Biomarkers That Seem to Have the Greatest Impact on Promoting the Formation of Atherosclerotic Plaque in Current Scientific Research
Abstract
:1. Introduction
2. Mechanism of Atherosclerotic Plaque Formation
3. Selected Biomarkers of Atherosclerosis
3.1. Proteins, Peptides, and Amino Acids
3.1.1. C-Reactive Protein
3.1.2. Osteopontin
3.1.3. Osteoprotegerin
3.1.4. Insulin Resistance
3.1.5. Cytokines—TGF-β Family
3.1.6. Copeptin
3.1.7. Homocysteine
3.2. Microelements and VitaminD
3.2.1. Iron
3.2.2. Copper
3.2.3. Zinc
3.2.4. Vitamin D
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, J.; He, S.; Song, Z.; Chen, S.; Lin, X.; Sun, H.; Zhou, P.; Peng, Q.; Du, S.; Zheng, S.; et al. Macrophage polarization states in atherosclerosis. Front. Immunol. 2023, 14, 1185587. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Markin, A.M.; Markina, Y.V.; Bogatyreva, A.I.; Tolstik, T.V.; Chakal, D.A.; Breshenkov, D.G.; Charchyan, E.R. The Role of Cytokines in Cholesterol Accumulation in Cells and Atherosclerosis Progression. Int. J. Mol. Sci. 2023, 24, 6426. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheng, J.; Huang, H.; Chen, Y.; Wu, R. Nanomedicine for Diagnosis and Treatment of Atherosclerosis. Adv. Sci. 2023, 10, e2304294. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- de Winther, M.P.J.; Bäck, M.; Evans, P.; Gomez, D.; Goncalves, I.; Jørgensen, H.F.; Koenen, R.R.; Lutgens, E.; Norata, G.D.; Osto, E.; et al. Translational opportunities of single-cell biology in atherosclerosis. Eur. Heart J. 2023, 44, 1216–1230. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gerosa, C.; Cerrone, G.; Suri, J.S.; Aimola, V.; Cau, F.; Coni, P.; Piras, M.; Cau, R.; Balestrieri, A.; Scano, A.; et al. The human carotid atherosclerotic plaque: An observational review of histological scoring systems. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 3784–3792. [Google Scholar] [CrossRef] [PubMed]
- Bu, L.L.; Yuan, H.H.; Xie, L.L.; Guo, M.H.; Liao, D.F.; Zheng, X.L. New Dawn for Atherosclerosis: Vascular Endothelial Cell Senescence and Death. Int. J. Mol. Sci. 2023, 24, 15160. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Watanabe, Y.; Inaba, T.; Gotoda, T.; Harada, K.; Shimada, M.; Ohsuga, J.; Kawamura, M.; Yazaki, Y.; Yamada, N. Role of macrophage colony-stimulating factor in the initial process of atherosclerosis. Ann. N. Y. Acad. Sci. 1995, 748, 357–364; discussion 364–366. [Google Scholar] [CrossRef] [PubMed]
- Noothi, S.K.; Ahmed, M.R.; Agrawal, D.K. Residual risks and evolving atherosclerotic plaques. Mol. Cell. Biochem. 2023, 478, 2629–2643. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mann, H.K.; Magnani, J.W.; Johnson, A.E. Health Literacy is Essential to ASCVD Prevention in Youth. Curr. Atheroscler. Rep. 2023, 25, 113–118. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Man, J.J.; Beckman, J.A.; Jaffe, I.Z. Sex as a Biological Variable in Atherosclerosis. Circ. Res. 2020, 126, 1297–1319. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Y.; Weng, J.; Huan, L.; Sheng, S.; Xu, F. Mitophagy in atherosclerosis: From mechanism to therapy. Front. Immunol. 2023, 14, 1165507. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tamargo, I.A.; Baek, K.I.; Kim, Y.; Park, C.; Jo, H. Flow-induced reprogramming of endothelial cells in atherosclerosis. Nat. Rev. Cardiol. 2023, 20, 738–753. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hou, P.; Fang, J.; Liu, Z.; Shi, Y.; Agostini, M.; Bernassola, F.; Bove, P.; Candi, E.; Rovella, V.; Sica, G.; et al. Macrophage polarization and metabolism in atherosclerosis. Cell Death Dis. 2023, 14, 691. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Blagov, A.V.; Markin, A.M.; Bogatyreva, A.I.; Tolstik, T.V.; Sukhorukov, V.N.; Orekhov, A.N. The Role of Macrophages in the Pathogenesis of Atherosclerosis. Cells 2023, 12, 522. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Y.; Liu, X.Y.; Wang, Y.; Zhao, W.X.; Li, F.D.; Guo, P.R.; Fan, Q.; Wu, X.F. NOX2 inhibition stabilizes vulnerable plaques by enhancing macrophage efferocytosis via MertK/PI3K/AKT pathway. Redox Biol. 2023, 64, 102763. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pan, H.; Ho, S.E.; Xue, C.; Cui, J.; Ross, L.S.; Li, F.; Solomon, R.A.; Connolly ESJr Reilly, M.P. Atherosclerosis is a smooth muscle cell-driven tumor-like disease. bioRxiv 2023, bioRxiv:2023.03.06.531330. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Voskarides, K.; Giannopoulou, N. The Role of TP53 in Adaptation and Evolution. Cells 2023, 12, 512. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Luo, L.; Fu, C.; Bell, C.F.; Wang, Y.; Leeper, N.J. Role of vascular smooth muscle cell clonality in atherosclerosis. Front. Cardiovasc. Med. 2023, 10, 1273596. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reiner, Z.; Tedeschi-Reiner, E. Patofiziologija ateroskleroze. I. Oblici istupnjevi razvoja aterosklerotickih promjena [Pathophysiology of atherosclerosis. I. The morphology and developmental levels of atherosclerotic changes]. Lijec. Vjesn. 1990, 112, 118–123. [Google Scholar] [PubMed]
- Lobo, R.A. Lipids, clotting factors, and diabetes: Endogenous risk factors for cardiovascular disease. Am. J. Obstet. Gynecol. 1988, 158 Pt 2, 1584–1591. [Google Scholar] [CrossRef] [PubMed]
- Osman, R.; L’Allier, P.L.; Elgharib, N.; Tardif, J.C. Critical appraisal of C-reactive protein throughout the spectrum of cardiovascular disease. Vasc. Health Risk Manag. 2006, 2, 221–237. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kuppa, A.; Tripathi, H.; Al-Darraji, A.; Tarhuni, W.M.; Abdel-Latif, A. C-Reactive Protein Levels and Risk of Cardiovascular Diseases: A Two-Sample Bidirectional Mendelian Randomization Study. Int. J. Mol. Sci. 2023, 24, 9129. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Singh, U.; Devaraj, S.; Vasquez-Vivar, J.; Jialal, I. C-reactive protein decreases endothelial nitric oxide synthase activity via uncoupling. J. Mol. Cell Cardiol. 2007, 43, 780–791. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Swastini, D.A.; Wiryanthini, I.A.D.; Ariastuti, N.L.P.; Muliantara, A. Atherosclerosis Prediction with High Sensitivity C-Reactive Protein (hs-CRP) and Related Risk Factor in Patient with Dyslipidemia. Open Access Maced. J. Med. Sci. 2019, 7, 3887–3890. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Janus, A.; Szahidewicz-Krupska, E.; Mazur, G.; Doroszko, A. Insulin Resistance and Endothelial Dysfunction Constitute a Common Therapeutic Target in Cardiometabolic Disorders. Mediat. Inflamm. 2016, 2016, 3634948. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reardon, C.A.; Lingaraju, A.; Schoenfelt, K.Q.; Zhou, G.; Cui, C.; Jacobs-El, H.; Babenko, I.; Hoofnagle, A.; Czyz, D.; Shuman, H.; et al. Obesity and Insulin Resistance Promote Atherosclerosis through an IFNγ-Regulated Macrophage Protein Network. Cell Rep. 2018, 23, 3021–3030. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kaleta, B. The role of osteopontin in kidney diseases. Inflamm. Res. 2019, 68, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Niu, X. Immunoregulatory Roles of Osteopontin in Diseases. Nutrients. 2024, 16, 312. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shirakawa, K.; Sano, M. Osteopontin in Cardiovascular Diseases. Biomolecules 2021, 11, 1047. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kaleta, B. Osteopontin and Transplantation: Where Are We Now? Arch. Immunol. Ther. Exp. 2021, 69, 15. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sørensen, E.S.; Christensen, B. Milk Osteopontin and Human Health. Nutrients 2023, 15, 2423. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fukata, Y.; Amano, M.; Kaibuchi, K. Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol. Sci. 2001, 22, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Chen, J.; Cui, G.; Wei, Y.; Lu, C.; Wang, L.; Diao, H. Pathophysiological role of osteopontin and angiotensin II in atherosclerosis. Biochem. Biophys. Res. Commun. 2016, 471, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Baspinar, O.; Kocer, D.; Kiraz, A.; Tokmak, T.T.; Dizdar, O.S. Osteopontin as an early predictor of atherosclerosis in attack-free Familial Mediterranean fever patients. Medicine 2023, 102, e35137. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, X.; Zhang, Y.; Zhang, W.; Qin, C.; Zhu, Y.; Fang, Y.; Wang, Y.; Tang, C.; Cao, F. Osteopontin-Targeted and PPARδ-Agonist-Loaded Nanoparticles Efficiently Reduce Atherosclerosis in Apolipoprotein E-/- Mice. ACS Omega 2022, 7, 28767–28778. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kadoglou, N.P.E.; Khattab, E.; Velidakis, N.; Gkougkoudi, E. The Role of Osteopontin in Atherosclerosis and Its Clinical Manifestations (Atherosclerotic Cardiovascular Diseases)—A Narrative Review. Biomedicines 2023, 11, 3178. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Owen, S.; Sanders, A.J.; Mason, M.D.; Jiang, W.G. Importance of osteoprotegrin and receptor activator of nuclear factor κB in breast cancer response to hepatocyte growth factor and the bone microenvironment in vitro. Int. J. Oncol. 2016, 48, 919–928. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, S.T.; Kang, L.; Wang, C.Z.; Huang, P.J.; Huang, H.T.; Lin, S.Y.; Chou, S.H.; Lu, C.C.; Shen, P.C.; Lin, Y.S.; et al. (-)-Epigallocatechin-3-Gallate Decreases Osteoclastogenesis via Modulation of RANKL and Osteoprotegrin. Molecules 2019, 24, 156. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Raineri, D.; Chiocchetti, A.; Cappellano, G. Beyond the Biomarker: Unveiling the Multifaceted Role of Osteopontin in Both Physiological and Pathological Processes. Biomedicines 2024, 12, 982. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vachliotis, I.D.; Polyzos, S.A. Osteoprotegerin/Receptor Activator of Nuclear Factor-Kappa B Ligand/Receptor Activator of Nuclear Factor-Kappa B Axis in Obesity, Type 2 Diabetes Mellitus, and Nonalcoholic Fatty Liver Disease. Curr. Obes. Rep. 2023, 12, 147–162. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rashad, N.M.; El-Shal, A.S.; Shalaby, S.M.; Abdel-Nour, H.M.; Sarhan, W.M. Osteoprotegerin expression and serum values in obese women with type 2 diabetes mellitus. Mol. Biol. Rep. 2021, 48, 7095–7104. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mohamadpour, A.H.; Abdolrahmani, L.; Mirzaei, H.; Sahebkar, A.; Moohebati, M.; Ghorbani, M.; Ferns, G.A.; Ghayour-Mobarhan, M. Serum osteopontin concentrations in relation to coronary artery disease. Arch. Med. Res. 2015, 46, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Morisawa, T.; Nakagomi, A.; Kohashi, K.; Kosugi, M.; Kusama, Y.; Atarashi, H.; Shimizu, W. Osteoprotegerin is Associated with Endothelial Function and Predicts Early Carotid Atherosclerosis in Patients with Coronary Artery Disease. Int. Heart J. 2015, 56, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Kadoglou, N.P.; Gerasimidis, T.; Golemati, S.; Kapelouzou, A.; Karayannacos, P.E.; Liapis, C.D. The relationship between serum levels of vascular calcification inhibitors and carotid plaque vulnerability. J. Vasc. Surg. 2008, 47, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Rochette, L.; Meloux, A.; Rigal, E.; Zeller, M.; Cottin, Y.; Vergely, C. The Role of Osteoprotegerin and Its Ligands in Vascular Function. Int. J. Mol. Sci. 2019, 20, 705. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nascimento, M.M.; Hayashi, S.Y.; Riella, M.C.; Lindholm, B. Elevated levels of plasma osteoprotegerin are associated with all-cause mortality risk and atherosclerosis in patients with stages 3 to 5 chronic kidney disease. Braz. J. Med. Biol. Res. 2014, 47, 995–1002. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Straface, G.; Biscetti, F.; Pitocco, D.; Bertoletti, G.; Misuraca, M.; Vincenzoni, C.; Snider, F.; Arena, V.; Stigliano, E.; Angelini, F.; et al. Assessment of the genetic effects of polymorphisms in the osteoprotegerin gene, TNFRSF11B, on serum osteoprotegerin levels and carotid plaque vulnerability. Stroke 2011, 42, 3022–3028. [Google Scholar] [CrossRef]
- Chalela, J.A. Evaluating the carotid plaque: Going beyond stenosis. Cerebrovasc. Dis. 2009, 27 (Suppl. S1), 19–24. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.L.; Huang, P.Y.; Tsai, J.P.; Wang, J.H.; Hsu, B.G. Serum Osteoprotegerin Levels and the Vascular Reactivity Index in Patients with Hypertension. Medicina 2023, 59, 1794. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Collado, S.; Coll, E.; Nicolau, C.; Azqueta, M.; Pons, M.; Cruzado, J.M.; de la Torre, B.; Deulofeu, R.; Mojal, S.; Pascual, J.; et al. Serum osteoprotegerin in prevalent hemodialysis patients: Associations with mortality, atherosclerosis and cardiac function. BMC Nephrol. 2017, 18, 290. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tschiderer, L.; Willeit, J.; Schett, G.; Kiechl, S.; Willeit, P. Osteoprotegerin concentration and risk of cardiovascular outcomes in nine general population studies: Literature-based meta-analysis involving 26, 442 participants. PLoS ONE 2017, 12, e0183910. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Owusu, J.; Barrett, E. Early Microvascular Dysfunction: Is the Vasa Vasorum a “Missing Link” in Insulin Resistance and Atherosclerosis. Int. J. Mol. Sci. 2021, 22, 7574. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Satish, M.; Saxena, S.K.; Agrawal, D.K. Adipokine Dysregulation and Insulin Resistance with Atherosclerotic Vascular Disease: Metabolic Syndrome or Independent Sequelae? J. Cardiovasc. Transl. Res. 2019, 12, 415–424. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dzięgielewska-Gęsiak, S.; Stołtny, D.; Brożek, A.; Muc-Wierzgoń, M.; Wysocka, E. Are insulin-resistance and oxidative stress cause or consequence of aging. Exp. Biol. Med. 2020, 245, 1260–1267. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Love, K.M.; Liu, Z. DPP4 Activity, Hyperinsulinemia, and Atherosclerosis. J. Clin. Endocrinol. Metab. 2021, 106, 1553–1565. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Savova, M.S.; Mihaylova, L.V.; Tews, D.; Wabitsch, M.; Georgiev, M.I. Targeting PI3K/AKT signaling pathway in obesity. Biomed Pharmacother. 2023, 159, 114244. [Google Scholar] [CrossRef] [PubMed]
- Razani, B.; Chakravarthy, M.V.; Semenkovich, C.F. Insulin resistance and atherosclerosis. Endocrinol. Metab. Clin. N. Am. 2008, 37, 603–621. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liuizė Abramavičiūtė, A.; Mongirdienė, A. TGF-β Isoforms and GDF-15 in the Development and Progression of Atherosclerosis. Int. J. Mol. Sci. 2024, 25, 2104. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, H.; Ma, S.; Sun, L.; Gao, J.; Zhao, C. TGF-β1 upregulates the expression of lncRNA-ATB to promote atherosclerosis. Mol. Med. Rep. 2019, 19, 4222–4228. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Efat, A.; Wahb, R.; Shoeib, S.A.A.; Dawod, A.A.E.; Abd ElHafez, M.A.; Abd ElMohsen, E.A.; Elkholy, A. GDF-15 is associated with atherosclerosis in adults with transfusion-dependent beta-thalassemia. EJHaem 2022, 3, 353–361. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moodley, N. Copeptin analysis in endocrine disorders. Front. Endocrinol. 2023, 14, 1230045. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jalleh, R.; Torpy, D.J. The Emerging Role of Copeptin. Clin. Biochem. Rev. 2021, 42, 17–25. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sarkarinejad, A.; Paydar, S.; Khosrojerdi, A.; Hosseini, M. Copeptin: A novel prognostic biomarker in trauma: A review article. J. Health Popul. Nutr. 2023, 42, 128. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hammad, R.; Elshafei, A.; Khidr, E.G.; El-Husseiny, A.A.; Gomaa, M.H.; Kotb, H.G.; Eltrawy, H.H.; Farhoud, H. Copeptin: A neuroendocrine biomarker of COVID-19 severity. Biomark. Med. 2022, 16, 589–597. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- García-Álvarez, R.; Arboleda-Salazar, R. Vasopressin in Sepsis and Other Shock States: State of the Art. J. Pers. Med. 2023, 13, 1548. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yalta, K.; Yetkin, E.; Yalta, T. Serum Copeptin in Cardiooncology Practice: Review of Pathophysiological and Clinical Implications. Balk. Med. J. 2023, 40, 82–92. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Refardt, J.; Winzeler, B.; Christ-Crain, M. Copeptin and its role in the diagnosis of diabetes insipidus and the syndrome of inappropriate antidiuresis. Clin. Endocrinol. 2019, 91, 22–32. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Afsar, B. Pathophysiology of copeptin in kidney disease and hypertension. Clin. Hypertens. 2017, 23, 13. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Henrique, L.R.; Crispim, D.; Vieceli, T.; Schaeffer, A.F.; Bellaver, P.; Leitão, C.B.; Rech, T.H. Copeptin and stress-induced hyperglycemia in critically ill patients: A prospective study. PLoS ONE 2021, 16, e0250035. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Szmygin, H.; Szydełko, J.; Matyjaszek-Matuszek, B. Copeptin as a novel biomarker of cardiometabolic syndrome. Endokrynol. Pol. 2021, 72, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Karatzetzou, S.; Tsiptsios, D.; Sousanidou, A.; Fotiadou, S.; Christidi, F.; Kokkotis, C.; Gkantzios, A.; Stefas, E.; Vlotinou, P.; Kaltsatou, A.; et al. Copeptin Implementation on Stroke Prognosis. Neurol. Int. 2023, 15, 83–99. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Katan, M.; Christ-Crain, M. The stress hormone copeptin: A new prognostic biomarker in acute illness. Swiss Med. Wkly. 2010, 140, 13101. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Navaneethan, S.D. Copeptin and Decline in Kidney Function. Am. J. Nephrol. 2016, 44, 19–21. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tasneem, M.; Mannix, C.; Wong, A.; Zhang, J.; Rangan, G. Is serum copeptin a modifiable biomarker in autosomal dominant polycystic kidney disease? World J. Nephrol. 2018, 7, 51–57. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Evers, K.S.; Wellmann, S. Arginine Vasopressin and Copeptin in Perinatology. Front. Pediatr. 2016, 4, 75. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reinstadler, S.J.; Klug, G.; Feistritzer, H.J.; Metzler, B.; Mair, J. Copeptin testing in acute myocardial infarction: Ready for routine use? Dis. Markers 2015, 2015, 614145. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Möckel, M.; Searle, J. Copeptin-marker of acute myocardial infarction. Curr. Atheroscler. Rep. 2014, 16, 421. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yavcin, O.; Askin, L.; Seçen, O.; Turkmen, S.; Akturk, E.; Tanriverdi, O.; Necati Dagli, M. Copeptin levels in patients with coronary artery ectasia. Interv. Med. Appl. Sci. 2019, 11, 112–116. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mu, D.; Cheng, J.; Qiu, L.; Cheng, X. Copeptin as a Diagnostic and Prognostic Biomarker in Cardiovascular Diseases. Front. Cardiovasc. Med. 2022, 9, 901990. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schill, F.; Timpka, S.; Nilsson, P.M.; Melander, O.; Enhörning, S. Copeptin as a predictive marker of incident heart failure. ESC Heart Fail. 2021, 8, 3180–3188. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bjornstad, P.; Maahs, D.M.; Jensen, T.; Lanaspa, M.A.; Johnson, R.J.; Rewers, M.; Snell-Bergeon, J.K. Elevated copeptin is associated with atherosclerosis and diabetic kidney disease in adults with type 1 diabetes. J. Diabetes Complicat. 2016, 30, 1093–1096. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tenderenda-Banasiuk, E.; Wasilewska, A.; Filonowicz, R.; Jakubowska, U.; Waszkiewicz-Stojda, M. Serum copeptin levels in adolescents with primary hypertension. Pediatr. Nephrol. 2014, 29, 423–429. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- El Dayem, S.M.A.; Battah, A.A.; El Bohy, A.E.M.; Yousef, R.N.; Talaat, A. Copeptin as a Biomarker of Atherosclerosis in Type 1 Diabetic Patients. Open Access Maced. J. Med. Sci. 2020, 7, 3975–3978. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schill, F.; Persson, M.; Engström, G.; Melander, O.; Enhörning, S. Copeptin as a marker of atherosclerosis and arteriosclerosis. Atherosclerosis 2021, 338, 64–68. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Möckel, M.; Searle, J.; Hamm, C.; Slagman, A.; Blankenberg, S.; Huber, K.; Katus, H.; Liebetrau, C.; Müller, C.; Muller, R.; et al. Early discharge using single cardiac troponin and copeptin testing in patients with suspected acute coronary syndrome (ACS): A randomized, controlled clinical process study. Eur. Heart J. 2015, 36, 369–376. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karbek, B.; Ozbek, M.; Karakose, M.; Topaloglu, O.; Bozkurt, N.C.; Cakır, E.; Aslan, M.S.; Delibasi, T. Copeptin, a surrogate marker for arginine vasopressin, is associated with cardiovascular risk in patients with polycystic ovary syndrome. J. Ovarian Res. 2014, 7, 31. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dai, C.; Fei, Y.; Li, J.; Shi, Y.; Yang, X. A Novel Review of Homocysteine and Pregnancy Complications. BioMed. Res. Int. 2021, 2021, 6652231. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ganguly, P.; Alam, S.F. Role of homocysteine in the development of cardiovascular disease. Nutr. J. 2015, 14, 6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Habib, S.S.; Al-Khlaiwi, T.; Almushawah, A.; Alsomali, A.; Habib, S.A. Homocysteine as a predictor and prognostic marker of atherosclerotic cardiovascular disease: A systematic review and meta-analysis. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 8598–8608. [Google Scholar] [CrossRef] [PubMed]
- Baggott, J.E.; Tamura, T. Homocysteine, iron and cardiovascular disease: A hypothesis. Nutrients 2015, 7, 1108–1118. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shirode, P.S.; Parekh, A.D.; Patel, V.V.; Vala, J.; Jaimalani, A.M.; Vora, N.M.; Gummalla, V.; Patel, J.S.; Shriram, N. Early Detection of Subclinical Atherosclerosis: Hyperhomocysteinemia as a Promising Marker in Adolescents with Vitamin B Deficiency. Cureus 2023, 15, e41571. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yuan, S.; Mason, A.M.; Carter, P.; Burgess, S.; Larsson, S.C. Homocysteine, B vitamins, and cardiovascular disease: A Mendelian randomization study. BMC Med. 2021, 19, 97. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Feng, Y.; Kang, K.; Xue, Q.; Chen, Y.; Wang, W.; Cao, J. Value of plasma homocysteine to predict stroke, cardiovascular diseases, and new-onset hypertension: A retrospective cohort study. Medicine 2020, 99, e21541. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arthur, D.; John, D.; Fleming, J.J.; Rebekah, G.; Gowri, M.; John, S.S. Role of hyperhomocysteinemia and Vitamin B12 deficiency in central and hemi-central retinal vein occlusion: A case-control study. Oman J. Ophthalmol. 2022, 15, 6–12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ahmed, S.; Bogiatzi, C.; Hackam, D.G.; Rutledge, A.C.; Sposato, L.A.; Khaw, A.; Mandzia, J.; Azarpazhoo, M.R.; Hachinski, V.; Spence, J.D. Vitamin B 12 deficiency and hyperhomocysteinaemia in outpatients with stroke or transient ischaemic attack: A cohort study at an academic medical centre. BMJ. Open 2019, 9, e026564. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Angelini, A.; Cappuccilli, M.L.; Magnoni, G.; Croci Chiocchini, A.L.; Aiello, V.; Napoletano, A.; Iacovella, F.; Troiano, A.; Mancini, R.; Capelli, I.; et al. The link between homocysteine, folic acid and vitamin B12 in chronic kidney disease. G Ital. Nefrol. 2021, 38, 2021-vol4. [Google Scholar] [PubMed]
- State, N. CRP and the Prognosis of Patients with Cirrhosis. Maedica 2021, 16, 353–361. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bai, R.J.; Li, Y.S.; Zhang, F.J. Osteopontin, a bridge links osteoarthritis and osteoporosis. Front. Endocrinol. 2022, 13, 1012508. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fu, Y.X.; Gu, J.H.; Zhang, Y.R.; Tong, X.S.; Zhao, H.Y.; Yuan, Y.; Liu, X.Z.; Bian, J.C.; Liu, Z.P. Inhibitory effects of osteoprotegerin on osteoclast formation and function under serum-free conditions. J. Vet. Sci. 2013, 14, 405–412. [Google Scholar] [CrossRef]
- Esse, R.; Barroso, M.; Tavares de Almeida, I.; Castro, R. The Contribution of Homocysteine Metabolism Disruption to Endothelial Dysfunction: State-of-the-Art. Int. J. Mol. Sci. 2019, 20, 867. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pi, T.; Liu, B.; Shi, J. Abnormal Homocysteine Metabolism: An Insight of Alzheimer’s Disease from DNA Methylation. Behav. Neurol. 2020, 2020, 8438602. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, D.; Lu, P.; Mo, X.; Yang, B.; Chen, T.; Yao, Y.; Xiong, T.; Yue, L.; Yang, X. Ferroptosis and metabolic syndrome and complications: Association, mechanism, and translational applications. Front. Endocrinol. 2024, 14, 1248934. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pietrangelo, A. Iron in NASH, chronic liver diseases and HCC: How much iron is too much? J. Hepatol. 2009, 50, 249–251. [Google Scholar] [CrossRef] [PubMed]
- El Hajj, S.; Canabady-Rochelle, L.; Gaucher, C. Nature-Inspired Bioactive Compounds: A Promising Approach for Ferroptosis-Linked Human Diseases? Molecules 2023, 28, 2636. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Meng, H.; Wang, Y.; Ruan, J.; Chen, Y.; Wang, X.; Zhou, F.; Meng, F. Decreased Iron Ion Concentrations in the Peripheral Blood Correlate with Coronary Atherosclerosis. Nutrients 2022, 14, 319. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, S.H.; Yadav, D.; Kim, S.J.; Kim, J.R.; Cho, K.H. High Consumption of Iron Exacerbates Hyperlipidemia, Atherosclerosis, and Female Sterility in Zebrafish via Acceleration of Glycation and Degradation of Serum Lipoproteins. Nutrients 2017, 9, 690. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Y.; Xin, L.; Xiang, M.; Shang, C.; Wang, Y.; Wang, Y.; Cui, X.; Lu, Y. The molecular mechanisms of ferroptosis and its role in cardiovascular disease. BioMed. Pharmacother. 2022, 145, 112423. [Google Scholar] [CrossRef] [PubMed]
- Tasic, N.M.; Tasic, D.; Veselinovic, M.; Jakovljevic, V.; Djuric, D.; Radak, D. Iron concentrations in atherosclerotic plaque and serum in patients with carotid atherosclerosis. Acta Physiol. Hung. 2015, 102, 143–150. [Google Scholar] [CrossRef] [PubMed]
- DePalma, R.G.; Hayes, V.W.; Chow, B.K.; Shamayeva, G.; May, P.E.; Zacharski, L.R. Ferritin levels, inflammatory biomarkers, and mortality in peripheral arterial disease: A substudy of the Iron (Fe) and Atherosclerosis Study (FeAST) Trial. J. Vasc. Surg. 2010, 51, 1498–1503. [Google Scholar] [CrossRef]
- Liu, T.; Liu, Y.; Zhang, F.; Gao, Y. Copper homeostasis dysregulation promoting cell damage and the association with liver diseases. Chin. Med. J. 2023, 136, 1653–1662. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ghaffari, M.A.; Ghiasvand, T. Kinetic study of low density lipoprotein oxidation by copper. Indian J. Clin. Biochem. 2010, 25, 29–36. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, S.; Li, Y.; Zhou, L.; Wang, X.; Liu, L.; Wu, M. Copper homeostasis and cuproptosis in atherosclerosis: Metabolism, mechanisms and potential therapeutic strategies. Cell Death Discov. 2024, 10, 25. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stiles, L.I.; Ferrao, K.; Mehta, K.J. Role of zinc in health and disease. Clin. Exp. Med. 2024, 24, 38. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hara, T.; Yoshigai, E.; Ohashi, T.; Fukada, T. Zinc in Cardiovascular Functions and Diseases: Epidemiology and Molecular Mechanisms for Therapeutic Development. Int. J. Mol Sci. 2023, 24, 7152. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sheeley, M.P.; Andolino, C.; Kiesel, V.A.; Teegarden, D. Vitamin D regulation of energy metabolism in cancer. Br. J. Pharmacol. 2022, 179, 2890–2905. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Delrue, C.; Speeckaert, M.M. Vitamin D and Vitamin D-Binding Protein in Health and Disease. Int. J. Mol. Sci. 2023, 24, 4642. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Latic, N.; Erben, R.G. Vitamin D and Cardiovascular Disease, with Emphasis on Hypertension, Atherosclerosis, and Heart Failure. Int. J. Mol. Sci. 2020, 21, 6483. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carbone, F.; Liberale, L.; Libby, P.; Montecucco, F. Vitamin D in atherosclerosis and cardiovascular events. Eur. Heart J. 2023, 44, 2078–2094. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, D.H.; Meza, C.A.; Clarke, H.; Kim, J.S.; Hickner, R.C. Vitamin D and Endothelial Function. Nutrients 2020, 12, 575. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Surdu, A.M.; Pînzariu, O.; Ciobanu, D.M.; Negru, A.G.; Căinap, S.S.; Lazea, C.; Iacob, D.; Săraci, G.; Tirinescu, D.; Borda, I.M.; et al. Vitamin D and Its Role in the Lipid Metabolism and the Development of Atherosclerosis. Biomedicines 2021, 9, 172. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Galaris, D.; Barbouti, A.; Pantopoulos, K. Iron homeostasis and oxidative stress: An intimate relationship. Biochim. Biophys. Acta Mol. Cell Res. 2019, 1866, 118535. [Google Scholar] [CrossRef] [PubMed]
- Harrison, A.V.; Lorenzo, F.R.; McClain, D.A. Iron and the Pathophysiology of Diabetes. Annu. Rev. Physiol. 2023, 85, 339–362. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yoon, S.; Han, S.S.; Rana, S.V. Molecular markers of heavy metal toxicity—A new paradigm for health risk assessment. J. Environ. Biol. 2008, 29, 1–14. [Google Scholar] [PubMed]
- Caussy, D.; Gochfeld, M.; Gurzau, E.; Neagu, C.; Ruedel, H. Lessons from case studies of metals: Investigating exposure, bioavailability, and risk. Ecotoxicol. Environ. Saf. 2003, 56, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Arnaud, J.; Chappuis, P.; Jaudon, M.C.; Bellanger, J. Marqueurs biologiques nutritionnels des carences en zinc, cuivre et sélénium [Nutritional biological markers of deficiencies of zinc, copper and selenium]. Ann. Biol. Clin. 1993, 51, 589–604. [Google Scholar]
- Chan, S.; Gerson, B.; Subramaniam, S. The role of copper, molybdenum, selenium, and zinc in nutrition and health. Clin. Lab. Med. 1998, 18, 673–685. [Google Scholar] [CrossRef] [PubMed]
- Cooke, N.E.; Haddad, J.G. Vitamin D binding protein (Gc-globulin). Endocr. Rev. 1989, 10, 294–307. [Google Scholar] [CrossRef] [PubMed]
- Caniggia, A.; Lorè, F.; di Cairano, G.; Nuti, R. Main endocrine modulators of vitamin D hydroxylases in human pathophysiology. J. Steroid Biochem. 1987, 27, 815–824. [Google Scholar] [CrossRef] [PubMed]
Biomarker | Structure | Source | Selected Functions in the Body | Pathomechanism | Selected Other Disease States Associated with Increased/Decreased Biomarker Levels (Other than Cardiovascular Diseases) |
---|---|---|---|---|---|
CRP | Protein | Synthesized in the liver in response to signals sent by inflammatory cells. | Inflammatory biomarker and one of the mediators of the acute phase reaction [97]. | Intensification of inflammation by increasing the production of pro-inflammatory cytokines and reducing NO production. | Autoimmune diseases, cancer, acute infectious diseases, liver cirrhosis, generalized inflammatory response syndrome [97]. |
Osteopontin | Protein | It is produced in the human body as a response to hypocalcemia and hypophosphatemia in the blood. It occurs in many different cells. | It is involved in the inflammatory response, wound healing, maintaining proper metabolic homeostasis of the cartilage and subchondral layer, and regulating the metabolism of chondrocytes and osteocytes [98]. | Reduces the availability of NO. Induces inflammation. Induces the proliferation of VSMCs. It causes an increased influx of inflammatory cells into the forming plaque. | Diabetes and prediabetes, obesity, chronic kidney disease, liver diseases, subarachnoid bleeding, rheumatological diseases [98]. |
Osteoprotegerin | Protein | Produced in the human body by cardiomyocytes, epithelial cells, lungs, bones, immune system cells, and kidneys. | It takes part in the metabolism of bone tissue. It regulates the process of proliferation and differentiation of osteoclasts. It exerts an inhibitory effect by blocking the binding of particles to RANKL [99]. | Calcification of vessels. Promotion of adhesion of leukocytes and other inflammatory cells to the vascular wall. Increased activity of metalloproteinases leading to plaque instability. | RA, Crohn’s disease, Kawasaki disease, lupus, type 2 diabetes and related insulin resistance, metabolic syndrome, NAFLD. |
Copeptin | Peptide | Hypothalamus adrenal glands, testes, sympathetic ganglia. | Regulation of ACTH release, osmosis process, and maintaining homeostasis of the cardiovascular system [70]. | It impairs lipid metabolism, leading to increased triglyceride levels and decreased HDL levels. | Endocrine diseases—SIADH, diabetes. Stroke, renal failure, ADPKD, perinatal ischemia, increased intracranial pressure. |
Homocysteine | Amino acid | It is produced in the human body as a result of methionine metabolism. | It takes part in cellular metabolism and protein synthesis. | Reducing the availability of NO. Constriction of blood vessels. Synthesis of pro-inflammatory cytokines. Intensification of oxidative stress. VSMC proliferation. | Gynecological diseases—miscarriages, placental abruption, intrauterine growth restriction, gestational diabetes. Neurological diseases—Parkinson’s disease, Alzheimer’s disease, epileptic disorders. Psoriasis, kidney disease [100,101] |
Biomarker | Structure | Source | Selected Functions in the Body | Pathomechanism | Selected Other Disease States Associated with Increased/Decreased Biomarker Levels (Other than Cardiovascular Diseases) |
---|---|---|---|---|---|
Iron ion | Ion | External sources. | It is a component of hemoglobin, myoglobin, and electron transport chain proteins. It is a catalyst for many enzymatic reactions [121]. | Free ferric ions lead to the induction of oxidative stress by increasing the amount of ROS and LDL oxidation. | Non-alcoholic steatohepatitis, Parkinson’s disease, Alzheimer’s disease, colon cancer, breast cancer [122]. |
Copper ion | Ion | External sources. | It is a cofactor of many enzymes, mainly oxygenases, oxidoreductases, transferases, and hydroxylases [123]. | Synergistic effect with ferric ions. Induction of mitochondrial changes. | Hemolytic anemia, PCOS, ovarian cancer, cervical cancer, endometrial cancer [124] |
Zinc ion | Ion | External sources. | It has anti-inflammatory, anti-apoptotic, and antioxidant properties and is an important element in neurotransmission and neurogenesis. It takes part in the regulation of the cell cycle and the process of apoptosis [125]. | Induction of apoptosis. Proliferation of VSMCs. | HIV infection, chronic kidney disease, liver disease, PCOS, thalassemia [126]. |
Vitamin D | Vitamin | External sources. Also produced in the human body in the skin under the influence of solar radiation from its precursor 7-dehydrocholesterol. | It reduces PTH secretion, increases calcium absorption, supports osteoblast function and osteoclastic bone resorption. It has a number of non-skeletal effects—it increases insulin levels, supports the immune system, strengthens muscle function, and supports the process of cell differentiation [127]. | External sources. Also produced in the human body in the skin under the influence of solar radiation from its precursor 7-dehydrocholesterol. | Arterial hypertension, diabetes and prediabetes, obesity, lipid metabolism disorders, neurological diseases—Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, multiple sclerosis, migraine, schizophrenia, endocrine diseases [128]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kłosowicz, M.; Leksa, D.; Bartusik-Aebisher, D.; Myśliwiec, A.; Dynarowicz, K.; Aebisher, D. Biomarkers That Seem to Have the Greatest Impact on Promoting the Formation of Atherosclerotic Plaque in Current Scientific Research. Curr. Issues Mol. Biol. 2024, 46, 9503-9522. https://doi.org/10.3390/cimb46090564
Kłosowicz M, Leksa D, Bartusik-Aebisher D, Myśliwiec A, Dynarowicz K, Aebisher D. Biomarkers That Seem to Have the Greatest Impact on Promoting the Formation of Atherosclerotic Plaque in Current Scientific Research. Current Issues in Molecular Biology. 2024; 46(9):9503-9522. https://doi.org/10.3390/cimb46090564
Chicago/Turabian StyleKłosowicz, Maksymilian, Dawid Leksa, Dorota Bartusik-Aebisher, Angelika Myśliwiec, Klaudia Dynarowicz, and David Aebisher. 2024. "Biomarkers That Seem to Have the Greatest Impact on Promoting the Formation of Atherosclerotic Plaque in Current Scientific Research" Current Issues in Molecular Biology 46, no. 9: 9503-9522. https://doi.org/10.3390/cimb46090564
APA StyleKłosowicz, M., Leksa, D., Bartusik-Aebisher, D., Myśliwiec, A., Dynarowicz, K., & Aebisher, D. (2024). Biomarkers That Seem to Have the Greatest Impact on Promoting the Formation of Atherosclerotic Plaque in Current Scientific Research. Current Issues in Molecular Biology, 46(9), 9503-9522. https://doi.org/10.3390/cimb46090564