu
3,18 and
Cristian Scheau
3,19,*
1
Department of Biochemistry, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
2
Department of Toxicology, Grigore Alexandrescu Emergency Children’s Hospital, 011743 Bucharest, Romania
3
Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
4
Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
5
Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
6
Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
7
Pan-Hellenic Organization of Educational Programs (P.O.E.P), 17236 Athens, Greece
8
Department of Oral and Maxillofacial Surgery, The “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
9
Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
10
Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
11
Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
12
Department of Obstetrics and Gynecology, The “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
13
The “Bucur” Maternity, “Saint John” Hospital, 040294 Bucharest, Romania
14
Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
15
Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
16
Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
17
Faculty of Biology, University of Bucharest, 76201 Bucharest, Romania
18
Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
19
Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
*
Authors to whom correspondence should be addressed.
These authors contributed equally to this work.
Curr. Issues Mol. Biol. 2024, 46(8), 7895-7943; https://doi.org/10.3390/cimb46080468
Submission received: 16 June 2024 / Revised: 19 July 2024 / Accepted: 22 July 2024 / Published: 24 July 2024
(This article belongs to the Special Issue Latest Review Papers in Molecular Biology 2024)

Abstract

:
Capsaicin, the most prominent pungent compound of chilli peppers, has been used in traditional medicine systems for centuries; it already has a number of established clinical and industrial applications. Capsaicin is known to act through the TRPV1 receptor, which exists in various tissues; capsaicin is hepatically metabolised, having a half-life correlated with the method of application. Research on various applications of capsaicin in different formulations is still ongoing. Thus, local capsaicin applications have a pronounced anti-inflammatory effect, while systemic applications have a multitude of different effects because their increased lipophilic character ensures their augmented bioavailability. Furthermore, various teams have documented capsaicin’s anti-cancer effects, proven both in vivo and in vitro designs. A notable constraint in the therapeutic effects of capsaicin is its increased toxicity, especially in sensitive tissues. Regarding the traditional applications of capsaicin, apart from all the effects recorded as medicinal effects, the application of capsaicin in acupuncture points has been demonstrated to be effective and the combination of acupuncture and capsaicin warrants further research. Finally, capsaicin has demonstrated antimicrobial effects, which can supplement its anti-inflammatory and anti-carcinogenic actions.

1. Introduction

The most prominent pungent principle in the hot peppers (Capsicum annuum) of the genus Capsicum [1] is capsaicin (8-methyl-N-vanillyl-6-nonenamide), an organic nitrogenous compound within the lipid group [2]. It must be noted that the name capsaicin was originally used to refer to a multitude of substances originally isolated from C. oleoresin; these compounds are now known as capsaicinoids [3], a distinction made after the 1960s [4].
Interestingly, it has been discovered that the cultivation of chilli peppers began around the 5th millennium BC [5], thus rendering them amongst the oldest cultivated plants; their origin is estimated to be somewhere in Bolivia [6]. Chilli peppers came to Europe only after the discovery of the New World and the subsequent Columbian Exchange, which had far-reaching consequences [7]; this is hardly surprising as numerous foodstuffs followed this historical process [8,9,10]. Subsequently, chilli peppers were swiftly adopted by many cultures and, as such, are ingredients in many local and traditional dishes [11]. It is believed that the synthesis of capsaicin within the plant is part of a defence mechanism developed against consumption by herbivores and micro-organism infestations [12]; however, not all chillies are pungent [13].
Extracted initially as an impure formulation by C.F. Bucholz (1770–1818), it was termed “capsicin” [14,15]. The original compound, isolated almost completely in 1876 by J.C. Thresh (1850–1932) [16,17,18], was a colourless substance of a crystalline structure—though purified in the 1870s, the first description of its structure is recorded in 1919 [19]—this is not surprising given that the complete isolation of the compound was achieved only in 1898 by K. Micko [20,21]. Based on the original isolation of capsaicin and the identification of its chemical and physical properties, capsaicinoids, of which capsaicin is a member, are defined as chemical compounds which have similar structures and properties as capsaicin [22].
Regarding capsaicin in particular, in its pure form, it is a solid, colourless, hydrophobic, highly volatile and highly pungent substance [23]; if heated to decomposition (80–140 °C), the fumes emitted are toxic nitrogen oxides [24]. Its chemical formula is C18H27NO3 [25]. Capsaicin naturally occurs in its trans form, although a cis-isomer also exists [26].
The biosynthetic path of capsaicin, as described in research [27], involves a chemical reaction between vanillylamine and 7-methyloct-5-ene-1-carboxylic acid chloride; this reaction takes place in the fleshy parts of the fruits. In the seeds of these fruits, no capsaicin is produced; however, the white part of their inner wall contains the highest capsaicin concentration, and it is where the seeds are attached [26]. It is interesting to note that under stress conditions, the capsaicin production of the plant increases [28,29]. Currently, artificial synthesis of capsaicin is possible using a number of different methods [30]. The first artificial synthesis of capsaicin was recorded in 1930 [31]; a number of methods have been developed lately to enhance its production [32,33,34,35], given its high demand for research and applications.
The most oft-used scale to measure capsaicin’s, or indeed any other compound’s, pungency is the Scoville Heat Unit (SHU) scale, proposed in the early 1990s [36]; this is based on the subjective pungency perception of people consuming pungent substances and foods. It is a linear scale, and it can exceed even 106 SHU for the hottest peppers containing the highest amounts of capsaicinoids [37].
Due to its properties, capsaicin has a number of already established clinical and industrial uses (Table 1), while a number of novel clinical applications are under discussion. Outside of medical applications, the very potent irritative effect of capsaicin on mucosae [38] means that it constitutes an important component in pepper spray products [39,40,41,42].
In this review, we will present a comprehensive analysis of the pharmacodynamics and pharmacokinetics of capsaicin and elaborate on its pharmacotoxicity. Given that our study focuses on the pharmacological properties of capsaicin, the most prominent local, systemic and anticarcinogenic applications of capsaicin will be presented in detail. The applications of capsaicin in traditional medicine will also be addressed, and current evidence of the most promising avenues of future research will be reported.

2. Materials and Methods

This review was conducted by systematically searching major electronic databases, including PubMed, Scopus, and Web of Science. The search strategy was developed using a combination of Medical Subject Headings (MeSH) and keywords. MeSH terms included “Capsaicin”, “Biochemical Properties”, “Therapeutic Applications”, and “Pharmacology”. Keywords related to these terms, such as “pain management”, “analgesic effect”, and “TRPV1 receptor”, were also used to ensure comprehensive coverage.
Inclusion Criteria: Peer-reviewed articles and studies focused on the biochemical properties, therapeutic applications, or pharmacological insights of capsaicin.
Exclusion Criteria: Studies not specifically addressing capsaicin, non-peer-reviewed literature, such as abstracts, conference proceedings, and grey literature.
The search strategy aimed to capture a wide array of relevant studies to provide an updated and comprehensive overview of capsaicin. Each database was searched using tailored strategies to maximise the retrieval of pertinent studies. The selection process involved screening titles and abstracts, followed by a full-text review to ascertain eligibility based on the predefined inclusion and exclusion criteria.

3. Pharmacokinetics and Pharmacodynamics of Capsaicin

Being liposoluble, capsaicin is well absorbed orally, as well as at the digestive tract level; internal administration means that it will also reach systemic circulation, while systemic administration itself is also possible [76]. The absorption of capsaicin takes place at the level of the stomach and the intestine, varying between 50% and 90%; at any rate, it is invariably a passive process [77]. The intestinal epithelial cells can metabolise a small percentage of the absorbed capsaicin [78]. Despite its lipophilicity, which correlates with good skin absorption [79], capsaicin does not reach sufficiently high levels in the plasma following local or transdermal administration to exert its effects systemically [80].
Following its internal (oral) administration, capsaicin is hepatically metabolised [78], with the small aforementioned exception. Based on in vitro studies, it has been established that, following its rapid metabolisation, the three most important metabolites are 16-hydroxycapsaicin, 17-hydroxycapsaicin, and 16,17-hydroxycapsaicin; vanillin is a minor metabolite [81,82]. Based on a subsequent study [83], another metabolite of capsaicin was identified, which corresponds to a compound occurring after phase I demethylation and dehydrogenation. A glycine and a glutathione conjugate were also identified. At any rate, a small percentage of capsaicin is fecally excreted, while most of the elimination is renal for the glucuronide metabolites of capsaicin [84].
While it may be assumed that cytochrome P450 enzymes are, most probably, involved in capsaicin metabolism [85,86], in human skin cell studies, the biotransformation process has been found to be slow, and most of the administered capsaicin did not undergo any changes [87]—this last fact has important implications for medicinal capsaicin applications. The half-life of capsaicin in the human body was determined to be 25 min [87]; conversely, the local application of a 3% capsaicin solution yielded a value of 24 h [88,89]. More recent research [90] has identified a novel metabolic pathway in the human body, resulting in macrocyclic diene and imide metabolites.
The first physiological action of capsaicin is observed when it binds to the TRPV1 (transient receptor potential cation channel subfamily V member 1) [91]; capsaicin is a potent TRPV1 receptor agonist [92]. Such is the physiological importance of this receptor, and of temperature and mechanically activated channels in general, that research on them resulted in the awarding of the 2021 Nobel Prize in Physiology or Medicine to David Julius and Ardem Patapoutian [93,94,95] based on their previous research (e.g., [96,97,98,99,100,101]).
This receptor, which is also called capsaicin or vanilloid receptor 1 [102], can be activated, apart from its agonists, by a temperature higher than 43 °C and a pH lower than 5.2. Some examples of endogenous agonists are bradykinin and prostaglandins [103]. The receptor function is associated either with protein kinase A or protein kinase C [104,105]. The activation of this receptor enables it to exert its modulatory activity; its principal role is body temperature regulation [106,107]. The heat perception properties of TRPV1 have also been proposed by Tominaga et al. [108] who have also noted that TRPV1 is instrumental in peripheral nociception. The nerve signals resulting from its activation reach all up to the spinal cord and eventually the brain.
TRPV1 was identified in the central nervous system as well as in the sensory neurons of the dorsal root ganglion [109]. At the level of the cardiovascular system, it can also be found in vascular smooth muscle cells and endothelial cells [110]; of course, neural TRPV1 activation will also have cardiovascular-related effects [111]. It must be noted that TRPV1 does not seem to be expressed in cardiomyocytes [112], but there is a report indicating that it is possibly expressed in the nerve fibres of the epicardium [113]. At the level of the respiratory system, TRPV1 is found in the airway epithelial cells and in the T cells of the upper and lower airways [114]; interestingly, the expression of TRPV1 in the respiratory system seems to vary in different pathological situations [115,116]. At the level of the gastrointestinal tract (GIT), TRPV1 can be found in the submucosal nerve plexus, myenteric nerve plexus, gastrointestinal mucosal cells, parietal and antral G cells [117].
At the level of the integumentary system, TRPV1 can be found in a number of different cell types, namely unmyelinated type C and thin myelinated Aδ sensory nerve fibres, keratinocytes, sebocytes, dermal blood vessels, mast cells, fibroblasts, hair follicles, and vascular smooth muscle cells [118,119,120]. In the eyes, TRPV1 is present in corneal cells [121] and retinal ganglion cells [122].
Capsaicin induces a variety of TRPV1-mediated sensations with different intensities, from warming and tingling up to burning [123,124]. Another aspect that must be considered is that capsaicin-induced activation of TRPV1 is more persistent compared to the effect of other natural agonists. In fact, capsaicin is a more potent agonist compared to any endogenous TRPV1 agonists—which have been analysed in detail in recent studies [125]—and, although being the most characteristic exogenous TRPV1 agonist [126], there are some more potent such agonists, like resiniferatoxin [127,128] and a number of recently researched compounds [129]. The capsaicin-induced activation of TRPV1 is associated, at least in a number of cases, with a relative desensitisation [130].
Capsaicin exerts a host of different effects at cellular [131,132,133,134,135] and subcellular levels [136,137]. Two pathways are thought to exist via which capsaicin may inhibit nociception: a TRPV1-dependent one and a TRPV1-independent one. The TRPV1-independent effects are associated with changes in the lipid membrane properties, the modulation of voltage-gated ion channels and direct binding to other enzymes and transporters [138,139,140]. The TRPV-1-dependent pathway implies activation of the receptor and subsequent desensitisation, which can be modulated by various factors, including cAMP/PKA-dependent activation [141,142]. Both the dependent and independent effects are most possibly associated with the reduced nociception caused by capsaicin [138].
The aforementioned blockade of nociceptors, when coupled with the capacity of reducing the inflammation-associated substance P [143], renders capsaicin a good candidate for a non-narcotic analgesic [144,145]; indeed, the new technologies available render the design of pharmacological capsaicin analogues a possible and potent eventuality [126]. In the manifestation of analgesic effects, the indirect blockage of voltage-gated Na+ channels may also play a role [146,147]. In addition, some other associated capsaicin-induced actions comprise the degeneration of epidermal nerve fibres after prolonged local administration [148]. A number of researchers have presented the most recent developments regarding the novel analgesic capsaicin applications [149,150,151,152]. A general outline of the TRPV1-mediated activation by capsaicin is presented in Figure 1.

4. Indications and Therapeutical Uses of Capsaicin

In general, the uses of capsaicin are numerous and varied, ranging from medicine, either human or veterinary, to uses in agriculture, the food industry, and fragrances. In human medicine, we distinguish between local and systemic applications (Table 2 and Table 3).

4.1. Capsaicin as a Local Agent

As discussed above, capsaicin is lipophilic and can hence be absorbed readily, reaching and activating the TRPV1 receptor, which can be found both in nociceptive and non-nociceptive structures. The binding of capsaicin leads to receptor activation, upon which a prolonged desensitisation state prevails; this second state renders the use of capsaicin very promising in chronic pain syndromes, as well as against hyperplasias, inflammation and inflammatory skin diseases, various dermatoses, as well as chemotherapy-induced and radiotherapy-induced mucositis [153].
For local applications, a variety of capsaicin preparations are available, such as creams, gels, liquids and patches [154], while novel formulations comprise nanolipid carriers [155,156,157], flexible membrane vesicles [158] and alginate microcapsules [159]. These last formulations can be considered better in that they improve the pain threshold in a dose-dependent manner, compared to the older locally-administered drugs; the positive effect is exerted through the reduction of tissue prostaglandin E2 levels, while skin irritation is also reduced [160]. The most prominent local capsaicin applications are presented in Table 2.
Table 2. Local applications of capsaicin.
Table 2. Local applications of capsaicin.
IndicationFormulationEffectAction MechanismType of StudyYearReferences
Neuralgia associated with herpes zoster infectionCream 0.025%
3–4 times/day for 2 days
AntalgicSubstance P depletion/prevention of reuptakeIn vivo—human1988[161]
Neuralgia-associated periocular and facial pain15 mg of capsaicin cream
2 daily
AntalgicSubstance P depletionIn vivo—human1988[162]
Facial apocrine chromhidrosisCream 1–2 times/dayAntalgic and possible vasodilation inhibitionSubstance P depletion/prevention of reuptakeIn vivo—human1989[163]
Reflex sympathetic dystrophyCream 0.025%
1–2 times/day for 3 weeks
AntalgicSubstance P depletionIn vivo—human1990[164]
Diabetic neuropathy0.075% capsaicin cream for 8 weeksAntalgicSubstance P depletion/desensitization of C nociceptal fibersIn vivo—human1991[165]
Chronic severe painful diabetic neuropathy unresponsive or intolerant to conventional therapy.Cream 0.075%
4 times/day for 8 weeks
AntalgicSubstance P depletion/desensitization of warm nociceptors, polymodal nociceptors and nociceptive afferentsIn vivo—human1992[166]
OsteoarthritisCream 0.075%AntalgicUnknownIn vivo—human1992[167]
Postmastectomy pain syndrome0.075% capsaicin
4–5 times/day for 4–6 weeks
AntalgicUnknownIn vivo—human1992[57]
Notalgia parestheticaCream 0.025 percent for four monthsAntalgic, antipruriticUncertainIn vivo—human1992[168]
Haemodialysis-induced pruritusCream 0.025%
4 times/day for 6 weeks
Anti-pruriticSubstance P prevention of reuptake/depletion/desensitization of unmyelinated c fibers of cutaneous nervesIn vivo—human1992[67]
Chronic postherpetic neuralgia0.075% creamAntalgicPossible desensitisation of nociceptorsIn vivo—human1993[169]
Pruritic psoriasis0.025% cream
4 times/day for 6 weeks
AntipruriticSubstance P depletionIn vivo—human1993[170]
Post-mastectomy pain syndrome0.025% cream
3 times/day for 2 months.
AntalgicSubstance P depletionIn vivo—human1993[171]
Cluster headacheIntranasal 3% camphor in 0.025%
capsaicin cream
for 7 days
AntalgicSubstance P depletionIn vivo—human1993[172]
Aquagenic pruritusCream 0.025%, 0.5% or 1.0% 3 times/day for 4 weeksAntipruriticSubstance P depletionIn vivo—human1994[173]
ErythromelalgiaCream 0.025%
every 12 h for 2 months
AntalgicSubstance P depletionIn vivo—human1994[174]
Trigeminal neuralgia manifesting as intraoral painCream 0.025%
4 times/day for 4 weeks
AntalgicSubstance P depletion/desensitization of c nociceptorsIn vivo—human1994[175]
Chronic neck painCream 0.025% 4 times/day for 5 weeksAntalgicSubstance P depletionIn vivo—human1995[176]
Meralgia paraestheticaCream 0.025%
5 times/day for 15 days
AntalgicSubstance P depletion/prevention of reuptake/desensitisation of C-polymodal nociceptorsIn vivo—human1995[177]
Skin flap survivalSilicongel 0.025%Increased flap survivalplatelet disaggregationIn vivo—animal1996[178]
Haemodialysis-induced pruritusCream 0.025%
4 times/day
AntipruriticSubstance P depletionIn vivo—human1996[68]
Herpes zoster ophthalmicus neuralgiaCream 0.025%
5 times/day for 4 weeks
AntalgicSubstance P depletionIn vivo—human1997[179]
Complex regional pain syndromes and neuropathic painCream 7.5%AntalgicDesensitization of C-fiber nociceptorsIn vivo—human1998[180]
Atopic eczemaCream 0.05%
3 times/day for 5 days
AntipruriticSubstance P depletion/inhibitionIn vivo—human1998[181]
Diffuse eosinophilic sinonasal polyposis3 days 0.5 mL 30 micromol/L capsaicin solution and on days 4 and 5, 100 micromol/LImproved subjective and endoscopy scoresPossible neurotoxic effectIn vivo—human2000[182]
Pain of osteoarthritis0.025% capsaicin, 1.33% glyceryl
trinitrate (one part 0.075% capsaicin, two parts
2% glyceryl trinitrate)
AntalgicNociceptive blocking/increase in perfusion of glyceryl trinitrateIn vivo—human2000[58]
Pain following spinal cord injuryCream 0.025%
4 times/day
AntalgicSubstance P depletion/desensitization of unmyelinated afferent C fibersIn vivo—human2000[183]
Prurigo nodularisCream 0.025% to 0.3% 4 to 6 times daily for 2 weeks up to 10 monthsAntipruriticSubstance P depletionIn vivo—human2001[184]
Complex regional painsyndrome type ICream 0.075%
2 times/day for 6 weeks
AntalgicDesensitization of epidermal C fibersIn vivo—human2001[185]
Atopic dermatitisLotion 0.025%
2 times/day for 6 weeks
AntipruriticPossible desensitization or neuroinhibitionIn vivo—animal2002[186]
Abdominal wall scar painCream 0.075% 3 times/day usually for 2 weeks and after that 2 times/dayAntalgicDesensitization of vanilloid subtype 1 (VR1) receptorsIn vivo—human2002[187]
Post-operative nausea and vomiting after abdominal hysterectomyCapsicum plaster with
345.80 mg of powdered capsicum for at least 30 min before anesthesia and eight hours after surgery
on the acupuncture point P6 or the Korean acupuncture point K-D2
AntiemeticDesensitization of K-D2 hand point zoneIn vivo—human2002[64]
Haemodialysis related pruritusCream 0.05% liniment 3 times/day for 5 daysAntipruriticSubstance P depletion/desensitization of epidermal nerve fibersIn vivo—human2003[188]
Meningeal nociception and headache10 μM topicalAntalgicDesensitization of afferent fibersIn vivo—animal2003[189]
Saphenous neuralgiaCream 5 times/day for 2 monthsAntalgicSubstance P depletionIn vivo—human2003[190]
Idiopathic intractable pruritus aniCapsaicin ointment 0.006–0.012% (depending on dilution) for 4 weeks followed by a week washout and by 4 weeks of placebo (menthol 1%)AntipruriticSubstance P depletionIn vivo—human2003[69]
Detrusor hyperreflexia10 mM topical for 3 months intravesical instillationsImproving continence and bladder functionPossible desensitization of sensory Aδ and unmyelined C fibersIn vivo—human2004[191]
Burning mouth syndromeOral capsaicin 0.25% 3 times/day for 1 monthAntalgicDesensitisation of type-C pain receptorsIn vivo—human2004[192]
Detrusor hyper-reflexia in spinal cord-injured patientsIntravesical instillation of 1 mmol/L CAP diluted in glucidic solvent for 3 monthsImproving continence and bladder functionDesensitization or blocking of afferent C-nerve fibresIn vivo—human2004[73]
Prevention of post-operative sore throatCapsicum plaster with powdered capsicum 345.8 mg
on the Korean acupuncture point K-A20
AntalgicUnknown—presumably release of endogenous opioids In vivo—human2004[66]
Post-operative nausea and vomiting after anaesthesia in middle ear surgeryCapsicum plaster withcapsicum oleoresin 1% w/w
on acupuncture point P6
AntiemeticRelease of endogenous opioids/modulation of neurotransmitters of the vestibular systemIn vivo—human2005[65]
Post-operative nausea and vomiting after laparoscopic cholecystectomyCapsaicin ointment with oleoresin capsicum equivalent to capsaicin 0.075% w/w and methyl salicylate I.P. 20% w/w
on the Korean acupuncture point K-D2
AntiemeticBlocking of synthesis of substance-P from sensory C-fibers/desensitisation of afferent sensory nerves.In vivo—human2005[63]
Acute lobular panniculitis0.075% capsaicin cream
5 times/day for 3 weeks
Antalgic, antithromboticSubstance P depletionIn vivo—human2005[193]
Acute lipodermatosclerosis0.075% capsaicin cream for 1–2 weeks followed by a month of continuationAntalgic, antithromboticSubstance P depletionIn vivo—human2005
Post-abdominal hysterctomy painPlaster of capsaicin (0.046% w/w) mixture of powdered capsicum 345.80 mg and capsicum tincture 34.58 mg
at ST36 acupuncture point
Antalgic, antiemeticRelease of endogenous opioids (possibly)In vivo—human2006[194]
Skinmorphological changesin patients with growth hormone deficiency and in the elderlyCream of 0.01% capsaicinoids (dihydrocapsaicin and nordihydrocapsaicin)/0.01%
capsinoids (capsiate, dihydrocapsiate and nordihydrocapsiate)
Increased skin elasticityIncreased dermal IGF-I levelsIn vivo—human2007[195]
Painful HIV-associated distal sensory polyneuropathy (DSP)Patch 640 microg/cm2, 8% w/w
60 min 1 time/day for 12 weeks
AntalgicDesensitization of cutaneous nociceptorsIn vivo—human2008[196]
Post-operative pain after orthognathic surgeryCapsicum plaster with 345.80 mg powdered capsicum and 34.58 mg capsicum tincture
applied on LI4 acupuncture point
Antalgic, antiemeticBlocking of transport and synthesis of substance P from sensory C-fibersIn vivo—human2009[197]
Migraine painCapsaicin jelly with
0.1% capsaicin
Relief and prevention of mild migrainesSubstance P depletionIn vivo—human2010[198]
Chronic soft tissue pain0.05% capsaicin creamAntalgicSubstance P depletion/degeneration of epidermal nerve fibresIn vivo—human2010[199]
Haemodialysis-induced uremic pruritus0.03% capsaicin ointment 4 times/day for 4 weeksAntipruriticSubstance P depletionIn vivo—human2010[70]
Cardiac ischemia5 mL of 0.1% capsaicin cream applied to abdomen; experimental conditions different per animal groupRemote cardioprotectiveRelease of blood-bornecardioprotective factorsIn vivo—animal2012[200]
Trigeminal Postherpetic neuralgiaCapsaicin 8% patch; single 60 min applicationAntalgicSubstance P depletion/defunctionalization of TRPV1 receptors on sensory nerve endingsIn vivo—human2012[201]
Visceral obesity0.075% capsaicin cream for 7 + 7 weeks (pretreatment and post-treatment)Antiinflammatory, antilipidemic, anti-diabeticIncreased adiponectin, PPARα, PPARγ, visfatin, adipsin and decreased TNF-α and IL-6In vivo—animal2013[202]
Fibromyalgia0.075% capsaicin cream 3 times/day for 6 weeksAntalgicSubstance P depletion/desensitization of polymodal nociceptorsIn vivo—human2013[203]
Peripheral neuropathic pain8% capsaicin cutaneous patch for 30 min to the feet and 60 min to other parts of the bodyAntalgicProbably substance P relatedIn vivo—human2014[204]
Posttraumatic neuropathic pain8% capsaicin cutaneous patch for 30 min for the feet and 60 min for other locations every 90 daysAntalgic, anti-inflammatoryDefunctionalisation of nociceptorsIn vivo—human2014[205]
Arthritis
and associated inflammo-musculoskeletal disorders
Topical ethosomal capsaicinAntalgic, anti-inflammatorySubstance P inhibitionIn vivo—animal2015[206]
Post-herpetic neuralgiaLiposomal non-ionic capsaicin cream (0.025%) 2–3 times/day for 6 weeks followed by a 2-week cessationAntalgicUnclearIn vivo—human2015[207]
Intraoral somatosensory sensitivity30 μL
of 5% capsaicin on a paper disc for 15 min
Mechanical desensitization Desensitization of C-nociceptorsIn vivo—human2015[208]
Lichen amyloidosis8% capsaicin patch with 179 mg capsaicin for 60 minAntipruriticDefunctionalization of transient receptor potential ion channel vanilloid-1In vivo—human2016[209]
Cannabinoid hyperemesis syndromeCapsaicin creamAntiemeticSubstance P depletionIn vivo—human2017[210]
Burning mouth syndrome0.01% or 0.025% oral capsaicin gel 3 times/day for 14 daysAntalgicSubstance P depletion/desensitization of transient receptor potential ion channel vanilloid-1In vivo—human2017[211]
Neuropathic pain caused by lumbosacral radiculopathies8% capsaicin patch
for 30 min for the feet and 60 min for other locations
AntalgicDesensitization of lumbosacral spinal nervesIn vivo—human2017[212]
Histamine-induced pruritus on canine skin3 mL of 0.1% capsaicin solution 2 times/day for 8 daysAntipruriticDesensitization of the sensory afferentsIn vivo—animal2018[213]
Neurogenic inflammationTopical 50 μM of capsaicin for 15 min after the topical application of 200 μM of capsazepineNeutrophil leukocyte activationIncreased leukocyte rolling and adhesion, increased expression of E-selectin and ICAM-1In vivo—animal2018[214]
Myofascial pain syndrome10 g capsaicin cream 8%, for 30 minAntalgicSubstance P depletion/inhibition (probably)In vivo—human2019[215]
Acute musculoskeletal injuriesCapsaicin gel of 0.05% capsaicin 3 times/day for 72 hAntalgicSubstance P depletion/inhibition (probable)In vivo—human2020[216]
Hepatic staetosis, obesity, dislipidemia and high blood pressure associated with hypoestrogenism0.75 g/kg capsaicin creamAnti-obesity, antilipidemic, antihypertensiveActivation of TRPV1 receptors in neurons of the digestive tract/
increased lipid mobilization and oxidation/reduced cholesterol shynthesis
In vivo—animal2020[217]
Type 2 diabetic patients with painful peripheral neuropathy0.075% capsaicin gelAntalgicSubstance P depletion/defunctionalization of the C fiber nociceptorsIn vivo—human2020[218]
Trigeminal neuropathic pain10 µg in 20 µL of vehicle subcutaneously injectedAntalgicCapsaicin-induced ablation of TRPV1+ afferent terminalsIn vivo—animal2020[219]
Psoriasis10 μg of Capzasin-HP cream (0.1% capsaicin) for 2 times/day for 8 daysAnti-inflammatoryDesensitization of TRPV1 nerves/denervation-induced inhibition of cutaneous inflammatory responsesIn vivo—animal2021[220]
Sensory neuropathic coughSpray of capsaicin 0.02% to 0.04% for 4 times/day for 2 weeksAntitussiveSubstance P depletion/defunctionalization of thermal, mechanical, chemical, and other sensory nerve endingsIn vivo—human2021[221]
Cannabinoid-induced hyperemesis syndromeCapsaicin cream 0.025%Anti-emetic effectSubstance P depletion/defunctionalization of TRPV1In vivo—human2021[222]
UVB-induced cutaneous hyperalgesia8% transdermal patch or two vehicle patchesAntalgicSubstance P depletion/defunctionalisation of local nociceptorsIn vivo—human2021[223]
Idiopathic rhinitisNasal spray of 0.01 mM capsaicinReduction of nasal symptomsSubstance P depletionIn vivo—human2021[224]
Hamartoma tumour syndromePatch 8%Pain reliefSubstance P depletion/inhibitionIn vivo—human2022[225]
Acute trauma pain0.05% capsaicin gel for 3 times/day for 72 h after discharge from the hospitalAntalgicSubstance P depletion/inhibition (probable)In vivo—human2022[226]
Improved dermal blood flowCream 8%Improved skin oxigenationLocal vasodilation induced by TRPV1-mediated release of substance P, CGRP, and other vasoactive peptidesIn vivo—human2022[227]
Chronic postsurgical pain8% capsaicin patch every 3 monthsAntalgicDefunctionalization of transient receptor potential vanilloid-1 (probable)In vivo—human2022[228]
Pain during microfocused ultrasound with visualization (MFU-V) treatment0.025% capsaicin gelAntalgicDefunctionalization of transient receptor potential vanilloid-1In vivo—human2023[151]
Peripheral neuropathic painOne topical high-concentration capsaicin applicationAntalgicAxon reflex vasodilatation associated with pain reductionIn vivo—human2023[229]
Most, if not all, of the local applications mentioned in Table 2 can be combined with anti-inflammatory drugs; this enables augmentation of their effects, thus leading to dose reduction, which diminishes their systemic side effects [230]. It may be observed that an abundance of these applications is associated with the inhibition and/or depletion of substance P; substance P, a bioactive peptide of the tachykinin family [231], is secreted by nerve cells and a host of inflammatory cells [232]. Substance P is associated with neurogenic inflammation [233,234] both systemically and at the level of the skin [235,236,237], the cardiovascular system [238,239], the respiratory [240,241,242], gastrointestinal [243,244,245] and genitourinary [246,247] tracts and also in the cerebral arteries [248,249]. The relative ubiquity of substance P in the human body renders it a prime target for pharmacological interventions in inflammatory diseases [250]. Notably, substance P is associated with infection-induced inflammation, a fact proven in both human and animal models [251,252,253,254]; taking into account the already proven antimicrobial properties of capsaicin, this could prove an interesting research avenue. In an experimental setting, capsaicin has also been used locally to demonstrate the effects of psychological triggers on vascular responses [255]—this could be a useful future experimental avenue.

4.2. Systemic Applications of Capsaicin

In the recent relevant literature, the tissue-specific and systemic side effects of capsaicin have been rigorously studied. Despite its lipophilicity, local capsaicin administration does not result in any systemic bioavailability, a fact correlating with its poor aqueous solubility properties [256]. Here, it must be remarked again that systemic capsaicin administration correlates with a number of dose-dependent side effects [257]. Since most of these effects are usually GIT-related, they can now be mostly obviated by employing liposomal carriers, which release capsaicin directly into the blood flow [258,259]. In Table 3, based on selected scientific publications, the most notable systemic effects of capsaicin are presented.
Table 3. Systemic effects of capsaicin.
Table 3. Systemic effects of capsaicin.
IndicationFormulationEffectAction MechanismType of StudyYearReferences
Systemic anti-inflammatory effect of somatostatinΜice: 30, 60 and 90 mg/kg on 3 consecutive days under anaesthesia;
guinea pigs: 2% capsaicin solution perineural for 30 min
Anti-inflammatorySomatostatin releaseIn vivo—animal2000[260]
Burning mouth syndrome3 capsules of capsaicin (50 mg of powder of red pepper with 0.25% capsaicin) a day for 1 monthAntalgicPresumed inhibition of substance PIn vivo—human2003[261]
Possible protection against cancer, atherosclerosis and age-related diseases10 μMAntioxidantDecrease in malondialdehyde level and protein carbonyl group contentIn vitro—erythrocytes2006[262]
Helicobacter pylori gastritis10 μg/mLAnti-inflammatoryInhibition of H. pylori-induced IL-8 productionIn vitro—AGS or MKN45 cells2007[263]
Endometriosis1M solutionInhibition of proliferation of endometriotic cellsInhibition of NF-kBIn vitro-immortalized stromal-like and epithelial-like endometriotic cells2008[264]
Irritable bowel syndromePills 0.50 mg of capsaicin, 4 pills per day, 6 weeksAntalgic, antibloatingDesensitisation of nociceptive receptors, depletion of substance PIn vivo—human2011[265]
Cardiovascular and metabolic diseases1% red pepper powder which contains approximately 2.45 mg/g of capsaicinAntilipidaemic, antiobesityTRPV1 activationIn vivo—animal2012[266]
Chronic unexplained cough triggered by environmental irritants1 capsule with 0.4 mg pure capsaicin 2 times/day, for 2 weeks, followed by 2 capsules with 0.4 mg pure capsaicin 2 times/day for 2 weeksAntitussiveDesensitisation of the cough-sensitive TRPV1In vivo—human2015[267]
Atherosclerosis10, 20, 30, 40, and 50 μMAntioxidantCaspase-3 mediated pathways suppressionIn vitro—macrophage RAW 264.7 cells2015[268]
Anoxia/Reoxygenation injury10 μM to 40 μMCardioprotectiveUpregulation of SIRT1 pathwayIn vitro—rat cardiomyocytes2017[269]
Heart failure post myocardial infarction0.1% cream, 150 μL/25 gCardioprotectiveInduction of nociceptor-induced conditioningIn vivo—animal2019[270]
Hyperlipidaemia, oxidative stress, atherosclerosis2.5, 5 and 10 mg/kg administered by gavage once dailyAnti-inflammatory, antioxidant, cardioprotectiveDecreased total and LDL cholesterol, triglycerides, and apo B-100, and increased HDL cholesterol and SODIn vivo—animal2019[271]
Hepatic steatosisCream 0.075%—8 week durationAntilipidemic, antioxidativeInhibition of β-oxidation, inhibition of hepatic lipogenesisIn vivo—animal2020[272]
Renovascular hypertension0.006% capsaicin diet for 6 weeksAntihypertensive Increased phosphorylation of protein kinase B and endothelial NO synthaseIn vivo—animal2020[273]
Acute inflammatory demyelinating polyneuropathy (AIDP)/Guillain-Barré syndrome (GBS) and chronic inflammatory demyelinating polyneuropathy (CIDP)10 μMAntioxidative, immunomodulatory Reduction of IFN gamma-induced MHC-II production and decreased TLR4 and ICAM-1 mRNA expressionIn vitro—Schwann cells2020[274]
Pentylenetetrazole-Induced Seizures1 or 2 mg/kgAnticonvulsant, neuroprotectivereduced glutathione (GSH), nitric oxide, and paraoxonase-1 (PON-1)In vivo—animal2020[275]
Hypercholesterolemia200 µMHypolipidemic Upregulation of LDLR and downregulation of PCSK9 expressionIn vitro-HepG2 cells2022[276]
In addition to all the aforementioned, in a recent experimental study, it was shown that capsaicin inhibits a series of proteins associated with the Warburg effect in sepsis and also downregulates cyclo-oxygenase 2 (COX-2) in a TRPV-1-independent manner [277]. This is important for a number of reasons; to start with, the Warburg effect, originally proposed in the 1920s [278,279], is essential for the metabolism of cancer cells [280], and its inhibition might provide an avenue for novel therapeutic strategies [268,281,282]. Secondly, the inhibition of COX-2, which is already the target of a number of drugs (e.g., [283,284,285]), means that capsaicin can be used in conjunction with them to enhance their effect. Finally, in the presence of TRPV-1 agonists other than capsaicin (e.g., [286,287,288]) or antagonists (e.g., [289,290,291,292]), this approach will, theoretically, still be functional.

4.3. Capsaicin as an Anti-Cancer Agent

The anticarcinogenic effect of capsaicin is mainly associated with the activation of TRPV1, which can be considered a probable link between inflammatory, immune and carcinogenic processes, as seen in Table 4.
There are several events in the anti-cancer trajectory of capsaicin that were documented: antimutagenic activity, anti-oxidative action, anti-inflammatory action, cell cycle regulation and clear involvement in cancer cell death [328]. Out of all the mentioned molecular events associated with capsaicin’s anti-cancer action, the induction of cancer cell death is the most important, as capsaicin acts on multiple targets. As outlined in Figure 2, besides TRPV1, another member of the TRPV family involved in the anti-cancer action of capsaicin is TRPV6. Comparable to TRPV1, TRPV6 regulates calcium homeostasis. In in vitro studies, it was shown that capsaicin increases TRPV6 expression and increased levels of intracellular calcium ions that activate the calpain pathway for apoptosis [329]. Moreover, TRPV6 overexpression increased mitochondria permeability through the activation of Bax and p53 through C-jun N-terminal kinase (JNK) activation. Apoptosis can thus be induced by capsaicin in a TRPV1-dependent and independent manner. In the TRPV1 independent pathway, capsaicin activates adenosine 5-monophosphate-activated protein kinase (AMPK), p53 and JNK. When capsaicin binds to the mitochondrial complex I and II in the electron transport chain, the mitochondrial membrane potential is disrupted, and the membrane permeability is increased. Capsaicin increases ROS levels and increases the expression of pro-apoptotic Bcl-2 (Bax), as it was found in the case of neuroendocrine melanoma, a very aggressive and fatal tumour by Jun et al. [294,330,331]. This decreases the anti-apoptotic Bcl-2 and CytC release and induces apoptosis [317].
Some other anticarcinogenic applications of capsaicin should be mentioned here. It is possible to use capsaicin as a radio-sensitising agent in patients with prostate cancer; this particular use takes advantage of capsaicin-induced inhibition of NFκB signalling [332], resulting in angiogenesis inhibition [333]. More generally, recent studies explore the potential of combining capsaicin with conventional chemotherapeutic agents [334,335,336,337]. Other carcinogenesis-related signalling pathways may represent potential targets for future studies [338].
Another aspect we should consider is the increase of serum somatostatin induced by systemic capsaicin administration, which has already been noted by Thán et al. [260] and Szolcsányi et al. [339]. The release of somatostatin is associated with anti-inflammatory [340] and anti-nociceptive effects [341] in rats. The research of [342] has also focused on the somatostatin-induced inhibition of inflammation and nociception.
It is known that somatostatin is linked with such effects in humans [342,343], and somatostatin and its analogues have already been explored as targets for anti-cancer therapies [344,345,346,347,348,349,350,351,352,353]. The use of capsaicin in such a manner appears to be a promising avenue in cancer therapy research—a particular application could be in the case of hepatocellular cell carcinoma (HCC) where somatostatin and capsaicin application could be, in theory, effectively combined—the application of capsaicin in the pathogenesis of HCC specifically is explored by Scheau et al. [124].
The anticarcinogenic activity of capsaicin has also been a subject of in vivo studies, where chronic exposure to capsaicin seems to actually promote neoplasia by increasing collagen and elastin deposition [354] and by inhibiting NK cell function [355]. Capsaicin also exhibits a carcinogenic potential when combined with 9, 10-dimethylbenz[a]anthracene/12-O-tetradecanoylphorbol-13-acetate [356]. Finally, long-term capsaicin consumption favours metastasis because it modifies the microbiome of the gut, thus promoting the translocation of bacteria to the liver and altering bile acid metabolism, which ultimately inhibits NK cell function [357]; therefore, it must be examined in detail if and under which circumstances, the use of capsaicin may actually have detrimental effects in human health.

5. Capsaicin in Traditional Medicine Therapies

Originally, the capsaicin-containing plants of the genus Capsicum were native to Central and South America [358,359]. However, after the discovery of the Americas in the 16th century, it was quickly exported, as already mentioned, and gradually became a staple of many different culinary traditions [360].
While this genus comprises about 25 species, only five of them have been domesticated [361,362,363] and are commonly cultivated [364]; although the species is typically a perennial plant, it can be cultivated as an annual crop in areas with low temperatures [365,366]. Chile peppers, along with a number of other parts, were integral in the Mesoamerican civilisation’s agriculture [367] and even later in the formation of traditional Mexican cuisine [368]—the same has happened in a number of other localities, such as Pueblo in Colorado [369].
The traditional medical and even culinary usage of chilli peppers, and therefore capsaicin, is quite diverse [370]. While the domestication of the plant is estimated to have taken place somewhen before the 5th millennium BC [366], it may be assumed that they were also consumed sometime before [371] since the agriculture of many pre-colonial communities was pretty advanced ([372]; and references therein); the domestication process seems to have begun independently in a number of different areas [358]. Its significance is readily apparent from archaeological finds of the pre-Ceramic (ca. 9500–900 BC) and Formative (900 BC–250 AD) periods in South America [373,374] (time frames based on Lanning [375]). The millennia of chilli consumption must have given rise to a number of medicinal applications. In addition, a number of different civilisations that occupied pre-Columbian America, such as the Incas [376], Mayas [377], and Aztecs [378], used chilli peppers as war-related artefacts and for ritualistic purposes [6]. While these last two uses of chilli may be seen as atypical, on the one hand, it must be remarked that the absence of a monetary economy led to natural goods and materials having a more prominent role, a typical example being that of obsidian and other rocks and minerals [379,380]; on the other, a significant number of civilisations have used plants in ritualistic purposes [381,382,383].
It is known that capsaicin content differs between different Capsicum species [384]. Different foodstuffs also have, as expected, differing capsaicin contents [385], and this presumably influences their various uses to some extent. In fact, it is even possible to conceive the use of chilli peppers as a food-medicine continuum in the minds of the locals [386,387]. Perhaps the most diverse uses are recorded in Mexico, where chile is native, as is seen in Table 5; interestingly, the increased capsaicin consumption in parts of Mexico seems to correlate positively with adiposity and fat markers [388]. The complete spectrum of the local ethnobotanical use of chilli peppers is provided in a recent study [387]; various uses of different parts of the chilli plants are provided by Meghvansi et al. [389]. Miscellaneous or unverified uses of peppers, and thus capsaicin, also exist, such as those reported by Saleh et al. [390].
In addition, chilli is used along with other herbs and plants for a number of diseases or ailments related to the metaphysical concept of soul and evil energy [397,403,406,409,410,411]. It is possible that a number of medical applications of chilli peppers in traditional medical practice, especially for Native Americans, have been lost to time or have not yet been discovered. It must not be forgotten that Inca medicine, for example, was relatively advanced and possibly superior to contemporary European practises in some fields like surgery [412,413], as evidenced by a variety of findings and mentions in Spanish chronicles [414]. It is, therefore, entirely possible that a number of useful and effective applications of chilli extracts, as well as those of other plants, existed. In order to elucidate the full extent of the intertwining of food, medicine and culture in a local and traditional context, further research and novel practices are required [415,416].
On another note, we would like to point out that, as presented in the tables of the previous sections, based on previous research [63,64,65], capsaicin cream was applied to acupuncture point P6 or K-D2, which is the Korean equivalent, and also in LI4 [197] and ST36 [194]. Most, if not all, of the effects in these cases, are associated with some form of inhibition of the synthesis, transport and/or action of substance P; indeed, substance P is integral in the modern interpretation of the action of acupuncture in many pain states [417]. Traditional Chinese Medicine (TCM) is one of the most widely used traditional medicine systems in the world, and although it does not incorporate capsaicin-containing plants in its original, ancient phytochemical tradition [418,419], it is interesting to note this, apparently, as of yet, successful combination with capsaicin.

6. Side Effects of Capsaicin

Extensive research has revealed a variety of physiological and pathological effects of capsaicin (Table 6); most but not all of capsaicin’s side effects are exerted by the activation of TRPV1. When applied locally, at the level of the skin or other external mucous membranes, it will induce skin erythema, neurogenic inflammation [420], non-blistering associated burning [421], marked lacrimation, blepharospasm and even conjunctivitis [422]. It must be noted here that a specific form of contact dermatitis, the so-called “Hunan hand” was first diagnosed in individuals who handled peppers daily due to their occupation. This is considered a clear and reliable marker of dermal capsaicin toxicity [423,424].
At the level of the CNS, capsaicin toxicity is associated with convulsions, excitement [425,426], disorientation and fear [427]; a host of other generalised symptoms, such as loss of body motor control, including diminished hand-eye coordination, have been reported [427].
In the cardiovascular system, capsaicin causes blood pressure increase and heart rate increase, and, in highly toxic levels, these effects may progress respectively to hypertension and tachycardia, with even ventricular fibrillation having been reported [427]. The blood pressure increase is associated both with the heart rate elevation and with the increased vascular contractility [428], leading to vasoconstriction. A summary of all the hypotheses and determined effects and side effects of capsaicin in the cardiovascular system in different modes of application has been provided in recent research [111]. Particular features of the cardiovascular system might predispose to or aggravate these responses [429,430,431,432].
At the level of the respiratory system, it causes bronchoconstriction and coughing [433], while in increased doses, it may even cause oedema of the larynx and the lungs, chemical pneumonitis and even respiratory arrest [434]; these data for capsaicin toxicity are derived from in vitro experiments with capsaicin analogues [434]. Systemic capsaicin toxicity has also been associated with pulmonary oedema and hyperventilation. A particular mechanism of neurogenic toxicity may be beneficial in controlling the neurogenic inflammation associated with nasal polyps, at least in some cases [182].
At the level of the gastrointestinal tract, an increased dose of capsaicin causes a general irritation, ranging from a local warmth sensation to a painful burning sensation [435]. It is also known that capsaicin influences gastric activity [436]. Despite capsaicin having some gastroprotective effects, it also has the potential to induce ulcers [275,437].
Table 6. Pathological effects in cases of capsaicin toxicity per body system.
Table 6. Pathological effects in cases of capsaicin toxicity per body system.
SystemTRPV1-Bearing Cell TypesToxic Side-EffectsReferences
CNSCerebral neurons, sensory neurons of the dorsal root ganglionConvulsions, excitement, disorientation, fear, loss of body motor control[109,425,426,427]
CardiovascularVascular smooth muscle cells, endothelial cellsHeart rate increase, blood pressure increase, hypertension, tachycardia, ventricular fibrillation, increased vascular contractility, atherosclerosis[427,428]
RespiratoryAirway epithelial cells, T cells of the upper and lower airways Bronchoconstriction, coughing, laryngeal oedema, pulmonary oedema, chemical pneumonitis, respiratory arrest[114,433,434]
GastrointestinalSubmucosal nerve plexus, myenteric nerve plexus, gastrointestinal mucosal cells, parietal and antral G cellsGeneral irritation and pain, increased ulcer incidence[117,275,435,437]
IntegumentaryUnmyelinated type C and thin myelinated Aδ sensory nerve fibres, keratinocytes, mast cells, dermal blood vessels, fibroblasts, hair follicles, vascular smooth muscle cells, sebocytes and eccrine sweat glandsSkin erythema, non-blistering associated burning, “Hunan hand” (capsaicin-specific contact dermatitis)[118,119,120,421,423,424]
EyesCorneal cells, retinal ganglion cellsMarked lacrimation, blepharospasm, conjunctivitis[121,122,422]
From a medical standpoint, in cases of capsaicin overexposure, common adverse effects are painful skin reactions and systemic effects, like nausea, vomiting, abdominal pain and diarrhoea accompanied by a burning sensation [438]; capsaicin is toxic in far lower doses in children compared to adults. In the case of eye exposure, following contact with pepper sprays, marked lacrimation, pain, conjunctivitis, and blepharospasm are common and may be aggravated by the presence of risk factors [439,440]. For local toxic reactions, a thorough decontamination of the skin and mucous membranes is recommended [441], involving water and antiacids [442]; furthermore, the treatment of systemic toxicity is based on the management of symptoms until capsaicin excretion [443].
Finally, a few fringe cases of capsaicin toxicity are reported in the medical literature, namely an acute polyneuropathy, presenting as Guillain-Barre syndrome following pepper spray exposure [444], the death of an infant after a capsaicin-containing traditional medicine was orally administered [445], and an acute MI in a patient with a transdermal capsaicin patch [446].

7. Discussion and Future Research Perspectives

Currently, as a phytomedical compound, capsaicin has been demonstrated to have analgesic, antioxidant, anti-inflammatory, anti-cancer, cardio-protective, and metabolic modulation effects. Capsaicin analogues are also currently evaluated for such properties [447]. A recent study even documented capsaicin-induced inhibition of cell senescence [448], while another proposed that capsaicin may even be a viable management option in cases of schizophrenia [449]; regarding the cardio-protective effects of capsaicin, it might even be possible to use it to alleviate acute myocardial injury [450]. Considering that the majority of such mechanisms are caused by the activation and subsequent inactivation of the TRPV1 receptor, further studies of the role of this receptor may yield useful results regarding both diagnostic and treatment methods. Notably, TRPV1 belongs to a category of receptors recently characterised as extra-oral taste receptors, i.e., oral receptors not found in the oral cavity [451,452]. Outside of the oral cavity, these receptors appear to have immune system-related and bronchorelaxation-associated properties [453,454]; it is known that taste receptors and their associated effector biomolecules are expressed in tuft-1 cells [455,456,457,458]. The characteristic morphology of these cells has been described in detail by Hendel et al. [459]; their localisation is quite diverse [455,460,461]. Moreover, it seems that they are also involved in the regulation of the immune system [462].
A significant challenge of using capsaicin for its potent therapeutic properties is its poor bioavailability due to its quick metabolisation [463]. It is believed that in vivo capsaicin concentrations achieved through conventional routes of administration are inferior to the levels that demonstrated effectiveness in vitro [464]. This is due to variations and limitations in absorption, distribution, and excretion, which limit the permeation of capsaicin to the desired action site. Therefore, in vivo, replication of the effects observed in vitro is an increasing focus of interest, and effective methods are being researched in this regard [465,466,467]. Furthermore, systemic capsaicin administration is associated with a number of side effects, and so in order to produce the maximum possible therapeutic effect in the target tissue while, at the same time, minimising side effects, it is desirable to control its delivery with precision. This can be performed, as previously alluded to, by employing novel delivery systems, namely liposomes, micelles, micro-emulsions and nano-emulsions [468,469], colloidal capsules and solid nanoparticles [470]; another avenue concerning implant-associated infections [471] would be the integration of capsaicin into 3D printed biomaterials [472]. These improve oral bioavailability for targeted applications, including anti-cancer endeavours [473,474]. Combination of capsaicin with bioenhancing substances such as piperine can prevent its degradation and increase its systemic concentration [475,476]. A number of nanostructured lipid carriers can also be incorporated into transdermal patches to reduce local side effects, such as skin irritation and erythema [477]—the use of capsaicin in the management and treatment of skin pathologies is a promising and rapidly developing field [118]. A future perspective on increasing capsaicin concentration for anti-cancer effects is also its integration into a delivery system that responds to physiologic triggers such as temperature or local pH, therefore optimising its clinical use and expanding its potential as an anti-cancer therapeutic agent [156,478,479]. Capsaicin, as well as other phytochemicals with promising medicinal properties [480], may benefit from such novel delivery methods. A novel way for capsaicin delivery for a particular case of colorectal cancer has recently been explored by Rajput et al. [481].
In cases of inflammation, either local or systemic, capsaicin may offer a good alternative if the common anti-inflammatory drugs are not tolerated due to their side effects. The combination of capsaicin with acupuncture may also be useful in that regard, given that acupuncture is already quite effective in the treatment of pain (e.g., [482,483,484,485]) and other inflammatory states (e.g., [486,487,488]), and the relevant research interest is increasing [489].
Of particular interest is the emerging research on the antibacterial (e.g., [490,491,492]), antifungal (e.g., [493,494]), antiviral (e.g., [495]) and antiparasitic (e.g., [496]) properties of capsaicin. Already, a number of different phytomedical compounds and their derivatives are being researched for their antimicrobial/antiviral potential, such as kaempferol [497,498,499,500], quercetin [501,502,503], curcumin [504,505,506,507], coumarin [508,509,510], and allicin [511,512,513]. This is especially important when considering the increasing antimicrobial resistance (e.g., [514,515,516,517,518,519,520]) and the occasional severe side-effects like allergies to antimicrobial drugs (e.g., antibiotics [521,522]) and especially some antiparasitic drugs ([523] and references therein).
Furthermore, other research directions could involve capsaicin’s role in modulating intestinal microbiota, of whose diversity it increases; this opens new possibilities in combating the complications of various GIT-related illnesses [524,525] through the modulation of the gut-brain axis and immune system interaction [526]. Potential applications of capsaicin in pulmonary and gastrointestinal cancers have also been concisely summarised in recent papers [527,528]. An interesting research direction could also involve the application of capsaicin at acupuncture points, aside from the aforementioned combination of capsaicin and acupuncture; indeed, based on the positive results of three clinical trials [63,64,65] where capsaicin was applied locally at acupuncture points, larger-scale research for a number of conditions can be undertaken, following the same principle—similar positive research results were also reported by Kim et al. [194,197]. When considering the proposed special properties of meridians in interstitial fluid—or generally fluid—circulation [529,530,531,532], it is compelling to consider the potential for applying specialised cutaneous treatment schemes, using capsaicin or even other bioactive compounds, in this manner.

8. Conclusions

Capsaicin is a potent phytochemical substance that has numerous health benefits. It can be used medicinally both in systemic and local administration. At the same time, the potential toxicity of capsaicin poses an important constraint on its medicinal use, especially in certain sensitive tissues such as the eyes. Already, capsaicin forms part of a number of medical traditions, and such proposed medicinal uses warrant further research. The association between capsaicin and acupuncture must also be explored more thoroughly. Based on the data presented in this paper, we conclude that capsaicin may be used as a monotherapy or adjunct therapy in the treatment or management of a number of pathologies.

Author Contributions

Conceptualization, E.M.P. and A.P.; methodology, C.C. (Constantin Caruntu) and C.S.; formal analysis, L.T., A.-T.P., A.-E.S., I.A.B., A.C., I.S.-F., D.C., C.C. (Carolina Constantin), and C.S.; investigation, E.M.P. and A.P.; resources, E.M.P., A.P., C.C. (Carolina Constantin), and M.N.; data curation, I.A.B., K.P., A.C., I.S.-F., D.C., C.C. (Carolina Constantin), M.N., C.C. (Constantin Caruntu), and C.S.; writing—original draft preparation, E.M.P., A.P., L.T., A.-T.P., A.-E.S., I.A.B., K.P., A.C., I.S.-F., R.-M.S., D.C., C.C. (Carolina Constantin), M.N., C.C. (Constantin Caruntu), and C.S.; writing—review and editing, D.C., C.C. (Constantin Caruntu), and C.S.; visualisation, C.C. (Carolina Constantin) and M.N.; supervision, C.C. (Constantin Caruntu) and C.S. All authors have read and agreed to the published version of the manuscript.

Funding

This work was partially supported by a grant from the Ministry of Research, Innovation, and Digitization, CCCDI—UEFISCDI, project number PN-III-P2-2.1-PED-2021-2243, within PNCDI III.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Conflicts of Interest

The authors declare no conflicts of interest. The funders had no role in the design of the study, in the collection, analyses, or interpretation of data, in the writing of the manuscript, or in the decision to publish the results.

References

  1. Cordell, G.A.; Araujo, O.E. Capsaicin: Identification, nomenclature, and pharmacotherapy. Ann. Pharmacother. 1993, 27, 330–336. [Google Scholar] [CrossRef] [PubMed]
  2. Srinivasan, K. Biological Activities of Red Pepper (Capsicum annuum) and Its Pungent Principle Capsaicin: A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1488–1500. [Google Scholar] [CrossRef] [PubMed]
  3. Naves, E.R.; de Ávila Silva, L.; Sulpice, R.; Araújo, W.L.; Nunes-Nesi, A.; Peres, L.E.P.; Zsögön, A. Capsaicinoids: Pungency beyond Capsicum. Trends Plant Sci. 2019, 24, 109–120. [Google Scholar] [CrossRef] [PubMed]
  4. Chen, K.; Feng, L.; Feng, S.; Yan, Y.; Ge, Z.; Li, Z.; Chen, Z. Multiple quantitative structure-pungency correlations of capsaicinoids. Food Chem. 2019, 283, 611–620. [Google Scholar] [CrossRef] [PubMed]
  5. Mózsik, G.; Past, T.; Abdel Salam, O.M.; Kuzma, M.; Perjési, P. Interdisciplinary review for correlation between the plant origin capsaicinoids, non-steroidal antiinflammatory drugs, gastrointestinal mucosal damage and prevention in animals and human beings. Inflammopharmacology 2009, 17, 113–150. [Google Scholar] [CrossRef] [PubMed]
  6. Chiou, K.L.; Hastorf, C.A.; Bonavia, D.; Dillehay, T.D. Documenting Cultural Selection Pressure Changes on Chile Pepper (Capsicum baccatum L.) Seed Size Through Time in Coastal Peru (7,600 B.P.–Present). Econ. Bot. 2014, 68, 190–202. [Google Scholar] [CrossRef]
  7. Nunn, N.; Qian, N. The Columbian exchange: A history of disease, food, and ideas. J. Econ. Perspect. 2010, 24, 163–188. [Google Scholar] [CrossRef]
  8. Cumo, C. The Ongoing Columbian Exchange: Stories of Biological and Economic Transfer in World History: Stories of Biological and Economic Transfer in World History; ABC-CLIO: New York, NY, USA, 2015. [Google Scholar]
  9. Williams, D.E. Agricultural Biodiversity and the Columbian Exchange. In Routledge Handbook of Agricultural Biodiversity; Routledge: Oxfordshire, UK, 2017; pp. 192–212. [Google Scholar]
  10. Herniter, I.A.; Muñoz-Amatriaín, M.; Close, T.J. Genetic, textual, and archeological evidence of the historical global spread of cowpea (Vigna unguiculata [L.] Walp.). Legume Sci. 2020, 2, e57. [Google Scholar] [CrossRef]
  11. Basith, S.; Cui, M.; Hong, S.; Choi, S. Harnessing the Therapeutic Potential of Capsaicin and Its Analogues in Pain and Other Diseases. Molecules 2016, 21, 966. [Google Scholar] [CrossRef]
  12. Tewksbury, J.J.; Manchego, C.; Haak, D.C.; Levey, D.J. Where did the chili get its spice? Biogeography of capsaicinoid production in ancestral wild chili species. J. Chem. Ecol. 2006, 32, 547–564. [Google Scholar] [CrossRef]
  13. Haak, D.C.; McGinnis, L.A.; Levey, D.J.; Tewksbury, J.J. Why are not all chilies hot? A trade-off limits pungency. Proc. Biol. Sci. 2012, 279, 2012–2017. [Google Scholar] [CrossRef] [PubMed]
  14. Bucholz, C. Chemische Untersuchung der trockenen reifen spanischen Pfeffers. Alm. Oder Taschenb. Scheidekünstler Apoth. 1816, 37, 1–30. [Google Scholar]
  15. King, J.; Felter, H.W. King’s American Dispensatory; Ohio Valley Company: Cincinnati, OH, USA, 1909; Volume 1. [Google Scholar]
  16. Thresh, J.C. Isolation of capsaicin. Pharm. J. Trans. 1876, 6, 941–947. [Google Scholar]
  17. Thresh, J.C. Capsaicin, the active principle of capsicum fruits. Pharm. J. Trans. 1876, 7, 259–260. [Google Scholar]
  18. Thresh, J.C. Capsaicin—The active principle of cayenne pepper. Analyst 1877, 2, 108. [Google Scholar] [CrossRef]
  19. Nelson, E. The constitution of capsaicin, the pungent principle of capsicum. J. Am. Chem. Soc. 1919, 41, 1115–1121. [Google Scholar] [CrossRef]
  20. Micko, K. Zur Kenntniss des Capsaïcins. Z. Unters. Nahr.-Und Genußmittel Sowie Gebrauchsgegenstände 1898, 1, 818–829. [Google Scholar] [CrossRef]
  21. Micko, K. Ueber den wirksamen Bestandtheil des Cayennepfeffers. Z. Unters. Nahr.-Und Genußmittel Sowie Gebrauchsgegenstände 1899, 2, 411–412. [Google Scholar] [CrossRef]
  22. Kosuge, S.; Furuta, M.; Oda, T. Studies on the Pungent Principles of Red Pepper. Part XIII On the pungent principles contents of Japanese red pepper. Nippon. Shokuhin Kogyo Gakkaishi 1967, 14, 407–410. [Google Scholar] [CrossRef]
  23. Gradinaru, T.C.; Petran, M.; Dragos, D.; Gilca, M. PlantMolecularTasteDB: A Database of Taste Active Phytochemicals. Front. Pharmacol. 2021, 12, 751712. [Google Scholar] [CrossRef]
  24. Wachtel, R.E. Capsaicin. Reg. Anesth. Pain. Med. 1999, 24, 361–363. [Google Scholar] [CrossRef]
  25. Alberti, A.; Galasso, V.; Kovac, B.; Modelli, A.; Pichierri, F. Probing the molecular and electronic structure of capsaicin: A spectroscopic and quantum mechanical study. J. Phys. Chem. A 2008, 112, 5700–5711. [Google Scholar] [CrossRef] [PubMed]
  26. Reyes-Escogido Mde, L.; Gonzalez-Mondragon, E.G.; Vazquez-Tzompantzi, E. Chemical and pharmacological aspects of capsaicin. Molecules 2011, 16, 1253–1270. [Google Scholar] [CrossRef]
  27. Lu, M.; Chen, C.; Lan, Y.; Xiao, J.; Li, R.; Huang, J.; Huang, Q.; Cao, Y.; Ho, C.T. Capsaicin-the major bioactive ingredient of chili peppers: Bio-efficacy and delivery systems. Food Funct. 2020, 11, 2848–2860. [Google Scholar] [CrossRef]
  28. Sung, Y.; Chang, Y.-Y.; Ni-Lun, T. Capsaicin biosynthesis in water-stressed hot pepper fruits. Bot. Bull. Acad. Sin. 2005, 46, 35–42. [Google Scholar]
  29. Arora, R.; Gill, N.; Chauhan, G.; Rana, A. An overview about versatile molecule capsaicin. Int. J. Pharm. Sci. Drug Res. 2011, 3, 280–286. [Google Scholar]
  30. Katsuragi, H.; Shimoda, K.; Yamamoto, R.; Ohara, T.; Hamada, H. Enzymatic synthesis of capsaicin 4-O-β-xylooligosaccharides by β-xylosidase from Aspergillus sp. Acta Biol. Hung. 2011, 62, 151–155. [Google Scholar] [CrossRef]
  31. Späth, E.; Darling, S.F. Synthese des capsaicins. Berichte Dtsch. Chem. Ges. (A B Ser.) 1930, 63, 737–743. [Google Scholar] [CrossRef]
  32. Ochoa-Alejo, N.; Ramirez-Malagon, R. In vitro chili pepper biotechnology. Vitr. Cell. Dev. Biol.-Plant 2001, 37, 701–729. [Google Scholar] [CrossRef]
  33. Castillo, E.; López-González, I.; De Regil-Hernández, R.; Reyes-Duarte, D.; Sánchez-Herrera, D.; López-Munguía, A.; Darszon, A. Enzymatic synthesis of capsaicin analogs and their effect on the T-type Ca2+ channels. Biochem. Biophys. Res. Commun. 2007, 356, 424–430. [Google Scholar] [CrossRef]
  34. Pandhair, V.; Gosal, S. Capsaicin production in cell suspension cultures derived from placenta of Capsicum annuum L. fruit. Indian J. Agric. Biochem. 2009, 22, 78–82. [Google Scholar]
  35. Akhtar, F.; Muhammad Sharif, H.; Arshad Mallick, M.; Zahoor, F.; Abdulmalik, A.; Baig, W.; Shujaat, N.; Gul, S.; Bibi, G.; Ramzan, R.; et al. Capsaicin: Its Biological Activities and In Silico Target Fishing. Acta Pol. Pharm. 2017, 74, 321–329. [Google Scholar] [PubMed]
  36. Moirangthem, S.S.; Gogoi, S.; Thongbam, P.D.; Ramya, K.T.; Fiyaz, R.A.; Pandey, D.S. Effect of sowing time and crop geometry on the Capsaicinoid content in Bhoot Jolokia (Capsicum chinense Jacq.). J. Food Sci. Technol. 2014, 51, 1974–1981. [Google Scholar] [CrossRef] [PubMed]
  37. Maurya, V.K.; Gothandam, K.M.; Ranjan, V.; Shakya, A.; Pareek, S. Effect of drying methods (microwave vacuum, freeze, hot air and sun drying) on physical, chemical and nutritional attributes of five pepper (Capsicum annuum var. annuum) cultivars. J. Sci. Food Agric. 2018, 98, 3492–3500. [Google Scholar] [CrossRef]
  38. Krishnatreyya, H.; Hazarika, H.; Saha, A.; Chattopadhyay, P. Capsaicin, the primary constituent of pepper sprays and its pharmacological effects on mammalian ocular tissues. Eur. J. Pharmacol. 2018, 819, 114–121. [Google Scholar] [CrossRef] [PubMed]
  39. Busker, R.W.; van Helden, H.P. Toxicologic evaluation of pepper spray as a possible weapon for the Dutch police force: Risk assessment and efficacy. Am. J. Forensic Med. Pathol. 1998, 19, 309–316. [Google Scholar] [CrossRef] [PubMed]
  40. Kim, Y.J.; Payal, A.R.; Daly, M.K. Effects of tear gases on the eye. Surv. Ophthalmol. 2016, 61, 434–442. [Google Scholar] [CrossRef] [PubMed]
  41. Tidwell, R.D.; Wills, B.K. Tear Gas and Pepper Spray Toxicity. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2023. [Google Scholar]
  42. Quiroga-Garza, M.E.; Ruiz-Lozano, R.E.; Azar, N.S.; Mousa, H.M.; Komai, S.; Sevilla-Llorca, J.L.; Perez, V.L. Noxious effects of riot control agents on the ocular surface: Pathogenic mechanisms and management. Front. Toxicol. 2023, 5, 1118731. [Google Scholar] [CrossRef]
  43. Cowles, R.S.; Keller, J.E.; Miller, J.R. Pungent spices, ground red pepper, and synthetic capsaicin as onion fly ovipositional deterrents. J. Chem. Ecol. 1989, 15, 719–730. [Google Scholar] [CrossRef] [PubMed]
  44. Sterner, R.T.; Shumake, S.A.; Gaddis, S.E.; Bourassa, J.B. Capsicum oleoresin: Development of an in-soil repellent for pocket gophers. Pest. Manag. Sci. 2005, 61, 1202–1208. [Google Scholar] [CrossRef]
  45. Kimball, B.A.; Taylor, J.; Perry, K.R.; Capelli, C. Deer responses to repellent stimuli. J. Chem. Ecol. 2009, 35, 1461–1470. [Google Scholar] [CrossRef] [PubMed]
  46. Stock, B.; Haag-Wackernagel, D. Effectiveness of Gel Repellents on Feral Pigeons. Animals 2013, 4, 1–15. [Google Scholar] [CrossRef] [PubMed]
  47. Yang, N.; Galves, C.; Racioni Goncalves, A.C.; Chen, J.; Fisk, I. Impact of capsaicin on aroma release: In vitro and in vivo analysis. Food Res. Int. 2020, 133, 109197. [Google Scholar] [CrossRef] [PubMed]
  48. Hu, X.; Ayed, C.; Chen, J.; Fisk, I.; Yang, N. The role of capsaicin stimulation on the physicochemical properties of saliva and aroma release in model aqueous and oil systems. Food Chem. 2022, 386, 132824. [Google Scholar] [CrossRef] [PubMed]
  49. Yang, N.; Yang, Q.; Chen, J.; Fisk, I. Impact of capsaicin on aroma release and perception from flavoured solutions. LWT 2021, 138, 110613. [Google Scholar] [CrossRef] [PubMed]
  50. Maliszewska, J.; Wyszkowska, J.; Kletkiewicz, H.; Rogalska, J. Capsaicin-induced dysregulation of acid-base status in the American cockroach. J. Environ. Sci. Health B 2019, 54, 676–680. [Google Scholar] [CrossRef] [PubMed]
  51. Li, Y.; Bai, P.; Wei, L.; Kang, R.; Chen, L.; Zhang, M.; Tan, E.K.; Liu, W. Capsaicin Functions as Drosophila Ovipositional Repellent and Causes Intestinal Dysplasia. Sci. Rep. 2020, 10, 9963. [Google Scholar] [CrossRef] [PubMed]
  52. Xie, D.; Yang, Z.; Hu, X.; Wen, Y. Synthesis, Antibacterial and Insecticidal Activities of Novel Capsaicin Derivatives Containing a Sulfonic Acid Esters Moiety. Front. Chem. 2022, 10, 929050. [Google Scholar] [CrossRef] [PubMed]
  53. Cui, S.-F.; Wang, J.-W.; Li, H.-F.; Fang, R.; Yu, X.; Lu, Y.-J. Microencapsulation of Capsaicin in Chitosan Microcapsules: Characterization, Release Behavior, and Pesticidal Properties against Tribolium castaneum (Herbst). Insects 2023, 14, 27. [Google Scholar] [CrossRef]
  54. Hsu, Y.J.; Huang, W.C.; Chiu, C.C.; Liu, Y.L.; Chiu, W.C.; Chiu, C.H.; Chiu, Y.S.; Huang, C.C. Capsaicin Supplementation Reduces Physical Fatigue and Improves Exercise Performance in Mice. Nutrients 2016, 8, 648. [Google Scholar] [CrossRef]
  55. Adaszek, Ł.; Gadomska, D.; Mazurek, Ł.; Łyp, P.; Madany, J.; Winiarczyk, S. Properties of capsaicin and its utility in veterinary and human medicine. Res. Vet. Sci. 2019, 123, 14–19. [Google Scholar] [CrossRef] [PubMed]
  56. Mohammad, S.; Mustofa Helmi, E.; Faisal, F.; Muhammad Thohawi Elziyad, P. Role of Capsaicin in the Repair of Cellular Activity in Mice Liver. Pharmacogn. J. 2021, 13, 1573–1576. [Google Scholar]
  57. Watson, P.N.C.; Evans, R.J. The postmastectomy pain syndrome and topical capsaicin: A randomized trial. Pain 1992, 51, 375–379. [Google Scholar] [CrossRef] [PubMed]
  58. McCleane, G. The analgesic efficacy of topical capsaicin is enhanced by glyceryl trinitrate in painful osteoarthritis: A randomized, double blind, placebo controlled study. Eur. J. Pain 2000, 4, 355–360. [Google Scholar] [CrossRef] [PubMed]
  59. Grushka, M.; Epstein, J.B.; Gorsky, M. Burning mouth syndrome. Am. Fam. Physician 2002, 65, 615–620. [Google Scholar]
  60. Mason, L.; Moore, R.A.; Derry, S.; Edwards, J.E.; McQuay, H.J. Systematic review of topical capsaicin for the treatment of chronic pain. BMJ 2004, 328, 991. [Google Scholar] [CrossRef] [PubMed]
  61. Saguil, A.; Kane, S.; Mercado, M.; Lauters, R. Herpes Zoster and Postherpetic Neuralgia: Prevention and Management. Am. Fam. Physician 2017, 96, 656–663. [Google Scholar]
  62. Hayman, M.; Kam, P.C.A. Capsaicin: A review of its pharmacology and clinical applications. Curr. Anaesth. Crit. Care 2008, 19, 338–343. [Google Scholar] [CrossRef]
  63. Agarwal, A.; Dhiraaj, S.; Tandon, M.; Singh, P.K.; Singh, U.; Pawar, S. Evaluation of capsaicin ointment at the Korean hand acupressure point K-D2 for prevention of postoperative nausea and vomiting. Anaesthesia 2005, 60, 1185–1188. [Google Scholar] [CrossRef]
  64. Kim, K.S.; Koo, M.S.; Jeon, J.W.; Park, H.S.; Seung, I.S. Capsicum plaster at the korean hand acupuncture point reduces postoperative nausea and vomiting after abdominal hysterectomy. Anesth. Analg. 2002, 95, 1103–1107. [Google Scholar] [CrossRef]
  65. Misra, M.N.; Pullani, A.J.; Mohamed, Z.U. Prevention of PONV by acustimulation with capsicum plaster is comparable to ondansetron after middle ear surgery. Can. J. Anaesth. 2005, 52, 485–489. [Google Scholar] [CrossRef] [PubMed]
  66. Park, H.S.; Kim, K.S.; Min, H.K.; Kim, D.W. Prevention of postoperative sore throat using capsicum plaster applied at the Korean hand acupuncture point. Anaesthesia 2004, 59, 647–651. [Google Scholar] [CrossRef] [PubMed]
  67. Breneman, D.L.; Cardone, J.S.; Blumsack, R.F.; Lather, R.M.; Searle, E.A.; Pollack, V.E. Topical capsaicin for treatment of hemodialysis-related pruritus. J. Am. Acad. Dermatol. 1992, 26, 91–94. [Google Scholar] [CrossRef] [PubMed]
  68. Tarng, D.C.; Cho, Y.L.; Liu, H.N.; Huang, T.P. Hemodialysis-related pruritus: A double-blind, placebo-controlled, crossover study of capsaicin 0.025% cream. Nephron 1996, 72, 617–622. [Google Scholar] [CrossRef] [PubMed]
  69. Lysy, J.; Sistiery-Ittah, M.; Israelit, Y.; Shmueli, A.; Strauss-Liviatan, N.; Mindrul, V.; Keret, D.; Goldin, E. Topical capsaicin--a novel and effective treatment for idiopathic intractable pruritus ani: A randomised, placebo controlled, crossover study. Gut 2003, 52, 1323–1326. [Google Scholar] [CrossRef] [PubMed]
  70. Makhlough, A.; Ala, S.; Haj-Heydari, Z.; Kashi, Z.; Bari, A. Topical capsaicin therapy for uremic pruritus in patients on hemodialysis. Iran. J. Kidney Dis. 2010, 4, 137–140. [Google Scholar] [PubMed]
  71. Gooding, S.M.; Canter, P.H.; Coelho, H.F.; Boddy, K.; Ernst, E. Systematic review of topical capsaicin in the treatment of pruritus. Int. J. Dermatol. 2010, 49, 858–865. [Google Scholar] [CrossRef] [PubMed]
  72. Cruz, F. Mechanisms involved in new therapies for overactive bladder. Urology 2004, 63, 65–73. [Google Scholar] [CrossRef] [PubMed]
  73. de Sèze, M.; Wiart, L.; de Sèze, M.P.; Soyeur, L.; Dosque, J.P.; Blajezewski, S.; Moore, N.; Brochet, B.; Mazaux, J.M.; Barat, M.; et al. Intravesical capsaicin versus resiniferatoxin for the treatment of detrusor hyperreflexia in spinal cord injured patients: A double-blind, randomized, controlled study. J. Urol. 2004, 171, 251–255. [Google Scholar] [CrossRef]
  74. Botonis, P.G.; Miliotis, P.G.; Kounalakis, S.N.; Koskolou, M.D.; Geladas, N.D. Effects of capsaicin application on the skin during resting exposure to temperate and warm conditions. Scand. J. Med. Sci. Sports 2019, 29, 171–179. [Google Scholar] [CrossRef]
  75. Rothenberger, J.; Wittwer, M.; Tschumi, C.; Constantinescu, M.A.; Daigeler, A.; Olariu, R. Quantitative impact analysis of remote ischemic conditioning and capsaicin application on human skin microcirculation. Clin. Hemorheol. Microcirc. 2019, 71, 291–298. [Google Scholar] [CrossRef] [PubMed]
  76. Kawada, T.; Suzuki, T.; Takahashi, M.; Iwai, K. Gastrointestinal absorption and metabolism of capsaicin and dihydrocapsaicin in rats. Toxicol. Appl. Pharmacol. 1984, 72, 449–456. [Google Scholar] [CrossRef] [PubMed]
  77. Sharma, S.K.; Vij, A.S.; Sharma, M. Mechanisms and clinical uses of capsaicin. Eur. J. Pharmacol. 2013, 720, 55–62. [Google Scholar] [CrossRef] [PubMed]
  78. Reilly, C.A.; Crouch, D.J.; Yost, G.S.; Fatah, A.A. Determination of capsaicin, nonivamide, and dihydrocapsaicin in blood and tissue by liquid chromatography-tandem mass spectrometry. J. Anal. Toxicol. 2002, 26, 313–319. [Google Scholar] [CrossRef] [PubMed]
  79. Ilie, M.A.; Caruntu, C.; Tampa, M.; Georgescu, S.R.; Matei, C.; Negrei, C.; Ion, R.M.; Constantin, C.; Neagu, M.; Boda, D. Capsaicin: Physicochemical properties, cutaneous reactions and potential applications in painful and inflammatory conditions. Exp. Ther. Med. 2019, 18, 916–925. [Google Scholar] [CrossRef] [PubMed]
  80. Zhang, S.; Wang, D.; Huang, J.; Hu, Y.; Xu, Y. Application of capsaicin as a potential new therapeutic drug in human cancers. J. Clin. Pharm. Ther. 2020, 45, 16–28. [Google Scholar] [CrossRef] [PubMed]
  81. Qin, L.; Wang, Y.; Gong, Y.; Chen, J.; Xu, B.; Tang, L.; Guo, L.; Xie, J. Capsaicin metabolites and GSH-associated detoxification and biotransformation pathways in human liver microsomes revealed by LC-HRMS/MS with data-mining tools. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2019, 1133, 121843. [Google Scholar] [CrossRef]
  82. Chanda, S.; Bashir, M.; Babbar, S.; Koganti, A.; Bley, K. In vitro hepatic and skin metabolism of capsaicin. Drug Metab. Dispos. 2008, 36, 670–675. [Google Scholar] [CrossRef] [PubMed]
  83. Oyagbemi, A.A.; Saba, A.B.; Azeez, O.I. Capsaicin: A novel chemopreventive molecule and its underlying molecular mechanisms of action. Indian J. Cancer 2010, 47, 53–58. [Google Scholar] [CrossRef]
  84. Suresh, D.; Srinivasan, K. Tissue distribution & elimination of capsaicin, piperine & curcumin following oral intake in rats. Indian J. Med. Res. 2010, 131, 682–691. [Google Scholar]
  85. Reilly, C.A.; Yost, G.S. Metabolism of capsaicinoids by P450 enzymes: A review of recent findings on reaction mechanisms, bio-activation, and detoxification processes. Drug Metab. Rev. 2006, 38, 685–706. [Google Scholar] [CrossRef]
  86. van Eijl, S.; Zhu, Z.; Cupitt, J.; Gierula, M.; Götz, C.; Fritsche, E.; Edwards, R.J. Elucidation of xenobiotic metabolism pathways in human skin and human skin models by proteomic profiling. PLoS ONE 2012, 7, e41721. [Google Scholar] [CrossRef]
  87. Rollyson, W.D.; Stover, C.A.; Brown, K.C.; Perry, H.E.; Stevenson, C.D.; McNees, C.A.; Ball, J.G.; Valentovic, M.A.; Dasgupta, P. Bioavailability of capsaicin and its implications for drug delivery. J. Control Release 2014, 196, 96–105. [Google Scholar] [CrossRef]
  88. Babbar, S.; Marier, J.F.; Mouksassi, M.S.; Beliveau, M.; Vanhove, G.F.; Chanda, S.; Bley, K. Pharmacokinetic analysis of capsaicin after topical administration of a high-concentration capsaicin patch to patients with peripheral neuropathic pain. Ther. Drug Monit. 2009, 31, 502–510. [Google Scholar] [CrossRef]
  89. Zak, A.; Siwinska, N.; Slowikowska, M.; Borowicz, H.; Szpot, P.; Zawadzki, M.; Niedzwiedz, A. The detection of capsaicin and dihydrocapsaicin in horse serum following long-term local administration. BMC Vet. Res. 2018, 14, 193. [Google Scholar] [CrossRef]
  90. Tian, K.; Zhu, J.; Li, M.; Qiu, X. Capsaicin is efficiently transformed by multiple cytochrome P450s from Capsicum fruit-feeding Helicoverpa armigera. Pestic. Biochem. Physiol. 2019, 156, 145–151. [Google Scholar] [CrossRef]
  91. Hanson, S.M.; Newstead, S.; Swartz, K.J.; Sansom, M.S.P. Capsaicin interaction with TRPV1 channels in a lipid bilayer: Molecular dynamics simulation. Biophys. J. 2015, 108, 1425–1434. [Google Scholar] [CrossRef]
  92. Yang, F.; Zheng, J. Understand spiciness: Mechanism of TRPV1 channel activation by capsaicin. Protein Cell 2017, 8, 169–177. [Google Scholar] [CrossRef]
  93. Cheng, Y. TRPV1 and Piezo: The 2021 Nobel Prize in Physiology or Medicine. IUCrJ 2022, 9, 4–5. [Google Scholar] [CrossRef]
  94. Earley, S.; Santana, L.F.; Lederer, W.J. The physiological sensor channels TRP and piezo: Nobel Prize in Physiology or Medicine 2021. Physiol. Rev. 2022, 102, 1153–1158. [Google Scholar] [CrossRef] [PubMed]
  95. Reeh, P.W.; Fischer, M.J. Nobel somatosensations and pain. Pflügers Arch.-Eur. J. Physiol. 2022, 474, 405–420. [Google Scholar] [CrossRef] [PubMed]
  96. Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature 1997, 389, 816–824. [Google Scholar] [CrossRef] [PubMed]
  97. Tominaga, M.; Caterina, M.J.; Malmberg, A.B.; Rosen, T.A.; Gilbert, H.; Skinner, K.; Raumann, B.E.; Basbaum, A.I.; Julius, D. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 1998, 21, 531–543. [Google Scholar] [CrossRef] [PubMed]
  98. Caterina, M.J.; Leffler, A.; Malmberg, A.B.; Martin, W.; Trafton, J.; Petersen-Zeitz, K.; Koltzenburg, M.; Basbaum, A.; Julius, D. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 2000, 288, 306–313. [Google Scholar] [CrossRef] [PubMed]
  99. McKemy, D.D.; Neuhausser, W.M.; Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 2002, 416, 52–58. [Google Scholar] [CrossRef] [PubMed]
  100. Peier, A.M.; Moqrich, A.; Hergarden, A.C.; Reeve, A.J.; Andersson, D.A.; Story, G.M.; Earley, T.J.; Dragoni, I.; McIntyre, P.; Bevan, S. A TRP channel that senses cold stimuli and menthol. Cell 2002, 108, 705–715. [Google Scholar] [CrossRef] [PubMed]
  101. Coste, B.; Mathur, J.; Schmidt, M.; Earley, T.J.; Ranade, S.; Petrus, M.J.; Dubin, A.E.; Patapoutian, A. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 2010, 330, 55–60. [Google Scholar] [CrossRef] [PubMed]
  102. Frias, B.; Merighi, A. Capsaicin, Nociception and Pain. Molecules 2016, 21, 797. [Google Scholar] [CrossRef] [PubMed]
  103. Aghazadeh Tabrizi, M.; Baraldi, P.G.; Baraldi, S.; Gessi, S.; Merighi, S.; Borea, P.A. Medicinal Chemistry, Pharmacology, and Clinical Implications of TRPV1 Receptor Antagonists. Med. Res. Rev. 2017, 37, 936–983. [Google Scholar] [CrossRef]
  104. Frey, E.; Karney-Grobe, S.; Krolak, T.; Milbrandt, J.; DiAntonio, A. TRPV1 Agonist, Capsaicin, Induces Axon Outgrowth after Injury via Ca(2+)/PKA Signaling. eNeuro 2018, 5, ENEURO.0095-18.2018. [Google Scholar] [CrossRef]
  105. Zhou, Y.; Zhou, Z.S.; Zhao, Z.Q. PKC regulates capsaicin-induced currents of dorsal root ganglion neurons in rats. Neuropharmacology 2001, 41, 601–608. [Google Scholar] [CrossRef] [PubMed]
  106. Lee, T.H.; Lee, J.W.; Osaka, T.; Kobayashi, A.; Namba, Y.; Inoue, S.; Kimura, S. Lack of integrative control of body temperature after capsaicin administration. Korean J. Intern. Med. 2000, 15, 103–108. [Google Scholar] [CrossRef] [PubMed]
  107. Rosenberger, D.C.; Binzen, U.; Treede, R.-D.; Greffrath, W. The capsaicin receptor TRPV1 is the first line defense protecting from acute non damaging heat: A translational approach. J. Transl. Med. 2020, 18, 28. [Google Scholar] [CrossRef] [PubMed]
  108. Tominaga, M.; Tominaga, T. Structure and function of TRPV1. Pflug. Arch. 2005, 451, 143–150. [Google Scholar] [CrossRef]
  109. Hwang, M.K.; Bode, A.M.; Byun, S.; Song, N.R.; Lee, H.J.; Lee, K.W.; Dong, Z. Cocarcinogenic effect of capsaicin involves activation of EGFR signaling but not TRPV1. Cancer Res. 2010, 70, 6859–6869. [Google Scholar] [CrossRef] [PubMed]
  110. Zhang, C.; Ye, L.; Zhang, Q.; Wu, F.; Wang, L. The role of TRPV1 channels in atherosclerosis. Channels 2020, 14, 141–150. [Google Scholar] [CrossRef] [PubMed]
  111. Munjuluri, S.; Wilkerson, D.A.; Sooch, G.; Chen, X.; White, F.A.; Obukhov, A.G. Capsaicin and TRPV1 Channels in the Cardiovascular System: The Role of Inflammation. Cells 2021, 11, 18. [Google Scholar] [CrossRef] [PubMed]
  112. Hoebart, C.; Rojas-Galvan, N.S.; Ciotu, C.I.; Aykac, I.; Reissig, L.F.; Weninger, W.J.; Kiss, A.; Podesser, B.K.; Fischer, M.J.M.; Heber, S. No functional TRPA1 in cardiomyocytes. Acta Physiol. 2021, 232, e13659. [Google Scholar] [CrossRef] [PubMed]
  113. Yoshie, K.; Rajendran, P.S.; Massoud, L.; Mistry, J.; Swid, M.A.; Wu, X.; Sallam, T.; Zhang, R.; Goldhaber, J.I.; Salavatian, S.; et al. Cardiac TRPV1 afferent signaling promotes arrhythmogenic ventricular remodeling after myocardial infarction. JCI Insight 2020, 5, e124477. [Google Scholar] [CrossRef]
  114. Kim, J.H. The Emerging Role of TRPV1 in Airway Inflammation. Allergy Asthma Immunol. Res. 2018, 10, 187–188. [Google Scholar] [CrossRef]
  115. Baxter, M.; Eltom, S.; Dekkak, B.; Yew-Booth, L.; Dubuis, E.D.; Maher, S.A.; Belvisi, M.G.; Birrell, M.A. Role of transient receptor potential and pannexin channels in cigarette smoke-triggered ATP release in the lung. Thorax 2014, 69, 1080–1089. [Google Scholar] [CrossRef] [PubMed]
  116. McGarvey, L.P.; Butler, C.A.; Stokesberry, S.; Polley, L.; McQuaid, S.; Abdullah, H.; Ashraf, S.; McGahon, M.K.; Curtis, T.M.; Arron, J.; et al. Increased expression of bronchial epithelial transient receptor potential vanilloid 1 channels in patients with severe asthma. J. Allergy Clin. Immunol. 2014, 133, 704–712.e4. [Google Scholar] [CrossRef] [PubMed]
  117. Du, Q.; Liao, Q.; Chen, C.; Yang, X.; Xie, R.; Xu, J. The Role of Transient Receptor Potential Vanilloid 1 in Common Diseases of the Digestive Tract and the Cardiovascular and Respiratory System. Front. Physiol. 2019, 10, 1064. [Google Scholar] [CrossRef] [PubMed]
  118. Caruntu, C.; Negrei, C.; Ilie Ghita, M.; Caruntu, A.; Badarau, B.; ioan Buraga, I.B.; Boda, D.; Albu, A.; Brănişteanu, D. Capsaicin, a hot topic in skin pharmacology and physiology. Farmacia 2015, 63, 487–491. [Google Scholar]
  119. Inoue, K.; Koizumi, S.; Fuziwara, S.; Denda, S.; Inoue, K.; Denda, M. Functional vanilloid receptors in cultured normal human epidermal keratinocytes. Biochem. Biophys. Res. Commun. 2002, 291, 124–129. [Google Scholar] [CrossRef] [PubMed]
  120. Ständer, S.; Moormann, C.; Schumacher, M.; Buddenkotte, J.; Artuc, M.; Shpacovitch, V.; Brzoska, T.; Lippert, U.; Henz, B.M.; Luger, T.A.; et al. Expression of vanilloid receptor subtype 1 in cutaneous sensory nerve fibers, mast cells, and epithelial cells of appendage structures. Exp. Dermatol. 2004, 13, 129–139. [Google Scholar] [CrossRef] [PubMed]
  121. Yang, T.J.; Yu, Y.; Yang, J.Y.; Li, J.J.; Zhu, J.Y.; Vieira, J.A.C.; Jiang, Q. Involvement of transient receptor potential channels in ocular diseases: A narrative review. Ann. Transl. Med. 2022, 10, 839. [Google Scholar] [CrossRef] [PubMed]
  122. Sappington, R.M.; Sidorova, T.; Long, D.J.; Calkins, D.J. TRPV1: Contribution to retinal ganglion cell apoptosis and increased intracellular Ca2+ with exposure to hydrostatic pressure. Investig. Ophthalmol. Vis. Sci. 2009, 50, 717–728. [Google Scholar] [CrossRef] [PubMed]
  123. Wang, F.; Xue, Y.; Fu, L.; Wang, Y.; He, M.; Zhao, L.; Liao, X. Extraction, purification, bioactivity and pharmacological effects of capsaicin: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 5322–5348. [Google Scholar] [CrossRef]
  124. Scheau, C.; Badarau, I.A.; Caruntu, C.; Mihai, G.L.; Didilescu, A.C.; Constantin, C.; Neagu, M. Capsaicin: Effects on the Pathogenesis of Hepatocellular Carcinoma. Molecules 2019, 24, 2350. [Google Scholar] [CrossRef]
  125. Benítez-Angeles, M.; Morales-Lázaro, S.L.; Juárez-González, E.; Rosenbaum, T. TRPV1: Structure, Endogenous Agonists, and Mechanisms. Int. J. Mol. Sci. 2020, 21, 3421. [Google Scholar] [CrossRef] [PubMed]
  126. Caballero, J. A new era for the design of TRPV1 antagonists and agonists with the use of structural information and molecular docking of capsaicin-like compounds. J. Enzym. Inhib. Med. Chem. 2022, 37, 2169–2178. [Google Scholar] [CrossRef] [PubMed]
  127. Szallasi, A.; Blumberg, P.M. Resiniferatoxin, a phorbol-related diterpene, acts as an ultrapotent analog of capsaicin, the irritant constituent in red pepper. Neuroscience 1989, 30, 515–520. [Google Scholar] [CrossRef] [PubMed]
  128. Raisinghani, M.; Pabbidi, R.M.; Premkumar, L.S. Activation of transient receptor potential vanilloid 1 (TRPV1) by resiniferatoxin. J. Physiol. 2005, 567, 771–786. [Google Scholar] [CrossRef] [PubMed]
  129. Duarte, Y.; Cáceres, J.; Sepúlveda, R.V.; Arriagada, D.; Olivares, P.; Díaz-Franulic, I.; Stehberg, J.; González-Nilo, F. Novel TRPV1 Channel Agonists with Faster and More Potent Analgesic Properties Than Capsaicin. Front. Pharmacol. 2020, 11, 1040. [Google Scholar] [CrossRef]
  130. Căruntu, C.; Boda, D. Evaluation through in vivo reflectance confocal microscopy of the cutaneous neurogenic inflammatory reaction induced by capsaicin in human subjects. J. Biomed. Opt. 2012, 17, 085003. [Google Scholar] [CrossRef] [PubMed]
  131. Jung, M.Y.; Kang, H.J.; Moon, A. Capsaicin-induced apoptosis in SK-Hep-1 hepatocarcinoma cells involves Bcl-2 downregulation and caspase-3 activation. Cancer Lett. 2001, 165, 139–145. [Google Scholar] [CrossRef] [PubMed]
  132. Hail, N., Jr.; Lotan, R. Examining the role of mitochondrial respiration in vanilloid-induced apoptosis. J. Natl. Cancer Inst. 2002, 94, 1281–1292. [Google Scholar] [CrossRef] [PubMed]
  133. Kim, C.S.; Park, W.H.; Park, J.Y.; Kang, J.H.; Kim, M.O.; Kawada, T.; Yoo, H.; Han, I.S.; Yu, R. Capsaicin, a spicy component of hot pepper, induces apoptosis by activation of the peroxisome proliferator-activated receptor gamma in HT-29 human colon cancer cells. J. Med. Food 2004, 7, 267–273. [Google Scholar] [CrossRef]
  134. Lo, Y.C.; Yang, Y.C.; Wu, I.C.; Kuo, F.C.; Liu, C.M.; Wang, H.W.; Kuo, C.H.; Wu, J.Y.; Wu, D.C. Capsaicin-induced cell death in a human gastric adenocarcinoma cell line. World J. Gastroenterol. 2005, 11, 6254–6257. [Google Scholar] [CrossRef]
  135. Mori, A.; Lehmann, S.; O’Kelly, J.; Kumagai, T.; Desmond, J.C.; Pervan, M.; McBride, W.H.; Kizaki, M.; Koeffler, H.P. Capsaicin, a component of red peppers, inhibits the growth of androgen-independent, p53 mutant prostate cancer cells. Cancer Res. 2006, 66, 3222–3229. [Google Scholar] [CrossRef] [PubMed]
  136. Athanasiou, A.; Smith, P.A.; Vakilpour, S.; Kumaran, N.M.; Turner, A.E.; Bagiokou, D.; Layfield, R.; Ray, D.E.; Westwell, A.D.; Alexander, S.P.; et al. Vanilloid receptor agonists and antagonists are mitochondrial inhibitors: How vanilloids cause non-vanilloid receptor mediated cell death. Biochem. Biophys. Res. Commun. 2007, 354, 50–55. [Google Scholar] [CrossRef] [PubMed]
  137. Pramanik, K.C.; Boreddy, S.R.; Srivastava, S.K. Role of mitochondrial electron transport chain complexes in capsaicin mediated oxidative stress leading to apoptosis in pancreatic cancer cells. PLoS ONE 2011, 6, e20151. [Google Scholar] [CrossRef] [PubMed]
  138. Yang, R.; Xiong, Z.; Liu, C.; Liu, L. Inhibitory effects of capsaicin on voltage-gated potassium channels by TRPV1-independent pathway. Cell. Mol. Neurobiol. 2014, 34, 565–576. [Google Scholar] [CrossRef] [PubMed]
  139. Du, X.; Gamper, N. Potassium channels in peripheral pain pathways: Expression, function and therapeutic potential. Curr. Neuropharmacol. 2013, 11, 621–640. [Google Scholar] [CrossRef] [PubMed]
  140. Oz, M.; Lorke, D.E.; Howarth, F.C. Transient receptor potential vanilloid 1 (TRPV1)-independent actions of capsaicin on cellular excitability and ion transport. Med. Res. Rev. 2023, 43, 1038–1067. [Google Scholar] [CrossRef] [PubMed]
  141. Mohapatra, D.P.; Nau, C. Regulation of Ca2+-dependent desensitization in the vanilloid receptor TRPV1 by calcineurin and cAMP-dependent protein kinase. J. Biol. Chem. 2005, 280, 13424–13432. [Google Scholar] [CrossRef] [PubMed]
  142. Shuba, Y.M. Beyond Neuronal Heat Sensing: Diversity of TRPV1 Heat-Capsaicin Receptor-Channel Functions. Front. Cell. Neurosci. 2021, 14, 612480. [Google Scholar] [CrossRef] [PubMed]
  143. Burks, T.F.; Buck, S.H.; Miller, M.S. Mechanisms of depletion of substance P by capsaicin. Fed. Proc. 1985, 44, 2531–2534. [Google Scholar]
  144. Dray, A. Mechanism of action of capsaicin-like molecules on sensory neurons. Life Sci. 1992, 51, 1759–1765. [Google Scholar] [CrossRef]
  145. Ding, H.; Kiguchi, N.; Dobbins, M.; Romero-Sandoval, E.A.; Kishioka, S.; Ko, M.-C. Nociceptin Receptor-Related Agonists as Safe and Non-addictive Analgesics. Drugs 2023, 83, 771–793. [Google Scholar] [CrossRef]
  146. Liu, L.; Oortgiesen, M.; Li, L.; Simon, S.A. Capsaicin inhibits activation of voltage-gated sodium currents in capsaicin-sensitive trigeminal ganglion neurons. J. Neurophysiol. 2001, 85, 745–758. [Google Scholar] [CrossRef] [PubMed]
  147. Pasierski, M.; Szulczyk, B. Capsaicin inhibits sodium currents and epileptiform activity in prefrontal cortex pyramidal neurons. Neurochem. Int. 2020, 135, 104709. [Google Scholar] [CrossRef]
  148. Nolano, M.; Simone, D.A.; Wendelschafer-Crabb, G.; Johnson, T.; Hazen, E.; Kennedy, W.R. Topical capsaicin in humans: Parallel loss of epidermal nerve fibers and pain sensation. Pain 1999, 81, 135–145. [Google Scholar] [CrossRef] [PubMed]
  149. Guo, R.; Qiu, H.; Li, H.; Ma, D.; Guan, Y.; Wang, Y. The preemptive analgesic effect of capsaicin involves attenuations of epidermal keratinocytes proliferation and expression of pro-inflammatory mediators after plantar incision in rats. J. Pain. Res. 2023, 16, 141–149. [Google Scholar] [CrossRef]
  150. Goodwin, B.; Chiplunkar, M.; Salerno, R.; Coombs, K.; Sannoh, U.; Shah, V.; Averell, N.; Al-Shebab, U.; Janora, D. Topical capsaicin for the management of painful diabetic neuropathy: A narrative systematic review. Pain Manag. 2023, 13, 309–316. [Google Scholar] [CrossRef] [PubMed]
  151. Vachiramon, V.; Tanratana, P.; Anuntrangsee, T.; Palakornkitti, P.; Yeesibsean, N.; Kungvalpivat, P.; Fabi, S. The role of topical capsaicin gel in pain management during microfocused ultrasound treatment for neck laxity. Skin Res. Technol. 2023, 29, e13240. [Google Scholar] [CrossRef]
  152. Peel, J.; John, K.; Page, J.; Jeffries, O.; Heffernan, S.M.; Tallent, J.; Waldron, M. Topical application of isolated menthol and combined menthol-capsaicin creams: Exercise tolerance, thermal perception, pain, attentional focus and thermoregulation in the heat. Eur. J. Sport. Sci. 2023, 23, 2038–2048. [Google Scholar] [CrossRef]
  153. Berger, A.; Henderson, M.; Nadoolman, W.; Duffy, V.; Cooper, D.; Saberski, L.; Bartoshuk, L. Oral capsaicin provides temporary relief for oral mucositis pain secondary to chemotherapy/radiation therapy. J. Pain. Symptom Manag. 1995, 10, 243–248. [Google Scholar] [CrossRef]
  154. Derry, S.; Wiffen, P.J.; Kalso, E.A.; Bell, R.F.; Aldington, D.; Phillips, T.; Gaskell, H.; Moore, R.A. Topical analgesics for acute and chronic pain in adults—An overview of Cochrane Reviews. Cochrane Database Syst. Rev. 2017, 5, Cd008609. [Google Scholar] [CrossRef]
  155. Wang, X.R.; Gao, S.Q.; Niu, X.Q.; Li, L.J.; Ying, X.Y.; Hu, Z.J.; Gao, J.Q. Capsaicin-loaded nanolipoidal carriers for topical application: Design, characterization, and in vitro/in vivo evaluation. Int. J. Nanomed. 2017, 12, 3881–3898. [Google Scholar] [CrossRef] [PubMed]
  156. Anantaworasakul, P.; Anuchapreeda, S.; Yotsawimonwat, S.; Naksuriya, O.; Lekawanvijit, S.; Tovanabutra, N.; Anantaworasakul, P.; Wattanasri, W.; Buranapreecha, N.; Ampasavate, C. Nanomaterial Lipid-Based Carrier for Non-Invasive Capsaicin Delivery; Manufacturing Scale-Up and Human Irritation Assessment. Molecules 2020, 25, 5575. [Google Scholar] [CrossRef] [PubMed]
  157. Contri, R.V.; Frank, L.A.; Kaiser, M.; Pohlmann, A.R.; Guterres, S.S. The use of nanoencapsulation to decrease human skin irritation caused by capsaicinoids. Int. J. Nanomed. 2014, 9, 951–962. [Google Scholar] [CrossRef]
  158. Raza, K.; Singh, B.; Mahajan, A.; Negi, P.; Bhatia, A.; Katare, O.P. Design and evaluation of flexible membrane vesicles (FMVs) for enhanced topical delivery of capsaicin. J. Drug Target. 2011, 19, 293–302. [Google Scholar] [CrossRef] [PubMed]
  159. Hudita, A.; Galateanu, B.; Costache, M.; Negrei, C.; Ion, R.M.; Iancu, L.; Ginghina, O. In Vitro Cytotoxic Protective Effect of Alginate-Encapsulated Capsaicin Might Improve Skin Side Effects Associated with the Topical Application of Capsaicin. Molecules 2021, 26, 1455. [Google Scholar] [CrossRef] [PubMed]
  160. Raza, K.; Shareef, M.A.; Singal, P.; Sharma, G.; Negi, P.; Katare, O.P. Lipid-based capsaicin-loaded nano-colloidal biocompatible topical carriers with enhanced analgesic potential and decreased dermal irritation. J. Liposome Res. 2014, 24, 290–296. [Google Scholar] [CrossRef] [PubMed]
  161. Don, P.C. Topical capsaicin for treatment of neuralgia associated with herpes zoster infection. J. Am. Acad. Dermatol. 1988, 18, 1135–1136. [Google Scholar] [CrossRef] [PubMed]
  162. Lincoff, N.S.; Rath, P.P.; Hirano, M. The treatment of periocular and facial pain with topical capsaicin. J. Neuroophthalmol. 1998, 18, 17–20. [Google Scholar] [CrossRef] [PubMed]
  163. Marks, J.G., Jr. Treatment of apocrine chromhidrosis with topical capsaicin. J. Am. Acad. Dermatol. 1989, 21, 418–420. [Google Scholar] [CrossRef]
  164. Cheshire, W.P.; Snyder, C.R. Treatment of reflex sympathetic dystrophy with topical capsaicin. Case report. Pain 1990, 42, 307–311. [Google Scholar] [CrossRef]
  165. Treatment of painful diabetic neuropathy with topical capsaicin. A multicenter, double-blind, vehicle-controlled study. The Capsaicin Study Group. Arch. Intern. Med. 1991, 151, 2225–2229. [CrossRef]
  166. Tandan, R.; Lewis, G.A.; Krusinski, P.B.; Badger, G.B.; Fries, T.J. Topical capsaicin in painful diabetic neuropathy. Controlled study with long-term follow-up. Diabetes Care 1992, 15, 8–14. [Google Scholar] [CrossRef]
  167. McCarthy, G.M.; McCarty, D.J. Effect of topical capsaicin in the therapy of painful osteoarthritis of the hands. J. Rheumatol. 1992, 19, 604–607. [Google Scholar] [PubMed]
  168. Leibsohn, E. Treatment of notalgia paresthetica with capsaicin. Cutis 1992, 49, 335–336. [Google Scholar] [PubMed]
  169. Watson, C.P.; Tyler, K.L.; Bickers, D.R.; Millikan, L.E.; Smith, S.; Coleman, E. A randomized vehicle-controlled trial of topical capsaicin in the treatment of postherpetic neuralgia. Clin. Ther. 1993, 15, 510–526. [Google Scholar] [CrossRef] [PubMed]
  170. Ellis, C.N.; Berberian, B.; Sulica, V.I.; Dodd, W.A.; Jarratt, M.T.; Katz, H.I.; Prawer, S.; Krueger, G.; Rex, I.H., Jr.; Wolf, J.E. A double-blind evaluation of topical capsaicin in pruritic psoriasis. J. Am. Acad. Dermatol. 1993, 29, 438–442. [Google Scholar] [CrossRef] [PubMed]
  171. Dini, D.; Bertelli, G.; Gozza, A.; Forno, G.G. Treatment of the post-mastectomy pain syndrome with topical capsaicin. Pain 1993, 54, 223–226. [Google Scholar] [CrossRef] [PubMed]
  172. Marks, D.R.; Rapoport, A.; Padla, D.; Weeks, R.; Rosum, R.; Sheftell, F.; Arrowsmith, F. A double-blind placebo-controlled trial of intranasal capsaicin for cluster headache. Cephalalgia 1993, 13, 114–116. [Google Scholar] [CrossRef] [PubMed]
  173. Lotti, T.; Teofoli, P.; Tsampau, D. Treatment of aquagenic pruritus with topical capsaicin cream. J. Am. Acad. Dermatol. 1994, 30, 232–235. [Google Scholar] [CrossRef]
  174. Muhiddin, K.A.; Gallen, I.W.; Harries, S.; Pearce, V.R. The use of capsaicin cream in a case of erythromelalgia. Postgrad. Med. J. 1994, 70, 841–843. [Google Scholar] [CrossRef]
  175. Epstein, J.B.; Marcoe, J.H. Topical application of capsaicin for treatment of oral neuropathic pain and trigeminal neuralgia. Oral Surg. Oral Med. Oral Pathol. 1994, 77, 135–140. [Google Scholar] [CrossRef] [PubMed]
  176. Mathias, B.J.; Dillingham, T.R.; Zeigler, D.N.; Chang, A.S.; Belandres, P.V. Topical capsaicin for chronic neck pain. A pilot study. Am. J. Phys. Med. Rehabil. 1995, 74, 39–44. [Google Scholar] [CrossRef] [PubMed]
  177. Puig, L.; Alegre, M.; de Moragas, J.M. Treatment of meralgia paraesthetica with topical capsaicin. Dermatology 1995, 191, 73–74. [Google Scholar] [CrossRef] [PubMed]
  178. Iinuma, T.; Sawada, Y. Topical application of capsaicin and flap survival. Br. J. Plast. Surg. 1996, 49, 319–320. [Google Scholar] [CrossRef] [PubMed]
  179. Frucht-Pery, J.; Feldman, S.T.; Brown, S.I. The use of capsaicin in herpes zoster ophthalmicus neuralgia. Acta Ophthalmol. Scand. 1997, 75, 311–313. [Google Scholar] [CrossRef] [PubMed]
  180. Robbins, W.R.; Staats, P.S.; Levine, J.; Fields, H.L.; Allen, R.W.; Campbell, J.N.; Pappagallo, M. Treatment of intractable pain with topical large-dose capsaicin: Preliminary report. Anesth. Analg. 1998, 86, 579–583. [Google Scholar] [CrossRef] [PubMed]
  181. Weisshaar, E.; Heyer, G.; Forster, C.; Handwerker, H.O. Effect of topical capsaicin on the cutaneous reactions and itching to histamine in atopic eczema compared to healthy skin. Arch. Dermatol. Res. 1998, 290, 306–311. [Google Scholar] [CrossRef] [PubMed]
  182. Baudoin, T.; Kalogjera, L.; Hat, J. Capsaicin significantly reduces sinonasal polyps. Acta Otolaryngol. 2000, 120, 307–311. [Google Scholar] [CrossRef]
  183. Sandford, P.R.; Benes, P.S. Use of capsaicin in the treatment of radicular pain in spinal cord injury. J. Spinal Cord. Med. 2000, 23, 238–243. [Google Scholar] [CrossRef]
  184. Ständer, S.; Luger, T.; Metze, D. Treatment of prurigo nodularis with topical capsaicin. J. Am. Acad. Dermatol. 2001, 44, 471–478. [Google Scholar] [CrossRef]
  185. Ribbers, G.M.; Stam, H.J. Complex regional pain syndrome type I treated with topical capsaicin: A case report. Arch. Phys. Med. Rehabil. 2001, 82, 851–852. [Google Scholar] [CrossRef]
  186. Marsella, R.; Nicklin, C.F.; Melloy, C. The effects of capsaicin topical therapy in dogs with atopic dermatitis: A randomized, double-blinded, placebo-controlled, cross-over clinical trial. Vet. Dermatol. 2002, 13, 131–139. [Google Scholar] [CrossRef] [PubMed]
  187. McPartland, J.M. Use of capsaicin cream for abdominal wall scar pain. Am. Fam. Physician 2002, 65, 2211; author reply 2212. [Google Scholar]
  188. Weisshaar, E.; Dunker, N.; Gollnick, H. Topical capsaicin therapy in humans with hemodialysis-related pruritus. Neurosci. Lett. 2003, 345, 192–194. [Google Scholar] [CrossRef] [PubMed]
  189. Dux, M.; Sántha, P.; Jancsó, G. Capsaicin-sensitive neurogenic sensory vasodilatation in the dura mater of the rat. J. Physiol. 2003, 552, 859–867. [Google Scholar] [CrossRef] [PubMed]
  190. Perkins, P.; Morgan, S.; Closs, S.P. Topical capsaicin for saphenous neuralgia. J. Pain. Symptom Manag. 2003, 26, 785–786. [Google Scholar] [CrossRef] [PubMed]
  191. Lazzeri, M.; Spinelli, M.; Zanollo, A.; Turini, D. Intravesical vanilloids and neurogenic incontinence: Ten years experience. Urol. Int. 2004, 72, 145–149. [Google Scholar] [CrossRef] [PubMed]
  192. Petruzzi, M.; Lauritano, D.; De Benedittis, M.; Baldoni, M.; Serpico, R. Systemic capsaicin for burning mouth syndrome: Short-term results of a pilot study. J. Oral. Pathol. Med. 2004, 33, 111–114. [Google Scholar] [CrossRef] [PubMed]
  193. Yosipovitch, G.; Mengesha, Y.; Facliaru, D.; David, M. Topical capsaicin for the treatment of acute lipodermatosclerosis and lobular panniculitis. J. Dermatol. Treat. 2005, 16, 178–180. [Google Scholar] [CrossRef] [PubMed]
  194. Kim, K.S.; Nam, Y.M. The analgesic effects of capsicum plaster at the Zusanli point after abdominal hysterectomy. Anesth. Analg. 2006, 103, 709–713. [Google Scholar] [CrossRef]
  195. Harada, N.; Okajima, K. Effect of topical application of capsaicin and its related compounds on dermal insulin-like growth factor-I levels in mice and on facial skin elasticity in humans. Growth Horm. IGF Res. 2007, 17, 171–176. [Google Scholar] [CrossRef] [PubMed]
  196. Simpson, D.M.; Estanislao, L.; Brown, S.J.; Sampson, J. An open-label pilot study of high-concentration capsaicin patch in painful HIV neuropathy. J. Pain. Symptom Manag. 2008, 35, 299–306. [Google Scholar] [CrossRef] [PubMed]
  197. Kim, K.S.; Kim, K.N.; Hwang, K.G.; Park, C.J. Capsicum plaster at the Hegu point reduces postoperative analgesic requirement after orthognathic surgery. Anesth. Analg. 2009, 108, 992–996. [Google Scholar] [CrossRef] [PubMed]
  198. Cianchetti, C. Capsaicin jelly against migraine pain. Int. J. Clin. Pract. 2010, 64, 457–459. [Google Scholar] [CrossRef] [PubMed]
  199. Chrubasik, S.; Weiser, T.; Beime, B. Effectiveness and safety of topical capsaicin cream in the treatment of chronic soft tissue pain. Phytother. Res. 2010, 24, 1877–1885. [Google Scholar] [CrossRef] [PubMed]
  200. Redington, K.L.; Disenhouse, T.; Strantzas, S.C.; Gladstone, R.; Wei, C.; Tropak, M.B.; Dai, X.; Manlhiot, C.; Li, J.; Redington, A.N. Remote cardioprotection by direct peripheral nerve stimulation and topical capsaicin is mediated by circulating humoral factors. Basic. Res. Cardiol. 2012, 107, 241. [Google Scholar] [CrossRef]
  201. Sayanlar, J.; Guleyupoglu, N.; Portenoy, R.; Ashina, S. Trigeminal postherpetic neuralgia responsive to treatment with capsaicin 8% topical patch: A case report. J. Headache Pain 2012, 13, 587–589. [Google Scholar] [CrossRef] [PubMed]
  202. Lee, G.R.; Shin, M.K.; Yoon, D.J.; Kim, A.R.; Yu, R.; Park, N.H.; Han, I.S. Topical application of capsaicin reduces visceral adipose fat by affecting adipokine levels in high-fat diet-induced obese mice. Obesity 2013, 21, 115–122. [Google Scholar] [CrossRef]
  203. Casanueva, B.; Rodero, B.; Quintial, C.; Llorca, J.; González-Gay, M.A. Short-term efficacy of topical capsaicin therapy in severely affected fibromyalgia patients. Rheumatol. Int. 2013, 33, 2665–2670. [Google Scholar] [CrossRef]
  204. Maihöfner, C.G.; Heskamp, M.L. Treatment of peripheral neuropathic pain by topical capsaicin: Impact of pre-existing pain in the QUEPP-study. Eur. J. Pain 2014, 18, 671–679. [Google Scholar] [CrossRef]
  205. Zis, P.; Apsokardos, A.; Isaia, C.; Sykioti, P.; Vadalouca, A. Posttraumatic and postsurgical neuropathic pain responsive to treatment with capsaicin 8% topical patch. Pain. Physician 2014, 17, E213–E218. [Google Scholar]
  206. Kumar Sarwa, K.; Rudrapal, M.; Mazumder, B. Topical ethosomal capsaicin attenuates edema and nociception in arthritic rats. Drug Deliv. 2015, 22, 1043–1052. [Google Scholar] [CrossRef]
  207. Teixeira, M.J.; Menezes, L.M.; Silva, V.; Galhardoni, R.; Sasson, J.; Okada, M.; Duarte, K.P.; Yeng, L.T.; Andrade, D.C. Liposomal topical capsaicin in post-herpetic neuralgia: A safety pilot study. Arq. Neuropsiquiatr. 2015, 73, 237–240. [Google Scholar] [CrossRef]
  208. Lu, S.; Baad-Hansen, L.; Zhang, Z.; Svensson, P. Spatial and Temporal Effects of Capsaicin and Menthol on Intraoral Somatosensory Sensitivity. J. Oral. Facial Pain. Headache 2015, 29, 257–264. [Google Scholar] [CrossRef]
  209. Zeidler, C.; Metze, D.; Ständer, S. Successful treatment of lichen amyloidosis using capsaicin 8% patch. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 1236–1238. [Google Scholar] [CrossRef] [PubMed]
  210. Dezieck, L.; Hafez, Z.; Conicella, A.; Blohm, E.; O’Connor, M.J.; Schwarz, E.S.; Mullins, M.E. Resolution of cannabis hyperemesis syndrome with topical capsaicin in the emergency department: A case series. Clin. Toxicol. 2017, 55, 908–913. [Google Scholar] [CrossRef] [PubMed]
  211. Jørgensen, M.R.; Pedersen, A.M. Analgesic effect of topical oral capsaicin gel in burning mouth syndrome. Acta Odontol. Scand. 2017, 75, 130–136. [Google Scholar] [CrossRef]
  212. Baron, R.; Treede, R.D.; Birklein, F.; Cegla, T.; Freynhagen, R.; Heskamp, M.L.; Kern, K.U.; Maier, C.; Rolke, R.; Seddigh, S.; et al. Treatment of painful radiculopathies with capsaicin 8% cutaneous patch. Curr. Med. Res. Opin. 2017, 33, 1401–1411. [Google Scholar] [CrossRef]
  213. Bae, S.; Yu, J.; Jeong, H.; Oh, T. Anti-pruritic effect of topical capsaicin against histamine-induced pruritus on canine skin. Pol. J. Vet. Sci. 2018, 21, 789–796. [Google Scholar] [CrossRef]
  214. Járomi, P.; Garab, D.; Hartmann, P.; Bodnár, D.; Nyíri, S.; Sántha, P.; Boros, M.; Jancsó, G.; Szabó, A. Capsaicin-induced rapid neutrophil leukocyte activation in the rat urinary bladder microcirculatory bed. Neurourol. Urodyn. 2018, 37, 690–698. [Google Scholar] [CrossRef]
  215. Romero, V.; Lara, J.R.; Otero-Espinar, F.; Salgado, M.H.; Modolo, N.S.P.; Barros, G.A.M. [Capsaicin topical cream (8%) for the treatment of myofascial pain syndrome]. Braz. J. Anesthesiol. 2019, 69, 432–438. [Google Scholar] [CrossRef]
  216. Kocak, A.O.; Dogruyol, S.; Akbas, I.; Menekse, T.S.; Gur, S.T.A.; Kocak, M.B.; Cekmen, B.; Orun, S.; Cakir, Z. Comparison of topical capsaicin and topical piroxicam in the treatment of acute trauma-induced pain: A randomized double-blind trial. Am. J. Emerg. Med. 2020, 38, 1767–1771. [Google Scholar] [CrossRef]
  217. de Lourdes Medina-Contreras, J.M.; Mailloux-Salinas, P.; Colado-Velazquez, J.I.; Gómez-Viquez, N.; Velázquez-Espejel, R.; Del Carmen Susunaga-Notario, A.; Arias-Chávez, D.J.; Bravo, G. Topical capsaicin cream with moderate exercise protects against hepatic steatosis, dyslipidemia and increased blood pressure in hypoestrogenic obese rats. J. Sci. Food Agric. 2020, 100, 3212–3219. [Google Scholar] [CrossRef] [PubMed]
  218. Agoons, B.B.; Dehayem Yefou, M.; Katte, J.C.; Etoa Etoga, M.C.; Agoons, D.D.; Yepnjio, F.; Boli, A.; Wasnyo, Y.; Sobngwi, E.; Mbanya, J.C. Effect of Topical Capsaicin on Painful Sensory Peripheral Neuropathy in Patients with Type 2 Diabetes: A Double-Blind Placebo-Controlled Randomised Clinical Trial. Cureus 2020, 12, e11147. [Google Scholar] [CrossRef]
  219. Wang, S.; Bian, C.; Yang, J.; Arora, V.; Gao, Y.; Wei, F.; Chung, M.K. Ablation of TRPV1+ Afferent Terminals by Capsaicin Mediates Long-Lasting Analgesia for Trigeminal Neuropathic Pain. eNeuro 2020, 7, ENEURO.0118-20.2020. [Google Scholar] [CrossRef]
  220. Chan, T.C.; Lee, M.S.; Huang, W.C.; Chang, W.Y.; Krueger, J.G.; Tsai, T.F. Capsaicin attenuates imiquimod-induced epidermal hyperplasia and cutaneous inflammation in a murine model of psoriasis. Biomed. Pharmacother. 2021, 141, 111950. [Google Scholar] [CrossRef] [PubMed]
  221. Hoesli, R.C.; Wingo, M.L.; Wajsberg, B.; Bastian, R.W. Topical Capsaicin for the Treatment of Sensory Neuropathic Cough. OTO Open 2021, 5, 2473974x211065668. [Google Scholar] [CrossRef] [PubMed]
  222. Kum, V.; Bell, A.; Fang, W.; VanWert, E. Efficacy of topical capsaicin for cannabinoid hyperemesis syndrome in a pediatric and adult emergency department. Am. J. Emerg. Med. 2021, 49, 343–351. [Google Scholar] [CrossRef]
  223. Lo Vecchio, S.; Andersen, H.H.; Elberling, J.; Arendt-Nielsen, L. Sensory defunctionalization induced by 8% topical capsaicin treatment in a model of ultraviolet-B-induced cutaneous hyperalgesia. Exp. Brain Res. 2021, 239, 2873–2886. [Google Scholar] [CrossRef]
  224. Van Gerven, L.; Steelant, B.; Cools, L.; Callebaut, I.; Backaert, W.; de Hoon, J.; Ampe, E.; Talavera, K.; Hellings, P.W. Low-dose capsaicin (0.01 mM) nasal spray is equally effective as the current standard treatment for idiopathic rhinitis: A randomized, double-blind, placebo-controlled trial. J. Allergy Clin. Immunol. 2021, 147, 397–400.e4. [Google Scholar] [CrossRef]
  225. Silva-Clavería, F.; Bernabeu-Wittel, J.; Monserrat, M.T. Topical capsaicin patch for pain management in PTEN hamartoma tumor syndromes. J. Dtsch. Dermatol. Ges. 2022, 20, 1221–1223. [Google Scholar] [CrossRef] [PubMed]
  226. Cleary, D.; Burton, S.; Cardon, B. Time to consider topical capsaicin for acute trauma pain? J. Fam. Pract. 2022, 71, 176–177. [Google Scholar] [CrossRef] [PubMed]
  227. Schäfer, R.C.; Sohn, A.; Kersten, A.; Amr, A.; Held, M.; Wenger, A. Quantification of Dermal Microcirculatory Changes after Topical Administration of Capsaicin: A Randomized Placebo-Controlled Study in 46 Subjects. J. Investig. Surg. 2022, 35, 1673–1678. [Google Scholar] [CrossRef] [PubMed]
  228. Laude-Pagniez, E.; Leclerc, J.; Lok, C.; Chaby, G.; Arnault, J.P. Capsaicin 8% patch as therapy for neuropathic chronic postsurgical pain after melanoma excision surgery: A single center case series. JAAD Case Rep. 2022, 30, 70–75. [Google Scholar] [CrossRef] [PubMed]
  229. Sendel, M.; Dunst, A.; Forstenpointner, J.; Hüllemann, P.; Baron, R. Capsaicin treatment in neuropathic pain: Axon reflex vasodilatation after 4 weeks correlates with pain reduction. Pain 2023, 164, 534–542. [Google Scholar] [CrossRef] [PubMed]
  230. Ercan, N.; Uludag, M.O.; Agis, E.R.; Demirel-Yilmaz, E. The anti-inflammatory effect of diclofenac is considerably augmented by topical capsaicinoids-containing patch in carrageenan-induced paw oedema of rat. Inflammopharmacology 2013, 21, 413–419. [Google Scholar] [CrossRef] [PubMed]
  231. Payan, D.G. Neuropeptides and inflammation: The role of substance P. Annu. Rev. Med. 1989, 40, 341–352. [Google Scholar] [CrossRef]
  232. O’Connor, T.M.; O’Connell, J.; O’Brien, D.I.; Goode, T.; Bredin, C.P.; Shanahan, F. The role of substance P in inflammatory disease. J. Cell. Physiol. 2004, 201, 167–180. [Google Scholar] [CrossRef]
  233. Bartold, P.; Kylstra, A.; Lawson, R. Substance P: An immunohistochemical and biochemical study in human gingival tissues. A role for neurogenic inflammation? J. Periodontol. 1994, 65, 1113–1121. [Google Scholar] [CrossRef]
  234. DeVane, C.L. Substance P: A new era, a new role. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2001, 21, 1061–1069. [Google Scholar] [CrossRef]
  235. Hägermark, O.; Hökfelt, T.; Pernow, B. Flare and itch induced by substance P in human skin. Nation 1978, 12, 13. [Google Scholar] [CrossRef]
  236. Simone, D.A.; Nolano, M.; Johnson, T.; Wendelschafer-Crabb, G.; Kennedy, W.R. Intradermal injection of capsaicin in humans produces degeneration and subsequent reinnervation of epidermal nerve fibers: Correlation with sensory function. J. Neurosci. 1998, 18, 8947–8959. [Google Scholar] [CrossRef]
  237. Caruntu, C.; Boda, D.; Musat, S.; Caruntu, A.; Mandache, E. Stress-induced mast cell activation in glabrous and hairy skin. Mediat. Inflamm. 2014, 2014, 105950. [Google Scholar] [CrossRef]
  238. Brodin, E.; Nilsson, G. Concentration of substance P-like immunoreactivity (SPLI) in tissues of dog, rat and mouse. Acta Physiol. Scand. 1981, 112, 305–312. [Google Scholar] [CrossRef] [PubMed]
  239. Mistrova, E.; Kruzliak, P.; Dvorakova, M.C. Role of substance P in the cardiovascular system. Neuropeptides 2016, 58, 41–51. [Google Scholar] [CrossRef]
  240. Geppetti, P.; Bertrand, C.; Baker, J.; Yamawaki, I.; Piedimonte, G.; Nadel, J.A. Ruthenium red, but not capsazepine reduces plasma extravasation by cigarette smoke in rat airways. Br. J. Pharmacol. 1993, 108, 646–650. [Google Scholar] [CrossRef] [PubMed]
  241. Figini, M.; Emanueli, C.; Bertrand, C.; Javdan, P.; Geppetti, P. Evidence that tachykinins relax the guinea-pig trachea via nitric oxide release and by stimulation of a septide-insensitive NK1 receptor. Br. J. Pharmacol. 1996, 117, 1270–1276. [Google Scholar] [CrossRef] [PubMed]
  242. Hauser-Kronberger, C.; Hacker, G.W.; Franz, P.; Albegger, K.; Dietze, O. CGRP and substance P in intraepithelial neuronal structures of the human upper respiratory system. Regul. Pept. 1997, 72, 79–85. [Google Scholar] [CrossRef]
  243. Barthó, L.; Holzer, P. Search for a physiological role of substance P in gastrointestinal motility. Neuroscience 1985, 16, 1–32. [Google Scholar] [CrossRef]
  244. Costa, M.; Furness, J.B.; Gibbins, I.L. Chapter 15 Chemical coding of enteric neurons. In Progress in Brain Research; Hökfelt, T., Fuxe, K., Pernow, B., Eds.; Elsevier: Amsterdam, The Netherlands, 1986; Volume 68, pp. 217–239. [Google Scholar]
  245. Hökfelt, T.; Pernow, B.; Wahren, J. Substance P: A pioneer amongst neuropeptides. J. Intern. Med. 2001, 249, 27–40. [Google Scholar] [CrossRef]
  246. Watts, S.W.; Cohen, M.L. Effect of bombesin, bradykinin, substance P and CGRP in prostate, bladder body and neck. Peptides 1991, 12, 1057–1062. [Google Scholar] [CrossRef] [PubMed]
  247. Maggi, C.A. Tachykinins and calcitonin gene-related peptide (CGRP) as co-transmitters released from peripheral endings of sensory nerves. Prog. Neurobiol. 1995, 45, 1–98. [Google Scholar] [CrossRef] [PubMed]
  248. Edvinsson, L.; Rosendal-Helgesen, S.; Uddman, R. Substance P: Localization, concentration and release in cerebral arteries, choroid plexus and dura mater. Cell Tissue Res. 1983, 234, 1–7. [Google Scholar] [CrossRef] [PubMed]
  249. Petersson, J.; Zygmunt, P.M.; Brandt, L.; Högestätt, E.D. Substance P-induced relaxation and hyperpolarization in human cerebral arteries. Br. J. Pharmacol. 1995, 115, 889. [Google Scholar] [CrossRef] [PubMed]
  250. Harrison, S.; Geppetti, P. Substance P. Int. J. Biochem. Cell Biol. 2001, 33, 555–576. [Google Scholar] [CrossRef] [PubMed]
  251. Mehboob, R.; Oehme, P.; Pfaff, G. The role of Substance P in the defense line of the respiratory tract and neurological manifestations post COVID-19 infection. Front. Neurol. 2023, 14, 1052811. [Google Scholar] [CrossRef] [PubMed]
  252. Chen, F.X.; Wan, Q.; Fang, J.; Peng, L.; Li, Q.L.; Hu, J. The Src1-PGC1α-AP1 complex-dependent secretion of substance P induces inflammation and apoptosis in encephalomyocarditis virus-infected mice. Cytokine 2023, 165, 156186. [Google Scholar] [CrossRef] [PubMed]
  253. Arruda-Vasconcelos, R.; Chiarelli-Neto, V.M.; Louzada, L.M.; Aveiro, E.; Alves-Silva, E.G.; de-Jesus-Soares, A.; Ferraz, C.C.R.; Almeida, J.F.A.; Marciano, M.A.; Pecorari, V.G.A.; et al. Quantitative analysis of culturable bacteria, levels of endotoxins, inflammatory mediators and substance P in teeth with symptomatic irreversible pulpitis and in teeth with vital normal pulp tissues. Int. Endod. J. 2023, 56, 827–836. [Google Scholar] [CrossRef] [PubMed]
  254. Johnson, M.B.; Suptela, S.R.; Sipprell, S.E.; Marriott, I. Substance P Exacerbates the Inflammatory and Pro-osteoclastogenic Responses of Murine Osteoclasts and Osteoblasts to Staphylococcus aureus. Inflammation 2023, 46, 256–269. [Google Scholar] [CrossRef]
  255. Scheau, C.; Ilie Ghita, M.; Grigore, O.; Mihailescu, A.; Caruntu, A.; Mihai, L.; Bădărău, I.; Boda, D.; Caruntu, C. Modulation of capsaicin-induced neurogenic vasodilation by acute psychological stress. Farmacia 2021, 69, 778–784. [Google Scholar] [CrossRef]
  256. Xiang, Y.; Xu, X.; Zhang, T.; Wu, X.; Fan, D.; Hu, Y.; Ding, J.; Yang, X.; Lou, J.; Du, Q.; et al. Beneficial effects of dietary capsaicin in gastrointestinal health and disease. Exp. Cell Res. 2022, 417, 113227. [Google Scholar] [CrossRef] [PubMed]
  257. Patowary, P.; Pathak, M.P.; Zaman, K.; Raju, P.S.; Chattopadhyay, P. Research progress of capsaicin responses to various pharmacological challenges. Biomed. Pharmacother. 2017, 96, 1501–1512. [Google Scholar] [CrossRef] [PubMed]
  258. Kunjiappan, S.; Sankaranarayanan, M.; Karan Kumar, B.; Pavadai, P.; Babkiewicz, E.; Maszczyk, P.; Glodkowska-Mrowka, E.; Arunachalam, S.; Ram Kumar Pandian, S.; Ravishankar, V.; et al. Capsaicin-loaded solid lipid nanoparticles: Design, biodistribution, in silico modeling and in vitro cytotoxicity evaluation. Nanotechnology 2021, 32, 095101. [Google Scholar] [CrossRef] [PubMed]
  259. Ahmady, A.R.; Solouk, A.; Saber-Samandari, S.; Akbari, S.; Ghanbari, H.; Brycki, B.E. Capsaicin-loaded alginate nanoparticles embedded polycaprolactone-chitosan nanofibers as a controlled drug delivery nanoplatform for anticancer activity. J. Colloid. Interface Sci. 2023, 638, 616–628. [Google Scholar] [CrossRef] [PubMed]
  260. Thán, M.; Németh, J.; Szilvássy, Z.; Pintér, E.; Helyes, Z.; Szolcsányi, J. Systemic anti-inflammatory effect of somatostatin released from capsaicin-sensitive vagal and sciatic sensory fibres of the rat and guinea-pig. Eur. J. Pharmacol. 2000, 399, 251–258. [Google Scholar] [CrossRef] [PubMed]
  261. Lauritano, D.; Petruzzi, M.; Baldoni, M. [Preliminary protocol for systemic administration of capsaicin for the treatment of the burning mouth syndrome]. Minerva Stomatol. 2003, 52, 273–278. [Google Scholar] [PubMed]
  262. Luqman, S.; Rizvi, S.I. Protection of lipid peroxidation and carbonyl formation in proteins by capsaicin in human erythrocytes subjected to oxidative stress. Phytother. Res. 2006, 20, 303–306. [Google Scholar] [CrossRef]
  263. Lee, I.O.; Lee, K.H.; Pyo, J.H.; Kim, J.H.; Choi, Y.J.; Lee, Y.C. Anti-inflammatory Effect of Capsaicin in Helicobacter pylori-Infected Gastric Epithelial Cells. Helicobacter 2007, 12, 510–517. [Google Scholar] [CrossRef] [PubMed]
  264. Wu, Y.; Starzinski-Powitz, A.; Guo, S.W. Capsaicin inhibits proliferation of endometriotic cells in vitro. Gynecol. Obstet. Investig. 2008, 66, 59–62. [Google Scholar] [CrossRef]
  265. Bortolotti, M.; Porta, S. Effect of red pepper on symptoms of irritable bowel syndrome: Preliminary study. Dig. Dis. Sci. 2011, 56, 3288–3295. [Google Scholar] [CrossRef]
  266. Yu, Q.; Wang, Y.; Yu, Y.; Li, Y.; Zhao, S.; Chen, Y.; Waqar, A.B.; Fan, J.; Liu, E. Expression of TRPV1 in rabbits and consuming hot pepper affects its body weight. Mol. Biol. Rep. 2012, 39, 7583–7589. [Google Scholar] [CrossRef]
  267. Ternesten-Hasséus, E.; Johansson, E.L.; Millqvist, E. Cough reduction using capsaicin. Respir. Med. 2015, 109, 27–37. [Google Scholar] [CrossRef] [PubMed]
  268. Chen, K.S.; Chen, P.N.; Hsieh, Y.S.; Lin, C.Y.; Lee, Y.H.; Chu, S.C. Capsaicin protects endothelial cells and macrophage against oxidized low-density lipoprotein-induced injury by direct antioxidant action. Chem. Biol. Interact. 2015, 228, 35–45. [Google Scholar] [CrossRef]
  269. He, H.; Zhou, Y.; Huang, J.; Wu, Z.; Liao, Z.; Liu, D.; Yin, D.; He, M. Capsaicin Protects Cardiomyocytes against Anoxia/Reoxygenation Injury via Preventing Mitochondrial Dysfunction Mediated by SIRT1. Oxid. Med. Cell. Longev. 2017, 2017, 1035702. [Google Scholar] [CrossRef]
  270. Ren, X.; Roessler, A.E.; Lynch, T.L., 4th; Haar, L.; Mallick, F.; Lui, Y.; Tranter, M.; Ren, M.H.; Xie, W.R.; Fan, G.-C.; et al. Cardioprotection via the skin: Nociceptor-induced conditioning against cardiac MI in the NIC of time. Am. J. Physiol.-Heart Circ. Physiol. 2019, 316, H543–H553. [Google Scholar] [CrossRef] [PubMed]
  271. Yang, S.; Liu, L.; Meng, L.; Hu, X. Capsaicin is beneficial to hyperlipidemia, oxidative stress, endothelial dysfunction, and atherosclerosis in Guinea pigs fed on a high-fat diet. Chem. Biol. Interact. 2019, 297, 1–7. [Google Scholar] [CrossRef] [PubMed]
  272. Shin, M.K.; Yang, S.-M.; Han, I.-S. Capsaicin suppresses liver fat accumulation in high-fat diet-induced NAFLD mice. Anim. Cells Syst. 2020, 24, 214–219. [Google Scholar] [CrossRef] [PubMed]
  273. Segawa, Y.; Hashimoto, H.; Maruyama, S.; Shintani, M.; Ohno, H.; Nakai, Y.; Osera, T.; Kurihara, N. Dietary capsaicin-mediated attenuation of hypertension in a rat model of renovascular hypertension. Clin. Exp. Hypertens. 2020, 42, 352–359. [Google Scholar] [CrossRef] [PubMed]
  274. Grüter, T.; Blusch, A.; Motte, J.; Sgodzai, M.; Bachir, H.; Klimas, R.; Ambrosius, B.; Gold, R.; Ellrichmann, G.; Pitarokoili, K. Immunomodulatory and anti-oxidative effect of the direct TRPV1 receptor agonist capsaicin on Schwann cells. J. Neuroinflammation 2020, 17, 145. [Google Scholar] [CrossRef]
  275. Abdel-Salam, O.M.E.; Sleem, A.A.; Sayed, M.; Youness, E.R.; Shaffie, N. Capsaicin Exerts Anti-convulsant and Neuroprotective Effects in Pentylenetetrazole-Induced Seizures. Neurochem. Res. 2020, 45, 1045–1061. [Google Scholar] [CrossRef]
  276. Nawaka, N.; Wanmasae, S.; Makarasen, A.; Dechtrirat, D.; Techasakul, S.; Jeenduang, N. Allicin and Capsaicin Ameliorated Hypercholesterolemia by Upregulating LDLR and Downregulating PCSK9 Expression in HepG2 Cells. Int. J. Mol. Sci. 2022, 23, 14299. [Google Scholar] [CrossRef] [PubMed]
  277. Zhang, Q.; Luo, P.; Xia, F.; Tang, H.; Chen, J.; Zhang, J.; Liu, D.; Zhu, Y.; Liu, Y.; Gu, L.; et al. Capsaicin ameliorates inflammation in a TRPV1-independent mechanism by inhibiting PKM2-LDHA-mediated Warburg effect in sepsis. Cell Chem. Biol. 2022, 29, 1248–1259.e6. [Google Scholar] [CrossRef] [PubMed]
  278. Warburg, O. The metabolism of carcinoma cells. J. Cancer Res. 1925, 9, 148–163. [Google Scholar] [CrossRef]
  279. Warburg, O.; Wind, F.; Negelein, E. Ueber den stoffwechsel von tumoren im körper. Klin. Wochenschr. 1926, 5, 829–832. [Google Scholar] [CrossRef]
  280. Liberti, M.V.; Locasale, J.W. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem. Sci. 2016, 41, 211–218. [Google Scholar] [CrossRef] [PubMed]
  281. Palsson-McDermott, E.M.; O’neill, L.A. The Warburg effect then and now: From cancer to inflammatory diseases. Bioessays 2013, 35, 965–973. [Google Scholar] [CrossRef] [PubMed]
  282. Kozal, K.; Jóźwiak, P.; Krześlak, A. Contemporary perspectives on the Warburg effect inhibition in cancer therapy. Cancer Control. 2021, 28, 10732748211041243. [Google Scholar] [CrossRef] [PubMed]
  283. Hawkey, C. COX-2 inhibitors. Lancet 1999, 353, 307–314. [Google Scholar] [CrossRef]
  284. Stichtenoth, D.O.; Frölich, J.C. The second generation of COX-2 inhibitors: What advantages do the newest offer? Drugs 2003, 63, 33–45. [Google Scholar] [CrossRef]
  285. Zarghi, A.; Arfaei, S. Selective COX-2 inhibitors: A review of their structure-activity relationships. Iran. J. Pharm. Res. IJPR 2011, 10, 655. [Google Scholar]
  286. Movahed, P.; Jönsson, B.A.; Birnir, B.; Wingstrand, J.A.; Jørgensen, T.D.; Ermund, A.; Sterner, O.; Zygmunt, P.M.; Högestätt, E.D. Endogenous unsaturated C18 N-acylethanolamines are vanilloid receptor (TRPV1) agonists. J. Biol. Chem. 2005, 280, 38496–38504. [Google Scholar] [CrossRef] [PubMed]
  287. Wong, G.Y.; Gavva, N.R. Therapeutic potential of vanilloid receptor TRPV1 agonists and antagonists as analgesics: Recent advances and setbacks. Brain Res. Rev. 2009, 60, 267–277. [Google Scholar] [CrossRef] [PubMed]
  288. Gharat, L.A.; Szallasi, A. Advances in the design and therapeutic use of capsaicin receptor TRPV1 agonists and antagonists. Expert. Opin. Ther. Pat. 2008, 18, 159–209. [Google Scholar] [CrossRef]
  289. Khairatkar-Joshi, N.; Szallasi, A. TRPV1 antagonists: The challenges for therapeutic targeting. Trends Mol. Med. 2009, 15, 14–22. [Google Scholar] [CrossRef] [PubMed]
  290. Kym, P.R.; Kort, M.E.; Hutchins, C.W. Analgesic potential of TRPV1 antagonists. Biochem. Pharmacol. 2009, 78, 211–216. [Google Scholar] [CrossRef] [PubMed]
  291. Kort, M.E.; Kym, P.R. TRPV1 antagonists: Clinical setbacks and prospects for future development. Prog. Med. Chem. 2012, 51, 57–70. [Google Scholar]
  292. Brandt, M.R.; Beyer, C.E.; Stahl, S.M. TRPV1 antagonists and chronic pain: Beyond thermal perception. Pharmaceuticals 2012, 5, 114–132. [Google Scholar] [CrossRef] [PubMed]
  293. Chow, J.; Norng, M.; Zhang, J.; Chai, J. TRPV6 mediates capsaicin-induced apoptosis in gastric cancer cells--Mechanisms behind a possible new “hot” cancer treatment. Biochim. Biophys. Acta 2007, 1773, 565–576. [Google Scholar] [CrossRef] [PubMed]
  294. Jun, H.S.; Park, T.; Lee, C.K.; Kang, M.K.; Park, M.S.; Kang, H.I.; Surh, Y.J.; Kim, O.H. Capsaicin induced apoptosis of B16-F10 melanoma cells through down-regulation of Bcl-2. Food Chem. Toxicol. 2007, 45, 708–715. [Google Scholar] [CrossRef]
  295. Anandakumar, P.; Kamaraj, S.; Jagan, S.; Ramakrishnan, G.; Vinodhkumar, R.; Devaki, T. Stabilization of pulmonary mitochondrial enzyme system by capsaicin during benzo(a)pyrene induced experimental lung cancer. Biomed. Pharmacother. 2008, 62, 390–394. [Google Scholar] [CrossRef]
  296. Zhang, R.; Humphreys, I.; Sahu, R.P.; Shi, Y.; Srivastava, S.K. In vitro and in vivo induction of apoptosis by capsaicin in pancreatic cancer cells is mediated through ROS generation and mitochondrial death pathway. Apoptosis 2008, 13, 1465–1478. [Google Scholar] [CrossRef] [PubMed]
  297. Brown, K.C.; Witte, T.R.; Hardman, W.E.; Luo, H.; Chen, Y.C.; Carpenter, A.B.; Lau, J.K.; Dasgupta, P. Capsaicin displays anti-proliferative activity against human small cell lung cancer in cell culture and nude mice models via the E2F pathway. PLoS ONE 2010, 5, e10243. [Google Scholar] [CrossRef] [PubMed]
  298. Bai, H.; Li, H.; Zhang, W.; Matkowskyj, K.A.; Liao, J.; Srivastava, S.K.; Yang, G.Y. Inhibition of chronic pancreatitis and pancreatic intraepithelial neoplasia (PanIN) by capsaicin in LSL-KrasG12D/Pdx1-Cre mice. Carcinogenesis 2011, 32, 1689–1696. [Google Scholar] [CrossRef] [PubMed]
  299. Chang, H.C.; Chen, S.T.; Chien, S.Y.; Kuo, S.J.; Tsai, H.T.; Chen, D.R. Capsaicin may induce breast cancer cell death through apoptosis-inducing factor involving mitochondrial dysfunction. Hum. Exp. Toxicol. 2011, 30, 1657–1665. [Google Scholar] [CrossRef] [PubMed]
  300. Ip, S.W.; Lan, S.H.; Huang, A.C.; Yang, J.S.; Chen, Y.Y.; Huang, H.Y.; Lin, Z.P.; Hsu, Y.M.; Yang, M.D.; Chiu, C.F. Capsaicin induces apoptosis in SCC-4 human tongue cancer cells through mitochondria-dependent and-independent pathways. Environ. Toxicol. 2012, 27, 332–341. [Google Scholar] [CrossRef] [PubMed]
  301. Lee, S.H.; Richardson, R.L.; Dashwood, R.H.; Baek, S.J. Capsaicin represses transcriptional activity of β-catenin in human colorectal cancer cells. J. Nutr. Biochem. 2012, 23, 646–655. [Google Scholar] [CrossRef] [PubMed]
  302. Chen, D.; Yang, Z.; Wang, Y.; Zhu, G.; Wang, X. Capsaicin induces cycle arrest by inhibiting cyclin-dependent-kinase in bladder carcinoma cells. Int. J. Urol. 2012, 19, 662–668. [Google Scholar] [CrossRef]
  303. Lin, C.H.; Lu, W.C.; Wang, C.W.; Chan, Y.C.; Chen, M.K. Capsaicin induces cell cycle arrest and apoptosis in human KB cancer cells. BMC Complement. Altern. Med. 2013, 13, 46. [Google Scholar] [CrossRef] [PubMed]
  304. Park, S.Y.; Kim, J.Y.; Lee, S.M.; Jun, C.H.; Cho, S.B.; Park, C.H.; Joo, Y.E.; Kim, H.S.; Choi, S.K.; Rew, J.S. Capsaicin induces apoptosis and modulates MAPK signaling in human gastric cancer cells. Mol. Med. Rep. 2014, 9, 499–502. [Google Scholar] [CrossRef]
  305. Wutka, A.; Palagani, V.; Barat, S.; Chen, X.; El Khatib, M.; Götze, J.; Belahmer, H.; Zender, S.; Bozko, P.; Malek, N.P.; et al. Capsaicin treatment attenuates cholangiocarcinoma carcinogenesis. PLoS ONE 2014, 9, e95605. [Google Scholar] [CrossRef]
  306. Skrzypski, M.; Sassek, M.; Abdelmessih, S.; Mergler, S.; Grötzinger, C.; Metzke, D.; Wojciechowicz, T.; Nowak, K.W.; Strowski, M.Z. Capsaicin induces cytotoxicity in pancreatic neuroendocrine tumor cells via mitochondrial action. Cell Signal. 2014, 26, 41–48. [Google Scholar] [CrossRef] [PubMed]
  307. Gilardini Montani, M.S.; D’Eliseo, D.; Cirone, M.; Di Renzo, L.; Faggioni, A.; Santoni, A.; Velotti, F. Capsaicin-mediated apoptosis of human bladder cancer cells activates dendritic cells via CD91. Nutrition 2015, 31, 578–581. [Google Scholar] [CrossRef] [PubMed]
  308. Zheng, L.; Chen, J.; Ma, Z.; Liu, W.; Yang, F.; Yang, Z.; Wang, K.; Wang, X.; He, D.; Li, L. Capsaicin causes inactivation and degradation of the androgen receptor by inducing the restoration of miR-449a in prostate cancer. Oncol. Rep. 2015, 34, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
  309. Lin, M.H.; Lee, Y.H.; Cheng, H.L.; Chen, H.Y.; Jhuang, F.H.; Chueh, P.J. Capsaicin Inhibits Multiple Bladder Cancer Cell Phenotypes by Inhibiting Tumor-Associated NADH Oxidase (tNOX) and Sirtuin1 (SIRT1). Molecules 2016, 21, 849. [Google Scholar] [CrossRef] [PubMed]
  310. Wang, F.; Zhao, J.; Liu, D.; Zhao, T.; Lu, Z.; Zhu, L.; Cao, L.; Yang, J.; Jin, J.; Cai, Y. Capsaicin reactivates hMOF in gastric cancer cells and induces cell growth inhibition. Cancer Biol. Ther. 2016, 17, 1117–1125. [Google Scholar] [CrossRef] [PubMed]
  311. Ramos-Torres, Á.; Bort, A.; Morell, C.; Rodríguez-Henche, N.; Díaz-Laviada, I. The pepper’s natural ingredient capsaicin induces autophagy blockage in prostate cancer cells. Oncotarget 2016, 7, 1569–1583. [Google Scholar] [CrossRef]
  312. Liu, T.; Wang, G.; Tao, H.; Yang, Z.; Wang, Y.; Meng, Z.; Cao, R.; Xiao, Y.; Wang, X.; Zhou, J. Capsaicin mediates caspases activation and induces apoptosis through P38 and JNK MAPK pathways in human renal carcinoma. BMC Cancer 2016, 16, 790. [Google Scholar] [CrossRef]
  313. Lv, L.; Zhuang, Y.X.; Zhang, H.W.; Tian, N.N.; Dang, W.Z.; Wu, S.Y. Capsaicin-loaded folic acid-conjugated lipid nanoparticles for enhanced therapeutic efficacy in ovarian cancers. Biomed. Pharmacother. 2017, 91, 999–1005. [Google Scholar] [CrossRef]
  314. Lin, Y.T.; Wang, H.C.; Hsu, Y.C.; Cho, C.L.; Yang, M.Y.; Chien, C.Y. Capsaicin Induces Autophagy and Apoptosis in Human Nasopharyngeal Carcinoma Cells by Downregulating the PI3K/AKT/mTOR Pathway. Int. J. Mol. Sci. 2017, 18, 1343. [Google Scholar] [CrossRef]
  315. Mao, X.; Zhu, H.; Luo, D.; Ye, L.; Yin, H.; Zhang, J.; Zhang, Y.; Zhang, Y. Capsaicin inhibits glycolysis in esophageal squamous cell carcinoma by regulating hexokinase-2 expression. Mol. Med. Rep. 2018, 17, 6116–6121. [Google Scholar] [CrossRef]
  316. Kamaruddin, M.F.; Hossain, M.Z.; Mohamed Alabsi, A.; Mohd Bakri, M. The Antiproliferative and Apoptotic Effects of Capsaicin on an Oral Squamous Cancer Cell Line of Asian Origin, ORL-48. Medicina 2019, 55, 322. [Google Scholar] [CrossRef] [PubMed]
  317. Bao, Z.; Dai, X.; Wang, P.; Tao, Y.; Chai, D. Capsaicin induces cytotoxicity in human osteosarcoma MG63 cells through TRPV1-dependent and-independent pathways. Cell Cycle 2019, 18, 1379–1392. [Google Scholar] [CrossRef] [PubMed]
  318. Wu, D.; Jia, H.; Zhang, Z.; Li, S. Capsaicin suppresses breast cancer cell viability by regulating the CDK8/PI3K/Akt/Wnt/β-catenin signaling pathway. Mol. Med. Rep. 2020, 22, 4868–4876. [Google Scholar] [CrossRef] [PubMed]
  319. Zhu, M.; Yu, X.; Zheng, Z.; Huang, J.; Yang, X.; Shi, H. Capsaicin suppressed activity of prostate cancer stem cells by inhibition of Wnt/β-catenin pathway. Phytother. Res. 2020, 34, 817–824. [Google Scholar] [CrossRef] [PubMed]
  320. Jia, G.; Cang, S.; Ma, P.; Song, Z. Capsaicin: A “hot” KDM1A/LSD1 inhibitor from peppers. Bioorg Chem. 2020, 103, 104161. [Google Scholar] [CrossRef] [PubMed]
  321. Szoka, L.; Palka, J. Capsaicin up-regulates pro-apoptotic activity of thiazolidinediones in glioblastoma cell line. Biomed. Pharmacother. 2020, 132, 110741. [Google Scholar] [CrossRef] [PubMed]
  322. Chen, M.; Xiao, C.; Jiang, W.; Yang, W.; Qin, Q.; Tan, Q.; Lian, B.; Liang, Z.; Wei, C. Capsaicin Inhibits Proliferation and Induces Apoptosis in Breast Cancer by Down-Regulating FBI-1-Mediated NF-κB Pathway. Drug Des. Dev. Ther. 2021, 15, 125–140. [Google Scholar] [CrossRef] [PubMed]
  323. Han, T.H.; Park, M.K.; Nakamura, H.; Ban, H.S. Capsaicin inhibits HIF-1α accumulation through suppression of mitochondrial respiration in lung cancer cells. Biomed. Pharmacother. 2022, 146, 112500. [Google Scholar] [CrossRef]
  324. Que, T.; Ren, B.; Fan, Y.; Liu, T.; Hou, T.; Dan, W.; Liu, B.; Wei, Y.; Lei, Y.; Zeng, J.; et al. Capsaicin inhibits the migration, invasion and EMT of renal cancer cells by inducing AMPK/mTOR-mediated autophagy. Chem. Biol. Interact. 2022, 366, 110043. [Google Scholar] [CrossRef]
  325. Liu, X.-Y.; Wei, D.-G.; Li, R.-S. Capsaicin induces ferroptosis of NSCLC by regulating SLC7A11/GPX4 signaling in vitro. Sci. Rep. 2022, 12, 11996. [Google Scholar] [CrossRef]
  326. Xie, Z.Q.; Li, H.X.; Hou, X.J.; Huang, M.Y.; Zhu, Z.M.; Wei, L.X.; Tang, C.X. Capsaicin suppresses hepatocarcinogenesis by inhibiting the stemness of hepatic progenitor cells via SIRT1/SOX2 signaling pathway. Cancer Med. 2022, 11, 4283–4296. [Google Scholar] [CrossRef] [PubMed]
  327. Wu, L.; Xu, S.; Cheng, X.; Zhang, L.; Wang, Y.; Wu, J.; Bao, J.; Yu, H.; Lu, R. Capsaicin inhibits the stemness of anaplastic thyroid carcinoma cells by triggering autophagy-lysosome mediated OCT4A degradation. Phytother. Res. 2022, 36, 938–950. [Google Scholar] [CrossRef] [PubMed]
  328. Adetunji, T.L.; Olawale, F.; Olisah, C.; Adetunji, A.E.; Aremu, A.O. Capsaicin: A Two-Decade Systematic Review of Global Research Output and Recent Advances Against Human Cancer. Front. Oncol. 2022, 12, 908487. [Google Scholar] [CrossRef] [PubMed]
  329. Lau, J.K.; Brown, K.C.; Dom, A.M.; Witte, T.R.; Thornhill, B.A.; Crabtree, C.M.; Perry, H.E.; Brown, J.M.; Ball, J.G.; Creel, R.G.; et al. Capsaicin induces apoptosis in human small cell lung cancer via the TRPV6 receptor and the calpain pathway. Apoptosis 2014, 19, 1190–1201. [Google Scholar] [CrossRef] [PubMed]
  330. Caruntu, C.; Boda, D.; Constantin, C.; Caruntu, A.; Neagu, M. Catecholamines increase in vitro proliferation of murine B16F10 melanoma cells. Acta Endocrinol. 2014, 10, 545–558. [Google Scholar] [CrossRef]
  331. Scheau, C.; Draghici, C.; Ilie, M.A.; Lupu, M.; Solomon, I.; Tampa, M.; Georgescu, S.R.; Caruntu, A.; Constantin, C.; Neagu, M.; et al. Neuroendocrine Factors in Melanoma Pathogenesis. Cancers 2021, 13, 2277. [Google Scholar] [CrossRef] [PubMed]
  332. Venier, N.A.; Colquhoun, A.J.; Sasaki, H.; Kiss, A.; Sugar, L.; Adomat, H.; Fleshner, N.E.; Klotz, L.H.; Venkateswaran, V. Capsaicin: A novel radio-sensitizing agent for prostate cancer. Prostate 2015, 75, 113–125. [Google Scholar] [CrossRef] [PubMed]
  333. Min, J.K.; Han, K.Y.; Kim, E.C.; Kim, Y.M.; Lee, S.W.; Kim, O.H.; Kim, K.W.; Gho, Y.S.; Kwon, Y.G. Capsaicin inhibits in vitro and in vivo angiogenesis. Cancer Res. 2004, 64, 644–651. [Google Scholar] [CrossRef] [PubMed]
  334. Vendrely, V.; Peuchant, E.; Buscail, E.; Moranvillier, I.; Rousseau, B.; Bedel, A.; Brillac, A.; de Verneuil, H.; Moreau-Gaudry, F.; Dabernat, S. Resveratrol and capsaicin used together as food complements reduce tumor growth and rescue full efficiency of low dose gemcitabine in a pancreatic cancer model. Cancer Lett. 2017, 390, 91–102. [Google Scholar] [CrossRef] [PubMed]
  335. Friedman, J.R.; Perry, H.E.; Brown, K.C.; Gao, Y.; Lin, J.; Stevenson, C.D.; Hurley, J.D.; Nolan, N.A.; Akers, A.T.; Chen, Y.C.; et al. Capsaicin synergizes with camptothecin to induce increased apoptosis in human small cell lung cancers via the calpain pathway. Biochem. Pharmacol. 2017, 129, 54–66. [Google Scholar] [CrossRef]
  336. Dai, N.; Ye, R.; He, Q.; Guo, P.; Chen, H.; Zhang, Q. Capsaicin and sorafenib combination treatment exerts synergistic anti-hepatocellular carcinoma activity by suppressing EGFR and PI3K/Akt/mTOR signaling. Oncol. Rep. 2018, 40, 3235–3248. [Google Scholar] [CrossRef] [PubMed]
  337. Friedman, J.R.; Richbart, S.D.; Merritt, J.C.; Perry, H.E.; Brown, K.C.; Akers, A.T.; Nolan, N.A.; Stevenson, C.D.; Hurley, J.D.; Miles, S.L.; et al. Capsaicinoids enhance chemosensitivity to chemotherapeutic drugs. Adv. Cancer Res. 2019, 144, 263–298. [Google Scholar] [CrossRef] [PubMed]
  338. Tampa, M.; Georgescu, S.R.; Mitran, C.I.; Mitran, M.I.; Matei, C.; Scheau, C.; Constantin, C.; Neagu, M. Recent Advances in Signaling Pathways Comprehension as Carcinogenesis Triggers in Basal Cell Carcinoma. J. Clin. Med. 2020, 9, 3010. [Google Scholar] [CrossRef] [PubMed]
  339. Szolcsányi, J.; Barthó, L. Capsaicin-sensitive afferents and their role in gastroprotection: An update. J. Physiol. Paris. 2001, 95, 181–188. [Google Scholar] [CrossRef] [PubMed]
  340. Szolcsányi, J.; Helyes, Z.; Oroszi, G.; Németh, J.; Pintér, E. Release of somatostatin and its role in the mediation of the anti-inflammatory effect induced by antidromic stimulation of sensory fibres of rat sciatic nerve. Br. J. Pharmacol. 1998, 123, 936–942. [Google Scholar] [CrossRef] [PubMed]
  341. Helyes, Z.; Thán, M.; Oroszi, G.; Pintér, E.; Németh, J.; Kéri, G.; Szolcsányi, J. Anti-nociceptive effect induced by somatostatin released from sensory nerve terminals and by synthetic somatostatin analogues in the rat. Neurosci. Lett. 2000, 278, 185–188. [Google Scholar] [CrossRef] [PubMed]
  342. Pintér, E.; Helyes, Z.; Szolcsányi, J. Inhibitory effect of somatostatin on inflammation and nociception. Pharmacol. Ther. 2006, 112, 440–456. [Google Scholar] [CrossRef] [PubMed]
  343. Szolcsányi, J. Forty years in capsaicin research for sensory pharmacology and physiology. Neuropeptides 2004, 38, 377–384. [Google Scholar] [CrossRef] [PubMed]
  344. Evers, B.M.; Parekh, D.; Townsend, C.M., Jr.; Thompson, J.C. Somatostatin and analogues in the treatment of cancer. A review. Ann. Surg. 1991, 213, 190–198. [Google Scholar] [CrossRef]
  345. Weckbecker, G.; Raulf, F.; Stolz, B.; Bruns, C. Somatostatin analogs for diagnosis and treatment of cancer. Pharmacol. Ther. 1993, 60, 245–264. [Google Scholar] [CrossRef]
  346. Scarpignato, C.; Pelosini, I. Somatostatin Analogs for Cancer Treatment and Diagnosis: An Overview. Chemotherapy 2001, 47 (Suppl. 2), 1–29. [Google Scholar] [CrossRef]
  347. Lamberts, S.W.J.; de Herder, W.W.; Hofland, L.J. Somatostatin analogs in the diagnosis and treatment of cancer. Trends Endocrinol. Metab. 2002, 13, 451–457. [Google Scholar] [CrossRef]
  348. Froidevaux, S.; Eberle, A.N. Somatostatin analogs and radiopeptides in cancer therapy. Pept. Sci. 2002, 66, 161–183. [Google Scholar] [CrossRef]
  349. Klironomos, S.; Notas, G.; Sfakianaki, O.; Kiagiadaki, F.; Xidakis, C.; Kouroumalis, E. Octreotide modulates the effects on fibrosis of TNF-α, TGF-β and PDGF in activated rat hepatic stellate cells. Regul. Pept. 2014, 188, 5–12. [Google Scholar] [CrossRef] [PubMed]
  350. Ayiomamitis, G.D.; Notas, G.; Zaravinos, A.; Drygiannakis, I.; Georgiadou, M.; Sfakianaki, O.; Mastrodimou, N.; Thermos, K.; Kouroumalis, E. Effects of octreotide and insulin on colon cancer cellular proliferation and correlation with hTERT activity. Oncoscience 2014, 1, 457. [Google Scholar] [CrossRef]
  351. Kouroumalis, E.; Samonakis, D.; Notas, G. Somatostatin in hepatocellular carcinoma: Experimental and therapeutic implications. Hepatoma Res. 2018, 4, 34. [Google Scholar] [CrossRef]
  352. Periferakis, A.; Tsigas, G.; Periferakis, A.-T.; Badarau, I.A.; Scheau, A.-E.; Tampa, M.; Georgescu, S.R.; Didilescu, A.C.; Scheau, C.; Caruntu, C. Antitumoral and Anti-inflammatory Roles of Somatostatin and Its Analogs in Hepatocellular Carcinoma. Anal. Cell. Pathol. 2021, 2021, 1840069. [Google Scholar] [CrossRef]
  353. Kouroumalis, E.; Tsomidis, I.; Voumvouraki, A. Is There a Place for Somatostatin Analogues for the Systemic Treatment of Hepatocellular Carcinoma in the Immunotherapy Era? Livers 2022, 2, 315–335. [Google Scholar] [CrossRef]
  354. Qin, J.C.; Yu, W.T.; Li, H.X.; Liang, Y.Q.; Nong, F.F.; Wen, B. Cold exposure and capsaicin promote 1,2-dimethylhyrazine-induced colon carcinogenesis in rats correlates with extracellular matrix remodeling. World J. Gastroenterol. 2021, 27, 6615–6630. [Google Scholar] [CrossRef]
  355. Kim, H.S.; Kwon, H.J.; Kim, G.E.; Cho, M.H.; Yoon, S.Y.; Davies, A.J.; Oh, S.B.; Lee, H.; Cho, Y.K.; Joo, C.H.; et al. Attenuation of natural killer cell functions by capsaicin through a direct and TRPV1-independent mechanism. Carcinogenesis 2014, 35, 1652–1660. [Google Scholar] [CrossRef]
  356. Liu, Z.; Zhu, P.; Tao, Y.; Shen, C.; Wang, S.; Zhao, L.; Wu, H.; Fan, F.; Lin, C.; Chen, C.; et al. Cancer-promoting effect of capsaicin on DMBA/TPA-induced skin tumorigenesis by modulating inflammation, Erk and p38 in mice. Food Chem. Toxicol. 2015, 81, 1–8. [Google Scholar] [CrossRef] [PubMed]
  357. Cheng, P.; Wu, J.; Zong, G.; Wang, F.; Deng, R.; Tao, R.; Qian, C.; Shan, Y.; Wang, A.; Zhao, Y.; et al. Capsaicin shapes gut microbiota and pre-metastatic niche to facilitate cancer metastasis to liver. Pharmacol. Res. 2023, 188, 106643. [Google Scholar] [CrossRef] [PubMed]
  358. Andrews, J. Peppers: The Domesticated Capsicums; University of Texas Press: Austin, TX, USA, 1995. [Google Scholar]
  359. Nabhan, G.P. Why Some Like It Hot: Food, Genes, and Cultural Diversity; Island Press: Washington, DC, USA, 2004. [Google Scholar]
  360. Kim, S.; Park, M.; Yeom, S.I.; Kim, Y.M.; Lee, J.M.; Lee, H.A.; Seo, E.; Choi, J.; Cheong, K.; Kim, K.T.; et al. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat. Genet. 2014, 46, 270–278. [Google Scholar] [CrossRef] [PubMed]
  361. Basu, S.K.; De, A.K. Capsicum: Historical and botanical perspectives. In Capsicum; CRC Press: Boca Raton, FL, USA, 2003; pp. 21–35. [Google Scholar]
  362. Eshbaugh, W.H. Genetic and biochemical systematic studies of chili peppers (Capsicum-Solanaceae). Bull. Torrey Bot. Club 1975, 102, 396–403. [Google Scholar] [CrossRef]
  363. Eshbaugh, W.H. The taxonomy of the genus Capsicum. In Peppers: Botany, Production and Uses; CAB International: Wallingford UK, 2012; pp. 14–28. [Google Scholar]
  364. Heiser, C.B., Jr.; Pickersgill, B. Names for the Cultivated Capsicum Species (Solanaceae). Taxon 1969, 18, 277–283. [Google Scholar] [CrossRef]
  365. Votava, E.J.; Baral, J.B.; Bosland, P.W. Genetic diversity of chile (Capsicum annuum var. annuum L.) landraces from northern New Mexico, Colorado, and Mexico. Econ. Bot. 2005, 59, 8–17. [Google Scholar] [CrossRef]
  366. Dewitt, D.; Bosland, P.W. The Complete Chile Pepper Book—A Gardener’s Guide to Choosing, Growing, Preserving and Cooking; Timber Press: London, UK, 2009. [Google Scholar]
  367. Carmack, R.M.; Gasco, J.L.; Gossen, G.H. The Legacy of Mesoamerica: History and Culture of a Native American Civilization; Routledge: Oxfordshire, UK, 2016. [Google Scholar]
  368. Pilcher, J.M. Tamales or timbales: Cuisine and the formation of Mexican national identity, 1821–1911. Americas 1996, 53, 193–216. [Google Scholar] [CrossRef]
  369. Haverluk, T.W. Chile peppers and identity construction in Pueblo, Colorado. J. Study Food Soc. 2002, 6, 45–59. [Google Scholar] [CrossRef]
  370. Meotti, F.C.; Lemos de Andrade, E.; Calixto, J.B. TRP modulation by natural compounds. Handb. Exp. Pharmacol. 2014, 223, 1177–1238. [Google Scholar] [CrossRef]
  371. Padilha, H.; Barbieri, R. Plant breeding of chili peppers (Capsicum, Solanaceae)-A review. Aust. J. Basic. Appl. Sci. 2016, 10, 148–154. [Google Scholar]
  372. Romero Cóndor, C.; Acurio, L.; Paucar-Ayala, S.; Herrera-Robalino, J.; Cabrera, H.; Albán-Villacreces, A.; Sangucho-Montenegro, C.; Veliz-Zambrano, M. Brief Historical review of the geological cartography in Ecuador. Cienc. Lat. Rev. Científica Multidiscip. 2023, 7, 2584–2621. [Google Scholar] [CrossRef]
  373. Grieder, T.; Bueno Mendoza, A.; Smith, C.E.; Malina, R.M. La Galgada in the World of Its Time. In La Galgada, Peru: A Preceramic Culture in Transition; University of Texas Press: Austin, TX, USA, 1988; pp. 192–203. [Google Scholar]
  374. Pearsall, D.M. Plant domestication and the shift to agriculture in the Andes. In The Handbook of South American Archaeology; Springer: Berlin/Heidelberg, Germany, 2008; pp. 105–120. [Google Scholar]
  375. Lanning, E.P. Peru before the Incas; Prentice-Hall: Saddle River, NJ, USA, 1967. [Google Scholar]
  376. Sarmiento de Gamboa, P. The History of the Incas; University of Texas Press: Austin, TX, USA, 2007. [Google Scholar]
  377. Thompson, J.E.S. Maya History and Religion; University of Oklahoma Press: Norman, OK, USA, 1990; Volume 99. [Google Scholar]
  378. Smith, M.E. The Aztecs; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
  379. Periferakis, A. Geology and the Aztecs: How the Ore Deposits of Mesoamerica Influenced the Socioeconomic Development of an Empire, from its Emergence to its Downfall. In Proceedings of the 15th International Congress of the Geological Society of Greece, Athens, Greece, 22–24 May 2019; pp. 700–701. [Google Scholar]
  380. Periferakis, A. The Influence of Ore Deposits to the Development and Collapse of the Inca Civilisation between the 15th and the 16th Century. In Proceedings of the 15th International Congress of the Geological Society of Greece, Athens, Greece, 22–24 May 2019; pp. 702–703. [Google Scholar]
  381. De Feo, V. The ritual use of Brugmansia species in traditional Andean medicine in Northern Peru. Econ. Bot. 2004, 58, S221–S229. [Google Scholar] [CrossRef]
  382. Dafni, A.; Petanidou, T.; Vallianatou, I.; Kozhuharova, E.; Blanché, C.; Pacini, E.; Peyman, M.; Dajić Stevanovic, Z.; Franchi, G.G.; Benítez, G. Myrtle, Basil, Rosemary, and Three-Lobed Sage as Ritual Plants in the Monotheistic Religions: An Historical–Ethnobotanical Comparison. Econ. Bot. 2020, 74, 330–355. [Google Scholar] [CrossRef]
  383. Kohek, M.; Sánchez Avilés, C.; Romaní, O.; Bouso, J.C. Ancient psychoactive plants in a global village: The ritual use of cannabis in a self-managed community in Catalonia. Int. J. Drug Policy 2021, 98, 103390. [Google Scholar] [CrossRef] [PubMed]
  384. Yaldiz, G.; Ozguven, M.; Sekeroglu, N. Variation in capsaicin contents of different Capsicum species and lines by varying drying parameters. Ind. Crops Prod. 2010, 32, 434–438. [Google Scholar] [CrossRef]
  385. Cho, H.; Kwon, Y. Development of a database of capsaicinoid contents in foods commonly consumed in Korea. Food Sci. Nutr. 2020, 8, 4611–4624. [Google Scholar] [CrossRef] [PubMed]
  386. Ganguly, S.; Praveen, P.K.; Para, P.A.; Sharma, V. Medicinal Properties of chilli pepper in human diet: An editorial. ARC J. Public. Health Community Med. 2017, 2, 6–7. [Google Scholar]
  387. Aguilar-Meléndez, A.; Vásquez-Dávila, M.A.; Manzanero-Medina, G.I.; Katz, E. Chile (Capsicum spp.) as Food-Medicine Continuum in Multiethnic Mexico. Foods 2021, 10, 2502. [Google Scholar] [CrossRef]
  388. Martínez-Aceviz, Y.; Sobrevilla-Navarro, A.A.; Ramos-Lopez, O. Dietary Intake of Capsaicin and Its Association with Markers of Body Adiposity and Fatty Liver in a Mexican Adult Population of Tijuana. Healthcare 2023, 11, 3001. [Google Scholar] [CrossRef] [PubMed]
  389. Meghvansi, M.K.; Siddiqui, S.; Khan, M.H.; Gupta, V.K.; Vairale, M.G.; Gogoi, H.K.; Singh, L. Naga chilli: A potential source of capsaicinoids with broad-spectrum ethnopharmacological applications. J. Ethnopharmacol. 2010, 132, 1–14. [Google Scholar] [CrossRef]
  390. Saleh, B.K.; Omer, A.; Teweldemedhin, B. Medicinal uses and health benefits of chili pepper (Capsicum spp.): A review. MOJ Food Process Technol. 2018, 6, 325–328. [Google Scholar] [CrossRef]
  391. Montiel-Oseguera, A. La Persistencia de la Costumbre Pima. Interpretaciones Desde La Antropología Cognitiva; UAM, INAH y ENAH del Norte de México: Mexico City, Mexico, 2013. [Google Scholar]
  392. Long-Solís, J. Capsicum y Cultura: La Historia Del Chilli; Fondo De Cultura Economica: Mexico City, Mexico, 2013. [Google Scholar]
  393. Rakhshandehroo, E.; Asadpour, M.; Jafari, A.; Malekpour, S.H. The effectiveness of Cinnamomum zeylanicum, Punica granatum flower and Capsicum annuum extracts against Parascaris equorum infective larvae. İstanbul Üniversitesi Vet. Fakültesi Derg. 2016, 42, 132–137. [Google Scholar] [CrossRef]
  394. Frei, B.; Baltisberger, M.; Sticher, O.; Heinrich, M. Medical ethnobotany of the Zapotecs of the Isthmus-Sierra (Oaxaca, Mexico): Documentation and assessment of indigenous uses. J. Ethnopharmacol. 1998, 62, 149–165. [Google Scholar] [CrossRef] [PubMed]
  395. Irigoyen-Rascón, F.; Paredes, A. Tarahumara Medicine: Ethnobotany and Healing among the Rarámuri of Mexico; University of Oklahoma Press: Norman, OK, USA, 2015. [Google Scholar]
  396. Alcorn, J.B. Huastec Mayan Ethnobotany; University of Texas Press: Austin, TX, USA, 1984. [Google Scholar]
  397. Martínez, T.H.L. Etnobotánica del Chile Quipín (Capsicum annuum var. glabriusculum) en la Sierra Gorda y Semidesierto de Querétaro. Master’s Thesis, Colegio de postgraduados, campus Montecillo Botánica, Montecillo, Mexico, 2007. [Google Scholar]
  398. Fiedor, J.; Burda, K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients 2014, 6, 466–488. [Google Scholar] [CrossRef] [PubMed]
  399. da Silva, L.R.; Silva, B. Natural Bioactive Compounds from Fruits and Vegetables as Health Promoters Part I; Bentham Science Publishers: Sharjah, United Arab Emirates, 2016. [Google Scholar]
  400. Roys, R.L. The Ethno-Botany of the Maya; Tulane University: New Orleans, LA, USA, 1931. [Google Scholar]
  401. López Austin, A. Textos acerca de las partes del cuerpo humano y de las enfermedades y medicinas en los primeros memoriales de Sahagún. Estud. Cult. Nahuatl 1972, 10, 129–153. [Google Scholar] [PubMed]
  402. Madero, R.A. Recetario Totonaco de la Costa de Veracruz; Dirección General de Culturas Populares de Conaculta: Mexico City, Mexico, 2000. [Google Scholar]
  403. Bañuelos, N.; Salido, P.L.; Gardea, A. Etnobotánica del chiltepín: Pequeño gran señor en la cultura de los sonorenses. Estud. Soc. 2008, 16, 177–205. [Google Scholar]
  404. Magaña Alejandro, M.A.; Gama Campillo, L.M.; Mariaca Méndez, R. El uso de las plantas medicinales en las comunidades Maya-Chontales de Nacajuca, Tabasco, México. Polibotánica 2010, 29, 213–262. [Google Scholar]
  405. Cook, S. The Forest of the Lacandon Maya: An Ethnobotanical Guide; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
  406. Aguilar-Meléndez, A.; Vásquez, M.A.; Katz, E.; Colorado, M.R.H. Los Chiles Que le Dan Sabor al Mundo: Contribuciones MULTIDISCIPLINARIAS; IRD Éditions: Paris, France, 2018. [Google Scholar]
  407. Breedlove, D.E.; Laughlin, R.M. Flowering of Man: A Tzotzil Botany of Zinacantán; Smithsonian Institution Press: Washington, DC, USA, 1993; Volume 2. [Google Scholar]
  408. Chemin Bassler, H. Recetario Pame de San Luis Potosí y Querétaro; Dirección General de Culturas Populares, Consejo Nacional para la Cultura y las Artes: Coyoacán, México, 2000. [Google Scholar]
  409. Laughlin, R.M. The Huastec. In Handbook of Middle American Indians; University of Texas Press: Austin, TX, USA, 1969; Volume 7, pp. 298–311. [Google Scholar]
  410. Fernández, D.L. Medicina indígena y males infantiles entre los nahuas de Texcoco: Pérdida de la guía, caída de mollera, tiricia y mal de ojo. Proc. An. De Antropol. 2015, 49, 101–148. [Google Scholar] [CrossRef]
  411. Geck, M.S.; Cabras, S.; Casu, L.; Reyes García, A.J.; Leonti, M. The taste of heat: How humoral qualities act as a cultural filter for chemosensory properties guiding herbal medicine. J. Ethnopharmacol. 2017, 198, 499–515. [Google Scholar] [CrossRef]
  412. Alayza Escardó, F. Historia de la Cirugía en el Perú. In Historia de la Cirugia en el Peru; Editorial Monterrico, S.A.: Lima, Peru, 1992. [Google Scholar]
  413. Froeschner, E.H. Two examples of ancient skull surgery. J. Neurosurg. 1992, 76, 550–552. [Google Scholar] [CrossRef]
  414. Periferakis, A. A review of obsidian source exploitation in pre-columbian south America. Bull. Geol. Soc. Greece 2019, 55, 65–108. [Google Scholar] [CrossRef]
  415. Schmiedel, U.; Araya, Y.; Bortolotto, M.I.; Boeckenhoff, L.; Hallwachs, W.; Janzen, D.; Kolipaka, S.S.; Novotny, V.; Palm, M.; Parfondry, M.; et al. Contributions of paraecologists and parataxonomists to research, conservation, and social development. Conserv. Biol. 2016, 30, 506–519. [Google Scholar] [CrossRef]
  416. Nabhan, G.P. Ethnobiology for the Future: Linking Cultural and Ecological Diversity; University of Arizona Press: Tucson, AZ, USA, 2016. [Google Scholar]
  417. Fan, Y.; Kim, D.H.; Gwak, Y.S.; Ahn, D.; Ryu, Y.; Chang, S.; Lee, B.H.; Bills, K.B.; Steffensen, S.C.; Yang, C.H.; et al. The role of substance P in acupuncture signal transduction and effects. Brain Behav. Immun. 2021, 91, 683–694. [Google Scholar] [CrossRef]
  418. Du, G.-h.; Yuan, T.-y.; Du, L.-d.; Zhang, Y.-x. Chapter Twelve—The Potential of Traditional Chinese Medicine in the Treatment and Modulation of Pain. In Advances in Pharmacology; Barrett, J.E., Ed.; Academic Press: Cambridge, MA, USA, 2016; Volume 75, pp. 325–361. [Google Scholar]
  419. Li, S.-H.; Li, L.; Yang, R.-N.; Liang, S.-D. Compounds of traditional Chinese medicine and neuropathic pain. Chin. J. Nat. Med. 2020, 18, 28–35. [Google Scholar] [CrossRef] [PubMed]
  420. Ghiţă, M.A.; Căruntu, C.; Rosca, A.E.; Căruntu, A.; Moraru, L.; Constantin, C.; Neagu, M.; Boda, D. Real-Time Investigation of Skin Blood Flow Changes Induced by Topical Capsaicin. Acta Dermatovenerol. Croat. 2017, 25, 223–227. [Google Scholar]
  421. Final report on the safety assessment of capsicum annuum extract, capsicum annuum fruit extract, capsicum annuum resin, capsicum annuum fruit powder, capsicum frutescens fruit, capsicum frutescens fruit extract, capsicum frutescens resin, and capsaicin. Int. J. Toxicol. 2007, 26 (Suppl. 1), 3–106. [CrossRef] [PubMed]
  422. Surh, Y.-J.; Sup Lee, S. Capsaicin, a double-edged sword: Toxicity, metabolism, and chemopreventive potential. Life Sci. 1995, 56, 1845–1855. [Google Scholar] [CrossRef] [PubMed]
  423. Weinberg, R.B. Hunan hand. N. Engl. J. Med. 1981, 305, 1020. [Google Scholar]
  424. Williams, S.R.; Clark, R.F.; Dunford, J.V. Contact Dermatitis Associated with Capsaicin: Hunan Hand Syndrome. Ann. Emerg. Med. 1995, 25, 713–715. [Google Scholar] [CrossRef]
  425. Jancsó, G.; Király, E.; Such, G.; Joó, F.; Nagy, A. Neurotoxic effect of capsaicin in mammals. Acta Physiol. Hung. 1987, 69, 295–313. [Google Scholar]
  426. Ritter, S.; Dinh, T.T. Capsaicin-induced neuronal degeneration in the brain and retina of preweanling rats. J. Comp. Neurol. 1990, 296, 447–461. [Google Scholar] [CrossRef]
  427. Lechner, A.; Alderson, T.; Gautam, S.; Flaker, G. Ventricular fibrillation due to coronary spasm after pepper spray. Pacing Clin. Electrophysiol. 2021, 44, 548–551. [Google Scholar] [CrossRef] [PubMed]
  428. Xu, Y.; Gu, Q.; Qu, C. Capsaicin pretreatment reversed pulmonary arterial hypertension by alleviating inflammation via p38MAPK pathway. Exp. Lung Res. 2017, 43, 8–18. [Google Scholar] [CrossRef] [PubMed]
  429. Baz, R.A.; Scheau, C.; Niscoveanu, C.; Bordei, P. Morphometry of the Entire Internal Carotid Artery on CT Angiography. Medicina 2021, 57, 832. [Google Scholar] [CrossRef]
  430. Augustin, H.G.; Koh, G.Y. Organotypic vasculature: From descriptive heterogeneity to functional pathophysiology. Science 2017, 357, eaal2379. [Google Scholar] [CrossRef]
  431. MacAlpin, R.N. Contribution of dynamic vascular wall thickening to luminal narrowing during coronary arterial constriction. Circulation 1980, 61, 296–301. [Google Scholar] [CrossRef]
  432. Liu, B.; Yang, H.; Song, Y.S.; Sorenson, C.M.; Sheibani, N. Thrombospondin-1 in vascular development, vascular function, and vascular disease. Semin. Cell Dev. Biol. 2024, 155, 32–44. [Google Scholar] [CrossRef] [PubMed]
  433. Bergren, D.R. Capsaicin challenge, reflex bronchoconstriction, and local action of substance P. Am. J. Physiol. 1988, 254, R845–R852. [Google Scholar] [CrossRef]
  434. Thomas, K.C.; Ethirajan, M.; Shahrokh, K.; Sun, H.; Lee, J.; Cheatham, T.E., 3rd; Yost, G.S.; Reilly, C.A. Structure-activity relationship of capsaicin analogs and transient receptor potential vanilloid 1-mediated human lung epithelial cell toxicity. J. Pharmacol. Exp. Ther. 2011, 337, 400–410. [Google Scholar] [CrossRef]
  435. Trevisan, G.; Rossato, M.F.; Hoffmeister, C.; Oliveira, S.M.; Silva, C.R.; Matheus, F.C.; Mello, G.C.; Antunes, E.; Prediger, R.D.; Ferreira, J. Mechanisms involved in abdominal nociception induced by either TRPV1 or TRPA1 stimulation of rat peritoneum. Eur. J. Pharmacol. 2013, 714, 332–344. [Google Scholar] [CrossRef]
  436. Lee, K.J.; Vos, R.; Tack, J. Effects of capsaicin on the sensorimotor function of the proximal stomach in humans. Aliment. Pharmacol. Ther. 2004, 19, 415–425. [Google Scholar] [CrossRef] [PubMed]
  437. Kwon, Y. Estimation of Dietary Capsaicinoid Exposure in Korea and Assessment of Its Health Effects. Nutrients 2021, 13, 2461. [Google Scholar] [CrossRef] [PubMed]
  438. Lassen, C.L.; Meyer, K.; Bredthauer, A.; Klier, T.W. Facial and Oral Cross-Contamination of a 3-Year-Old Child with High Concentration Capsaicin: A Case Report. A A Pract. 2020, 14, e01258. [Google Scholar] [CrossRef] [PubMed]
  439. Forrester, M.B.; Holloway, C. Characteristics of pepper spray-related injuries reported to the National Electronic Injury Surveillance System during 2000–2020. Clin. Toxicol. 2022, 60, 348–355. [Google Scholar] [CrossRef]
  440. Dragosloveanu, C.D.M.; Celea, C.G.; Dragosloveanu, S. Comparison of 360 degrees circumferential trabeculotomy and conventional trabeculotomy in primary pediatric glaucoma surgery: Complications, reinterventions and preoperative predictive risk factors. Int. Ophthalmol. 2020, 40, 3547–3554. [Google Scholar] [CrossRef] [PubMed]
  441. Yenigun, O.M.; Thanassi, M. Capsaicin: An Uncommon Exposure and Unusual Treatment. Clin. Pract. Cases Emerg. Med. 2019, 3, 219–221. [Google Scholar] [CrossRef] [PubMed]
  442. Kim-Katz, S.Y.; Anderson, I.B.; Kearney, T.E.; MacDougall, C.; Hudmon, K.S.; Blanc, P.D. Topical antacid therapy for capsaicin-induced dermal pain: A poison center telephone-directed study. Am. J. Emerg. Med. 2010, 28, 596–602. [Google Scholar] [CrossRef] [PubMed]
  443. Yeung, M.F.; Tang, W.Y. Clinicopathological effects of pepper (oleoresin capsicum) spray. Hong Kong Med. J. 2015, 21, 542–552. [Google Scholar] [CrossRef] [PubMed]
  444. Çirakli, S.; Doganay, S.; Kaya Ozcora, G.D.; Canpolat, M.; Kumandas, S. Biber gazı maruziyeti sonucu gelişen Guillain-Barre sendromunu taklit eden polinöropati. Türk. Pediatri. Arşivi. 2019, 54, 53–56. [Google Scholar] [CrossRef]
  445. Snyman, T.; Stewart, M.J.; Steenkamp, V. A fatal case of pepper poisoning. Forensic Sci. Int. 2001, 124, 43–46. [Google Scholar] [CrossRef]
  446. Akçay, A.B.; Ozcan, T.; Seyis, S.; Acele, A. Coronary vasospasm and acute myocardial infarction induced by a topical capsaicin patch. Turk. Kardiyol. Dern. Ars. 2009, 37, 497–500. [Google Scholar] [PubMed]
  447. Xie, M.; Wu, H.; Bian, J.; Huang, S.; Xia, Y.; Qin, Y.; Yan, Z. Synthesis and biological evaluation of capsaicin analogues as antioxidant and neuroprotective agents. RSC Adv. 2023, 13, 32150–32159. [Google Scholar] [CrossRef] [PubMed]
  448. Dou, F.; Wu, B.; Chen, J.; Liu, T.; Yu, Z.; Chen, C. Capsaicin inhibits A7r5 cell senescence via the mitochondrial carrier protein Slc25a12. Exp. Cell Res. 2023, 433, 113856. [Google Scholar] [CrossRef] [PubMed]
  449. Xu, S.; Hao, K.; Xiong, Y.; Xu, R.; Huang, H.; Wang, H. Capsaicin alleviates neuronal apoptosis and schizophrenia-like behavioral abnormalities induced by early life stress. Schizophrenia 2023, 9, 77. [Google Scholar] [CrossRef] [PubMed]
  450. Wang, L.; Liu, Y.; Li, S.; Zha, Z.; Chen, Y.; Wang, Q.; Zhou, S.; Huang, X.; Xu, M. Capsaicin alleviates doxorubicin-induced acute myocardial injury by regulating iron homeostasis and PI3K-Akt signaling pathway. Aging 2023, 15, 11845–11859. [Google Scholar] [CrossRef] [PubMed]
  451. Dragoș, D.; Petran, M.; Gradinaru, T.C.; Gilca, M. Phytochemicals and Inflammation: Is Bitter Better? Plants 2022, 11, 2991. [Google Scholar] [CrossRef] [PubMed]
  452. D’Urso, O.; Drago, F. Pharmacological significance of extra-oral taste receptors. Eur. J. Pharmacol. 2021, 910, 174480. [Google Scholar] [CrossRef]
  453. Töle, J.C.; Behrens, M.; Meyerhof, W. Taste receptor function. Handb. Clin. Neurol. 2019, 164, 173–185. [Google Scholar] [CrossRef] [PubMed]
  454. Behrens, M.; Lang, T. Extra-Oral Taste Receptors-Function, Disease, and Perspectives. Front. Nutr. 2022, 9, 881177. [Google Scholar] [CrossRef]
  455. Nevo, S.; Kadouri, N.; Abramson, J. Tuft cells: From the mucosa to the thymus. Immunol. Lett. 2019, 210, 1–9. [Google Scholar] [CrossRef]
  456. O’Leary, C.E.; Schneider, C.; Locksley, R.M. Tuft Cells-Systemically Dispersed Sensory Epithelia Integrating Immune and Neural Circuitry. Annu. Rev. Immunol. 2019, 37, 47–72. [Google Scholar] [CrossRef]
  457. Howitt, M.R.; Cao, Y.G.; Gologorsky, M.B.; Li, J.A.; Haber, A.L.; Biton, M.; Lang, J.; Michaud, M.; Regev, A.; Garrett, W.S. The Taste Receptor TAS1R3 Regulates Small Intestinal Tuft Cell Homeostasis. Immunohorizons 2020, 4, 23–32. [Google Scholar] [CrossRef]
  458. Ki, S.Y.; Jeong, Y.T. Taste Receptors beyond Taste Buds. Int. J. Mol. Sci. 2022, 23, 9677. [Google Scholar] [CrossRef]
  459. Hendel, S.K.; Kellermann, L.; Hausmann, A.; Bindslev, N.; Jensen, K.B.; Nielsen, O.H. Tuft Cells and Their Role in Intestinal Diseases. Front. Immunol. 2022, 13, 822867. [Google Scholar] [CrossRef]
  460. Sell, E.A.; Ortiz-Carpena, J.F.; Herbert, D.R.; Cohen, N.A. Tuft cells in the pathogenesis of chronic rhinosinusitis with nasal polyps and asthma. Ann. Allergy Asthma Immunol. 2021, 126, 143–151. [Google Scholar] [CrossRef] [PubMed]
  461. Xiong, Z.; Zhu, X.; Geng, J.; Xu, Y.; Wu, R.; Li, C.; Fan, D.; Qin, X.; Du, Y.; Tian, Y.; et al. Intestinal Tuft-2 cells exert antimicrobial immunity via sensing bacterial metabolite N-undecanoylglycine. Immunity 2022, 55, 686–700.e7. [Google Scholar] [CrossRef] [PubMed]
  462. O’Leary, C.E.; Sbierski-Kind, J.; Kotas, M.E.; Wagner, J.C.; Liang, H.E.; Schroeder, A.W.; de Tenorio, J.C.; von Moltke, J.; Ricardo-Gonzalez, R.R.; Eckalbar, W.L.; et al. Bile acid-sensitive tuft cells regulate biliary neutrophil influx. Sci. Immunol. 2022, 7, eabj1080. [Google Scholar] [CrossRef]
  463. Merritt, J.C.; Richbart, S.D.; Moles, E.G.; Cox, A.J.; Brown, K.C.; Miles, S.L.; Finch, P.T.; Hess, J.A.; Tirona, M.T.; Valentovic, M.A.; et al. Anti-cancer activity of sustained release capsaicin formulations. Pharmacol. Ther. 2022, 238, 108177. [Google Scholar] [CrossRef] [PubMed]
  464. Chapa-Oliver, A.M.; Mejía-Teniente, L. Capsaicin: From Plants to a Cancer-Suppressing Agent. Molecules 2016, 21, 931. [Google Scholar] [CrossRef]
  465. Cassano, R.; Serini, S.; Curcio, F.; Trombino, S.; Calviello, G. Preparation and Study of Solid Lipid Nanoparticles Based on Curcumin, Resveratrol and Capsaicin Containing Linolenic Acid. Pharmaceutics 2022, 14, 1593. [Google Scholar] [CrossRef]
  466. Matei, A.-M.; Caruntu, C.; Tampa, M.; Georgescu, S.R.; Matei, C.; Constantin, M.M.; Constantin, T.V.; Calina, D.; Ciubotaru, D.A.; Badarau, I.A.; et al. Applications of Nanosized-Lipid-Based Drug Delivery Systems in Wound Care. Appl. Sci. 2021, 11, 4915. [Google Scholar] [CrossRef]
  467. Anantaworasakul, P.; Chaiyana, W.; Michniak-Kohn, B.B.; Rungseevijitprapa, W.; Ampasavate, C. Enhanced Transdermal Delivery of Concentrated Capsaicin from Chili Extract-Loaded Lipid Nanoparticles with Reduced Skin Irritation. Pharmaceutics 2020, 12, 463. [Google Scholar] [CrossRef] [PubMed]
  468. Zhen, X.; Xie, C.; Jiang, Y.; Ai, X.; Xing, B.; Pu, K. Semiconducting Photothermal Nanoagonist for Remote-Controlled Specific Cancer Therapy. Nano Lett. 2018, 18, 1498–1505. [Google Scholar] [CrossRef] [PubMed]
  469. Bhagwat, D.A.; Swami, P.A.; Nadaf, S.J.; Choudhari, P.B.; Kumbar, V.M.; More, H.N.; Killedar, S.G.; Kawtikwar, P.S. Capsaicin Loaded Solid SNEDDS for Enhanced Bioavailability and Anticancer Activity: In-Vitro, In-Silico, and In-Vivo Characterization. J. Pharm. Sci. 2021, 110, 280–291. [Google Scholar] [CrossRef] [PubMed]
  470. Xu, M.; Zhang, J.; Mu, Y.; Foda, M.F.; Han, H. Activation of TRPV1 by capsaicin-loaded CaCO3 nanoparticle for tumor-specific therapy. Biomaterials 2022, 284, 121520. [Google Scholar] [CrossRef] [PubMed]
  471. Periferakis, A.; Periferakis, A.-T.; Troumpata, L.; Dragosloveanu, S.; Timofticiuc, I.-A.; Georgatos-Garcia, S.; Scheau, A.-E.; Periferakis, K.; Caruntu, A.; Badarau, I.A.; et al. Use of Biomaterials in 3D Printing as a Solution to Microbial Infections in Arthroplasty and Osseous Reconstruction. Biomimetics 2024, 9, 154. [Google Scholar] [CrossRef] [PubMed]
  472. Timofticiuc, I.-A.; Călinescu, O.; Iftime, A.; Dragosloveanu, S.; Caruntu, A.; Scheau, A.-E.; Badarau, I.A.; Didilescu, A.C.; Caruntu, C.; Scheau, C. Biomaterials Adapted to Vat Photopolymerization in 3D Printing: Characteristics and Medical Applications. J. Funct. Biomater. 2024, 15, 7. [Google Scholar] [CrossRef] [PubMed]
  473. Yu, T.; Tong, L.; Ao, Y.; Zhang, G.; Liu, Y.; Zhang, H. Novel design of NIR-triggered plasmonic nanodots capped mesoporous silica nanoparticles loaded with natural capsaicin to inhibition of metastasis of human papillary thyroid carcinoma B-CPAP cells in thyroid cancer chemo-photothermal therapy. J. Photochem. Photobiol. B 2019, 197, 111534. [Google Scholar] [CrossRef] [PubMed]
  474. Lee, J.Y.; Lee, S.Y.; Kim, G.G.; Hur, M.G.; Yang, S.D.; Park, J.H.; Kim, S.W. Development of (68)Ga-SCN-DOTA-Capsaicin as an Imaging Agent Targeting Apoptosis and Cell Cycle Arrest in Breast Cancer. Cancer Biother. Radiopharm. 2017, 32, 169–175. [Google Scholar] [CrossRef]
  475. Dong, Y.; Yin, Y.; Vu, S.; Yang, F.; Yarov-Yarovoy, V.; Tian, Y.; Zheng, J. A distinct structural mechanism underlies TRPV1 activation by piperine. Biochem. Biophys. Res. Commun. 2019, 516, 365–372. [Google Scholar] [CrossRef]
  476. McNamara, F.N.; Randall, A.; Gunthorpe, M.J. Effects of piperine, the pungent component of black pepper, at the human vanilloid receptor (TRPV1). Br. J. Pharmacol. 2005, 144, 781–790. [Google Scholar] [CrossRef] [PubMed]
  477. Arunprasert, K.; Pornpitchanarong, C.; Piemvuthi, C.; Siraprapapornsakul, S.; Sripeangchan, S.; Lertsrimongkol, O.; Opanasopit, P.; Patrojanasophon, P. Nanostructured lipid carrier-embedded polyacrylic acid transdermal patches for improved transdermal delivery of capsaicin. Eur. J. Pharm. Sci. 2022, 173, 106169. [Google Scholar] [CrossRef] [PubMed]
  478. Kolonko, A.K.; Efing, J.; González-Espinosa, Y.; Bangel-Ruland, N.; van Driessche, W.; Goycoolea, F.M.; Weber, W.M. Capsaicin-Loaded Chitosan Nanocapsules for wtCFTR-mRNA Delivery to a Cystic Fibrosis Cell Line. Biomedicines 2020, 8, 364. [Google Scholar] [CrossRef] [PubMed]
  479. Manzo, E.; Schiano Moriello, A.; Tinto, F.; Verde, R.; Allarà, M.; De Petrocellis, L.; Pagano, E.; Izzo, A.A.; Di Marzo, V.; Petrosino, S. A Glucuronic Acid-Palmitoylethanolamide Conjugate (GLUPEA) Is an Innovative Drug Delivery System and a Potential Bioregulator. Cells 2021, 10, 450. [Google Scholar] [CrossRef]
  480. Scheau, C.; Mihai, L.; Badarau, I.A.; Caruntu, C. Emerging applications of some important natural compounds in the field of oncology. Farmacia 2020, 68, 984–991. [Google Scholar] [CrossRef]
  481. Rajput, H.; Nangare, S.; Khan, Z.; Patil, A.; Bari, S.; Patil, P. Design of lactoferrin functionalized carboxymethyl dextran coated egg albumin nanoconjugate for targeted delivery of capsaicin: Spectroscopic and cytotoxicity studies. Int. J. Biol. Macromol. 2023, 256, 128392. [Google Scholar] [CrossRef] [PubMed]
  482. Leibing, E.; Leonhardt, U.; Köster, G.; Goerlitz, A.; Rosenfeldt, J.-A.; Hilgers, R.; Ramadori, G. Acupuncture treatment of chronic low-back pain—A randomized, blinded, placebo-controlled trial with 9-month follow-up. Pain 2002, 96, 189–196. [Google Scholar] [CrossRef] [PubMed]
  483. Mavrommatis, C.I.; Argyra, E.; Vadalouka, A.; Vasilakos, D.G. Acupuncture as an adjunctive therapy to pharmacological treatment in patients with chronic pain due to osteoarthritis of the knee: A 3-armed, randomized, placebo-controlled trial. Pain 2012, 153, 1720–1726. [Google Scholar] [CrossRef] [PubMed]
  484. Müller, M.; Schmucker, C.; Naumann, J.; Schlueter, N.; Huber, R.; Lederer, A.K. Acupuncture in management of acute dental pain—A systematic review and meta-analysis. Jpn. Dent. Sci. Rev. 2023, 59, 114–128. [Google Scholar] [CrossRef]
  485. Zhou, M.; Zhang, Q.; Huo, M.; Song, H.; Chang, H.; Cao, J.; Fang, Y.; Zhang, D. The mechanistic basis for the effects of electroacupuncture on neuropathic pain within the central nervous system. Biomed. Pharmacother. 2023, 161, 114516. [Google Scholar] [CrossRef]
  486. Lu, W.W.; Zhang, J.M.; Lv, Z.T.; Chen, A.M. Update on the Clinical Effect of Acupuncture Therapy in Patients with Gouty Arthritis: Systematic Review and Meta-Analysis. Evid. Based Complement. Altern. Med. 2016, 2016, 9451670. [Google Scholar] [CrossRef]
  487. Chen, Y.; Chen, X.; Qian, H.; Li, B.; Su, X. Acupuncture alleviates acute peritonitis: A case report. Heliyon 2023, 9, e15290. [Google Scholar] [CrossRef]
  488. Periferakis, K.; Periferakis, A. Treating gout caused by renal insufficiency with acupuncture and moxibustion: A case report. Rom. J. Clin. Res. 2023, 6, 21–28. [Google Scholar]
  489. Chen, B.; Liu, D.; Li, T.; Zheng, L.; Lan, L.; Yang, N.; Huang, Y. Research Hotspots and Trends on Acupuncture for Anti-Inflammation: A Bibliometric Analysis from 2011 to 2021. J. Pain Res. 2023, 16, 1197–1217. [Google Scholar] [CrossRef]
  490. Marini, E.; Magi, G.; Mingoia, M.; Pugnaloni, A.; Facinelli, B. Antimicrobial and Anti-Virulence Activity of Capsaicin Against Erythromycin-Resistant, Cell-Invasive Group A Streptococci. Front. Microbiol. 2015, 6, 1281. [Google Scholar] [CrossRef]
  491. Das, J.; Deka, M.; Gogoi, K. Antimicrobial activity of chilli extracts (Capsicum chinense) against food borne pathogens Escherichia coli and Staphylococcus aureus. Int. J. Res. Anal. Rev. (IJRAR) 2018, 5, 717–720. [Google Scholar]
  492. Periferakis, A.-T.; Periferakis, A.; Periferakis, K.; Caruntu, A.; Badarau, I.A.; Savulescu-Fiedler, I.; Scheau, C.; Caruntu, C. Antimicrobial Properties of Capsaicin: Available Data and Future Research Perspectives. Nutrients 2023, 15, 4097. [Google Scholar] [CrossRef]
  493. Buitimea-Cantúa, G.V.; Buitimea-Cantúa, N.E.; Rocha-Pizaña, M.d.R.; Hernández-Morales, A.; Magaña-Barajas, E.; Molina-Torres, J. Inhibitory effect of Capsicum chinense and Piper nigrum fruits, capsaicin and piperine on aflatoxins production in Aspergillus parasiticus by downregulating the expression of afl D, afl M, afl R, and afl S genes of aflatoxins biosynthetic pathway. J. Environ. Sci. Health Part B 2020, 55, 835–843. [Google Scholar] [CrossRef] [PubMed]
  494. Behbehani, J.M.; Irshad, M.; Shreaz, S.; Karched, M. Anticandidal Activity of Capsaicin and Its Effect on Ergosterol Biosynthesis and Membrane Integrity of Candida albicans. Int. J. Mol. Sci. 2023, 24, 1046. [Google Scholar] [CrossRef] [PubMed]
  495. Chang, A.Y.; Mann, T.S.; McFawn, P.K.; Han, L.; Dong, X.; Henry, P.J. Investigating the role of MRGPRC11 and capsaicin-sensitive afferent nerves in the anti-influenza effects exerted by SLIGRL-amide in murine airways. Respir. Res. 2016, 17, 1–14. [Google Scholar] [CrossRef]
  496. Menezes, R.P.; Bessa, M.A.S.; Siqueira, C.P.; Teixeira, S.C.; Ferro, E.A.V.; Martins, M.M.; Cunha, L.C.S.; Martins, C.H.G. Antimicrobial, Antivirulence, and Antiparasitic Potential of Capsicum chinense Jacq. Extracts and Their Isolated Compound Capsaicin. Antibiotics 2022, 11, 1154. [Google Scholar] [CrossRef] [PubMed]
  497. Tatsimo, S.J.N.; Tamokou, J.d.D.; Havyarimana, L.; Csupor, D.; Forgo, P.; Hohmann, J.; Kuiate, J.-R.; Tane, P. Antimicrobial and antioxidant activity of kaempferol rhamnoside derivatives from Bryophyllum pinnatum. BMC Res. Notes 2012, 5, 158. [Google Scholar] [CrossRef] [PubMed]
  498. Periferakis, A.; Periferakis, K.; Badarau, I.A.; Petran, E.M.; Popa, D.C.; Caruntu, A.; Costache, R.S.; Scheau, C.; Caruntu, C.; Costache, D.O. Kaempferol: Antimicrobial Properties, Sources, Clinical, and Traditional Applications. Int. J. Mol. Sci. 2022, 23, 15054. [Google Scholar] [CrossRef] [PubMed]
  499. Bangar, S.P.; Chaudhary, V.; Sharma, N.; Bansal, V.; Ozogul, F.; Lorenzo, J.M. Kaempferol: A flavonoid with wider biological activities and its applications. Crit. Rev. Food Sci. Nutr. 2022, 63, 9580–9604. [Google Scholar] [CrossRef] [PubMed]
  500. Periferakis, A.; Periferakis, A.-T.; Troumpata, L.; Periferakis, K.; Scheau, A.-E.; Savulescu-Fiedler, I.; Caruntu, A.; Badarau, I.A.; Caruntu, C.; Scheau, C. Kaempferol: A Review of Current Evidence of Its Antiviral Potential. Int. J. Mol. Sci. 2023, 24, 16299. [Google Scholar] [CrossRef] [PubMed]
  501. Hirai, I.; Okuno, M.; Katsuma, R.; Arita, N.; Tachibana, M.; Yamamoto, Y. Characterisation of anti-Staphylococcus aureus activity of quercetin. Int. J. Food Sci. Technol. 2010, 45, 1250–1254. [Google Scholar] [CrossRef]
  502. Shu, Y.; Liu, Y.; Li, L.; Feng, J.; Lou, B.; Zhou, X.; Wu, H. Antibacterial activity of quercetin on oral infectious pathogens. Afr. J. Microbiol. Res. 2011, 5, 5358–5361. [Google Scholar]
  503. Jaisinghani, R.N. Antibacterial properties of quercetin. Microbiol. Res. 2017, 8, 6877. [Google Scholar] [CrossRef]
  504. Teow, S.-Y.; Ali, S.A. Synergistic antibacterial activity of Curcumin with antibiotics against Staphylococcus aureus. Pak. J. Pharm. Sci. 2015, 28, 2109–2114. [Google Scholar]
  505. Yun, D.G.; Lee, D.G. Antibacterial activity of curcumin via apoptosis-like response in Escherichia coli. Appl. Microbiol. Biotechnol. 2016, 100, 5505–5514. [Google Scholar] [CrossRef]
  506. Gunes, H.; Gulen, D.; Mutlu, R.; Gumus, A.; Tas, T.; Topkaya, A.E. Antibacterial effects of curcumin: An in vitro minimum inhibitory concentration study. Toxicol. Ind. Health 2016, 32, 246–250. [Google Scholar] [CrossRef] [PubMed]
  507. Liao, Y.; Yao, Y.; Yu, Y.; Zeng, Y. Enhanced antibacterial activity of curcumin by combination with metal ions. Colloid. Interface Sci. Commun. 2018, 25, 1–6. [Google Scholar] [CrossRef]
  508. Ojala, T.; Remes, S.; Haansuu, P.; Vuorela, H.; Hiltunen, R.; Haahtela, K.; Vuorela, P. Antimicrobial activity of some coumarin containing herbal plants growing in Finland. J. Ethnopharmacol. 2000, 73, 299–305. [Google Scholar] [CrossRef] [PubMed]
  509. Smyth, T.; Ramachandran, V.N.; Smyth, W.F. A study of the antimicrobial activity of selected naturally occurring and synthetic coumarins. Int. J. Antimicrob. Agents 2009, 33, 421–426. [Google Scholar] [CrossRef] [PubMed]
  510. Al-Rifai, A.a.A.; Ayoub, M.T.; Shakya, A.K.; Abu Safieh, K.A.; Mubarak, M.S. Synthesis, characterization, and antimicrobial activity of some new coumarin derivatives. Med. Chem. Res. 2012, 21, 468–476. [Google Scholar] [CrossRef]
  511. Wallock-Richards, D.; Doherty, C.J.; Doherty, L.; Clarke, D.J.; Place, M.; Govan, J.R.W.; Campopiano, D.J. Garlic Revisited: Antimicrobial Activity of Allicin-Containing Garlic Extracts against Burkholderia cepacia Complex. PLoS ONE 2014, 9, e112726. [Google Scholar] [CrossRef] [PubMed]
  512. Choo, S.; Chin, V.K.; Wong, E.H.; Madhavan, P.; Tay, S.T.; Yong, P.V.C.; Chong, P.P. Review: Antimicrobial properties of allicin used alone or in combination with other medications. Folia Microbiol. 2020, 65, 451–465. [Google Scholar] [CrossRef] [PubMed]
  513. Nakamoto, M.; Kunimura, K.; Suzuki, J.I.; Kodera, Y. Antimicrobial properties of hydrophobic compounds in garlic: Allicin, vinyldithiin, ajoene and diallyl polysulfides (Review). Exp. Ther. Med. 2020, 19, 1550–1553. [Google Scholar] [CrossRef] [PubMed]
  514. Neu, H.C. The Crisis in Antibiotic Resistance. Science 1992, 257, 1064–1073. [Google Scholar] [CrossRef]
  515. Miyakis, S.; Pefanis, A.; Tsakris, A. The Challenges of Antimicrobial Drug Resistance in Greece. Clin. Infect. Dis. 2011, 53, 177–184. [Google Scholar] [CrossRef]
  516. Rafila, A.; Talapan, D.; Dorobăţ, O.M.; Popescu, G.A.; Piţigoi, D.; Florea, D.; Buicu, F.C. Emergence of Carbapenemase-producing Enterobacteriaceae, a Public Health Threat: A Romanian Infectious Disease Hospital Based Study/Emergenţa Enterobacteriaceaelor producătoare de carbapenemaze, o ameninţare pentru sănătatea publică: Un studiu realizat într-un spital romanesc de boli infectioase. Rev. Romana De Med. De Lab. 2015, 23, 295–301. [Google Scholar] [CrossRef]
  517. Frieri, M.; Kumar, K.; Boutin, A. Antibiotic resistance. J. Infect. Public. Health 2017, 10, 369–378. [Google Scholar] [CrossRef] [PubMed]
  518. MacGowan, A.; Macnaughton, E. Antibiotic resistance. Medicine 2017, 45, 622–628. [Google Scholar] [CrossRef]
  519. Popa, L.I.; Gheorghe, I.; Barbu, I.C.; Surleac, M.; Paraschiv, S.; Măruţescu, L.; Popa, M.; Pîrcălăbioru, G.G.; Talapan, D.; Niţă, M.; et al. Multidrug Resistant Klebsiella pneumoniae ST101 Clone Survival Chain from Inpatients to Hospital Effluent after Chlorine Treatment. Front. Microbiol. 2021, 11, 610296. [Google Scholar] [CrossRef] [PubMed]
  520. Tălăpan, D.; Rafila, A. Five-Year Survey of Asymptomatic Colonization with Multidrug-Resistant Organisms in a Romanian Tertiary Care Hospital. Infect. Drug Resist. 2022, 15, 2959–2967. [Google Scholar] [CrossRef] [PubMed]
  521. Jumaah, O.; Abu-Abaa, M.; Huang, K.; Hasan, S. The Rare Adverse Effect of Cefepime-Induced Neutropenia. Cureus 2023, 15, e38274. [Google Scholar] [CrossRef] [PubMed]
  522. Massoth, C.; Saadat-Gilani, K.; Wenk, M. [allergy to penicillin—No beta-lactam antibiotics?]. Anasthesiol. Intensivmed. Notfallmed Schmerzther. 2023, 58, 264–266. [Google Scholar] [CrossRef]
  523. Periferakis, A.; Caruntu, A.; Periferakis, A.-T.; Scheau, A.-E.; Badarau, I.A.; Caruntu, C.; Scheau, C. Availability, Toxicology and Medical Significance of Antimony. Int. J. Environ. Res. Public Health 2022, 19, 4669. [Google Scholar] [CrossRef]
  524. Kang, C.; Wang, B.; Kaliannan, K.; Wang, X.; Lang, H.; Hui, S.; Huang, L.; Zhang, Y.; Zhou, M.; Chen, M.; et al. Gut Microbiota Mediates the Protective Effects of Dietary Capsaicin against Chronic Low-Grade Inflammation and Associated Obesity Induced by High-Fat Diet. mBio 2017, 8, e00470-17. [Google Scholar] [CrossRef]
  525. Rosca, A.E.; Iesanu, M.I.; Zahiu, C.D.M.; Voiculescu, S.E.; Paslaru, A.C.; Zagrean, A.M. Capsaicin and Gut Microbiota in Health and Disease. Molecules 2020, 25, 5681. [Google Scholar] [CrossRef]
  526. Weng, G.; Duan, Y.; Zhong, Y.; Song, B.; Zheng, J.; Zhang, S.; Yin, Y.; Deng, J. Plant Extracts in Obesity: A Role of Gut Microbiota. Front. Nutr. 2021, 8, 727951. [Google Scholar] [CrossRef] [PubMed]
  527. Dumitrache, M.D.; Jieanu, A.S.; Scheau, C.; Badarau, I.A.; Popescu, G.D.A.; Caruntu, A.; Costache, D.O.; Costache, R.S.; Constantin, C.; Neagu, M.; et al. Comparative effects of capsaicin in chronic obstructive pulmonary disease and asthma (Review). Exp. Ther. Med. 2021, 22, 917. [Google Scholar] [CrossRef] [PubMed]
  528. Popescu, G.D.A.; Scheau, C.; Badarau, I.A.; Dumitrache, M.D.; Caruntu, A.; Scheau, A.E.; Costache, D.O.; Costache, R.S.; Constantin, C.; Neagu, M.; et al. The Effects of Capsaicin on Gastrointestinal Cancers. Molecules 2020, 26, 94. [Google Scholar] [CrossRef] [PubMed]
  529. Yao, W.; Li, Y.; Ding, G. Interstitial fluid flow: The mechanical environment of cells and foundation of meridians. Evid. Based Complement. Altern. Med. 2012, 2012, 853516. [Google Scholar] [CrossRef] [PubMed]
  530. Li, H.Y.; Yang, J.F.; Chen, M.; Xu, L.; Wang, W.C.; Wang, F.; Tong, J.B.; Wang, C.Y. Visualized regional hypodermic migration channels of interstitial fluid in human beings: Are these ancient meridians? J. Altern. Complement. Med. 2008, 14, 621–628. [Google Scholar] [CrossRef] [PubMed]
  531. Ma, W.; Tong, H.; Xu, W.; Hu, J.; Liu, N.; Li, H.; Cao, L. Perivascular space: Possible anatomical substrate for the meridian. J. Altern. Complement. Med. 2003, 9, 851–859. [Google Scholar] [CrossRef] [PubMed]
  532. Zhang, W.B.; Zhao, Y.; Kjell, F. Understanding propagated sensation along meridians by volume transmission in peripheral tissue. Chin. J. Integr. Med. 2013, 19, 330–339. [Google Scholar] [CrossRef]
Figure 1. Capsaicin activation of TRPV1. Capsaicin induces sensory neuronal depolarization and local sensitisation to activation by heat, acidosis, and endogenous agonists. Topical application of capsaicin induces sensations of heat, burning, stinging, or itching. When high concentrations of capsaicin are used, or there are repeated applications in cutaneous nociceptors, a de-functionalization process is induced.
Figure 1. Capsaicin activation of TRPV1. Capsaicin induces sensory neuronal depolarization and local sensitisation to activation by heat, acidosis, and endogenous agonists. Topical application of capsaicin induces sensations of heat, burning, stinging, or itching. When high concentrations of capsaicin are used, or there are repeated applications in cutaneous nociceptors, a de-functionalization process is induced.
Cimb 46 00468 g001
Figure 2. Apoptotic network triggered by capsaicin via TRPV 1 and TRPV6.
Figure 2. Apoptotic network triggered by capsaicin via TRPV 1 and TRPV6.
Cimb 46 00468 g002
Table 1. General and medical uses of capsaicin.
Table 1. General and medical uses of capsaicin.
Use of Capsaicin and Its DerivativesReferences
Animal repellents[43,44,45,46]
Food industry—fragrance ingredient[47,48,49]
Pesticides[50,51,52,53]
Veterinary medicine (various uses)[54,55,56]
Medical UsesChronic pain—cream application (local adm.)[57,58,59,60,61]
Gastroprotection in cases of drug administration[62]
Post-operative nausea and vomiting[63,64,65]
Post-operative sore throat[66]
Pruritus[67,68,69,70,71]
Urinary bladder hyperactivity[72,73]
Skin conditioning creams[74,75]
Table 4. Anti-cancer effects of capsaicin.
Table 4. Anti-cancer effects of capsaicin.
IndicationFormulationEffectAction MechanismType of StudyYearReferences
Hepatocellular carcinoma200 mM capsaicin or Met-capsaicinPro-apoptotic, potential chemopreventiveDNA fragmentation/nuclear condensation/activation of caspase-3In vitro—SK-Hep-1 hepatocellular carcinoma cells2001[131]
Colon cancer200–300 mMProapoptotic, chemopreventivePPARγ pathway activation (non-TRPV1 related)In vitro—HT-29 human colon cancer cells2004[133]
Gastric adenocarcinoma1 mmol/LProapoptoticReduction of Bcl-2 and antiapoptotic protein/DNA fragmentationIn vitro AGS cells2005[134]
Prostate cancerDifferent dosesProfound antiproliferative effectPrevention of NF-kappaB activationIn vitro—prostate cancer cell lines/In vivo—prostate cancer cell xenografts on mice2006[135]
Gastric cancer50 μMProapoptoticTRPV6-mediated capsaicin-induced apoptosis/stabilization of p53 through JNK-regulated p53 phosphorylation/increase of Bax and p53 protein without increasing transcriptionIn vitro—human gastric cancer AGS cells/GES-1 cells2007[293]
Melanoma50–200 μMProapoptoticDown-regulation of Bcl-2 expression, nuclear condensation, internucleosomal DNA fragmentationIn vitro—B16-F10 melanoma cells2007[294]
Benzo(a)pyrene induced experimental
Lung cancer
10 mg/kgChemoprotectiveDecreased lung mitochondrial lipid peroxidationIn vivo—animal2008[295]
Pancreatic cancer2.5 mg capsaicin/kg body weight
5 times/week,
5 mg capsaicin/kg 3 times/week by oral gavage (in vivo part)
ProapoptoticIncreased expression of Bax, down-regulation of Bcl-2, significant release of cytochrome c and AIF in the cytosolIn vivo—athymic nude mice; in vitro—AsPC-1 and BxPC-3 cells2008[296]
Small cell lung cancerOral administration of 10 mg capsaicin/kg of mice; 50 Μm capsaicin for cell culturesAntiproliferativeDecreased expression of E2F-responsive proliferative genes cyclin E, thymidylate synthase, cdc25A and cdc6atIn vivo–animal, in vitro-human SCLC cell lines NCI-H69, NCI-H82,
DMS53 and DMS114
2010[297]
Chronic Pancreatitis and pancreatic intraepithelial neoplasiaOral administration of 10 ppm. capsaicin or 20 ppm depending on research groupChemopreventiveReduction of cell proliferation and suppressed phosphorylation of ERK and c-Jun, blocked Hedgehog/GLI pathway activationIn vivo—animal2011[298]
Breast cancer200 μMProapoptoticDecreased mitochondria membrane potential, induced cleavage of PARP-1, decreased procaspase-7 expressionIn vitro—MCF-7 and BT-20 human breast cancer cell lines2011[299]
Tongue cancer50, 100 and 150 µMProapoptotic, prooxidantActivation of caspase 3, DNA fragmentation, induction of G0/G1 phase arrest, activation of ROS In vitro—SCC-4 human tongue cancer cells2012[300]
Colorectal cancer50 and 100 μMAnti-proliferative, proapoptoticSuppression of TCF-4 expression and disruption of TCF-4 and β-catenin interactionIn vitro—SW480, LoVo, and HCT-116 colorectal cancer cells2012[301]
Bladder cancer50, 100, 150, 200 µMAnti-proliferative, proapoptoticInhibition of CDK2, CDK4 and CDK6; cell death induction by ROS increase and decreased mitochondrial membrane potentialIn vitro—5637 human urinary bladder cancer cell line2012[302]
Human KB cancer cells1, 50, 100, 150, 200 and 250 μMAnti-proliferative, proapoptoticMitochondrial membrane permeabilization and caspase activationIn vitro—human KB cancer cells2013[303]
Gastric cancer10–300 μMAnti-proliferative (probably), proapoptoticDecreased expression of phosphorylated ERK 1/2, p38 MAPK or JNKIn vitro—human gastric cancer cells (AGS cells)2014[304]
Cholangiocarcinoma150–200 µMImpaired cell proliferation, migration, invasion, epithelial to mesenchymal transition growth inhibition in soft agar coloniesInhibition of Hedgehog signalling pathwayIn vitro—human CC cell lines (SZ-1 and TFK-1)2014[305]
Pancreatic neuroendocrine tumours10–200 μMCytotoxicDisruption of mitochondrial membrane potential and inhibition of ATP synthesisIn vitro—BON and QGP-1 cells2014[306]
Bladder cancer10–250 μMMediation of cancer cell apoptosisActivation of dendritic cells via CD91In vitro—T24 and SD48 human urinary bladder cancercell lines2015[307]
Prostate cancer50, 100, 150 and 200 μMAntiproliferativeRestoration of miR-449a profiling in cancer cells leading to negative modulation of the androgen receptorIn vitro—human C4-2 and LNCaP cells2015[308]
Bladder cancer100 and 200 μMAntiproliferative, anti-migration, cell cycle prolongationInhibition of tNOX and sirtuin 1 (SIRT1)In vitro—TSGH8301 and T24 urinary bladder cancer cells2016[309]
Gastric cancer0–16 μg/mLChemopreventive, antiprofirative, proapoptoticReduced hMOF activity In vitro—colon cancer SW-480, gastric cancer MGC-803 and gastric mucosal GES-1 cells2016[310]
Prostate cancer20, 80 μMAntiproliferative, induced autophagyActivation of ROS generation, increased levels of LC3-II, accumulation of p62In vitro—prostate cancer (LNCaP and PC-3) cells2016[311]
Renal cell carcinoma0–400 μMProapoptoticUp-regulation of pro-apoptotic genes (c-myc, FADD, Bax andcleaved-caspase-3,-8, and-9), down-regulation of Bcl2, activated p38 and JNK MAPK pathwaysIn vitro—human renal cell carcinoma 786-O, ACHN, Caki-1 cells2016[312]
Ovarian cancers0.1–50 μg/mL ProapoptoticCell cycle arrestIn vitro—SKOV-3 ovarian cancer cells/in vivo-male SD rats2017[313]
Nasopharyngeal carcinoma100, 150, 200 and 300 μM/LAntiproliferative, proapoptotic, induced autophagyIncreased G1 phase cell cycle arrest, increased LC3-II and Atg5 levels,
decreased p62 and Fap-1 expression, increased caspase-3 activity
In vitro—NPC-TW01 cells2017[314]
Oesophageal squamous cell carcinoma120 µMAntiproliferative, propapoptoticInhibition of glycolysis, decreased HK-2 expressionIn vitro—Het-1A cell2018[315]
Oral squamous cancer50–350 µMAntiproliferative, proapoptoticDisruption of the mitochondrial-membrane potential, activation of caspase-3, -7 and -9, DNA fragmentationIn vitro—ORL-48 cells2019[316]
Osteosarcoma20 µMProapoptoticMitochondrial dysfunction, overproduction of ROS and JNK, activation of AMPK-p53 pathwayIn vitro—MG63 cells2019[317]
Breast cancer0, 10, 50, 100 or 200 µMProapoptoticInduced G2/M cell cycle arrest, reduced CDK8 expression levels, decreased phosphorylation of PI3K and Akt, downregulation of Wnt and β-cateninIn vitro—MDA MB 231 breast cancer cells2020[318]
Prostate cancer1, 5, 10 µMProapoptoticDecreased expression of Wnt-2, p-GSK3β, β-catenin, c-myc and cyclin D1In vitro—PC-3 and DU145 prostate cancer stem cells2020[319]
Gastric cancerIC50 of 0.6 ± 0.0421 μMAntiproliferativeInhibition of histone methylation KDM1A In vitro—gastric cancer cell line BGC-8232020[320]
Glioblastoma(IC50) values of capsaicin were 325.7 ± 12.4 μM at 24 h and 265.7 ± 10.2 μM at 48 hProapoptoticUpregulation of peroxisome proliferator-activated receptor gammaIn vitro—human glioblastoma LN-18 cell line2020[321]
Breast cancerIn vitro: 150 μΜ/L for 72 h; in vivo: 10 mg/kg 1 time per 3 days for 21 days Proapoptotic, antiproliferative Down-regulation of FBI-1-mediated NF-κB pathwayIn vivo—female BALB/c athymic nude mice;
in vitro—human breast cancer cell lines (MCF-7 and MDA-MB-23)
2021[322]
Lung cancer cells0–200 µMAntiproliferativeReduced accumulation of HIF-1α protein inhibition of mitochondrial respirationIn vitro—A549, H1299, H2009, and H23 cell lines2022[323]
Renal cancer0, 5, 10, 25, 50, 100 and 200 μMInhibition of cell migration, invasion and epithelial-mesenchymal transition
Induced autophagy
AMPK/mTOR pathwayIn vitro—renal cell carcinoma (RCC) 786-O and CAKI-1 cell lines2022[324]
Epithelial lung cancer NSCLC100, 200 and 300 μM/LInhibition of proliferation and promotion of ferroptosisIncrease of total iron levels and ferrous ion levels by regulating the SLC7A11/GPX4 axisIn vitro—NSCLC cells (A549 and NCI-H23)2022[325]
Hepatocarcinogenesis100, 200 and 300 μM/LSignificant inhibition of hepatocarcinogenesisInhibition of SIRT1/SOX2 signalling; SIRT1 downregulationIn vitro—HepG2 and WB-F344 cells2022[326]
Anaplastic thyroid cancer50, 100 and 200 μMStemness-inhibitory effectCalcium-dependent autophagic degradation of OCT4A, following TRPV1 activationIn vitro—8505C and FRO cells2022[327]
Table 5. Some traditional medical applications of capsaicin.
Table 5. Some traditional medical applications of capsaicin.
UseTribe(s)/CountryCapsicum Species UsedReferences
Antibacterial/antimicrobialPimas/MexicoCapsicum sp.[391]
NematicidePimas/MexicoCapsicum sp.[392,393]
Fever alleviationZapotecs and Raramuris/MexicoCapsicum sp.[394,395]
Mental, behavioural and neurological disordersRaramuris and Mestizos/MexicoC. annuum var. glabriusculum[395]
Ocular pathologies treatmentMestizos and Zapotecs/MexicoC. annuum var. glabriusculum[394,396,397,398,399]
Auricular pathologies treatmentNahua/MexicoC. annuum var. glabriusculum[394,398,399]
Respiratory pathologies treatmentNahua and Mestizos/MexicoCapsicum sp.[77,397,400,401,402,403]
Pathologies of the gastrointestinal tractMestizos, Nahua and Lacandon Maya/MexicoCapsicum sp.[77,397,400,401,404,405]
Skin pathologiesMestizos, Zapotecs and Tzotzil/MexicoCapsicum sp.[77,396,397,403,406,407]
Disease of the musculoskeletal system and associated tissuesRamamuris/MexicoCapsicum sp.[395,408]
Pathologies of the genito-urinary systemLocal tribes/MexicoCapsicum sp.[77,400,401]
Labor pain mitigation/delivery promotionLocal tribes/MexicoCapsicum sp.[400]
Poisoning treatment (for spider bites)Mestizos/MexicoC. annuum var. glabriusculum[400,403]
General health benefitsLocal people/EritreaCapsicum sp.[390]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Petran, E.M.; Periferakis, A.; Troumpata, L.; Periferakis, A.-T.; Scheau, A.-E.; Badarau, I.A.; Periferakis, K.; Caruntu, A.; Savulescu-Fiedler, I.; Sima, R.-M.; et al. Capsaicin: Emerging Pharmacological and Therapeutic Insights. Curr. Issues Mol. Biol. 2024, 46, 7895-7943. https://doi.org/10.3390/cimb46080468

AMA Style

Petran EM, Periferakis A, Troumpata L, Periferakis A-T, Scheau A-E, Badarau IA, Periferakis K, Caruntu A, Savulescu-Fiedler I, Sima R-M, et al. Capsaicin: Emerging Pharmacological and Therapeutic Insights. Current Issues in Molecular Biology. 2024; 46(8):7895-7943. https://doi.org/10.3390/cimb46080468

Chicago/Turabian Style

Petran, Elena Madalina, Argyrios Periferakis, Lamprini Troumpata, Aristodemos-Theodoros Periferakis, Andreea-Elena Scheau, Ioana Anca Badarau, Konstantinos Periferakis, Ana Caruntu, Ilinca Savulescu-Fiedler, Romina-Marina Sima, and et al. 2024. "Capsaicin: Emerging Pharmacological and Therapeutic Insights" Current Issues in Molecular Biology 46, no. 8: 7895-7943. https://doi.org/10.3390/cimb46080468

Article Metrics

Back to TopTop