Effects of Pterostilbene on Cardiovascular Health and Disease
Abstract
:1. Introduction
2. Sources of Pterostilbene
2.1. Natural Sources of Pterostilbene
2.2. Synthesis Methods of Pterostilbene
3. Biological Activities
3.1. Antioxidant Activity
3.2. Anti-Inflammatory Activity
3.3. Anti-Hyperlipidemic Ability
3.4. Anti-Hyperglycemic Ability
3.5. Ability to Resist Abnormal Lesions of VSMCs
3.6. Ability to Protect against Myocardial Infarction
3.7. Ability to Protect against Stroke
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Estrela, J.M.; Ortega, A.; Mena, S.; Rodriguez, M.L.; Asensi, M. Pterostilbene: Biomedical applications. Crit. Rev. Clin. Lab. Sci. 2013, 50, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Pezet, R.; Pont, V. Mise en évidence de ptérostilbène dans les grappes de Vitis vinifera. Plant Physiol. Biochem. 1988, 26, 603–607. [Google Scholar]
- Langcake, P.; Cornford, C.A.; Pryce, R.J. Identification of pterostilbene as a phytoalexin from Vitis vinifera leaves. Phytochemistry 1979, 18, 1025–1027. [Google Scholar] [CrossRef]
- Adrian, M.; Jeandet, P.; Douillet-Breuil, A.C.; Tesson, L.; Bessis, R. Stilbene content of mature Vitis vinifera berries in response to UV-C elicitation. J. Agric. Food Chem. 2000, 48, 6103–6105. [Google Scholar] [CrossRef]
- Rimando, A.M.; Kalt, W.; Magee, J.B.; Dewey, J.; Ballington, J.R. Resveratrol, Pterostilbene, and Piceatannol in Vaccinium Berries. J. Agric. Food Chem. 2004, 52, 4713–4719. [Google Scholar] [CrossRef]
- Aiyer, H.S.; Warri, A.M.; Woode, D.R.; Hilakivi-Clarke, L.; Clarke, R. Influence of Berry Polyphenols on Receptor Signaling and Cell-Death Pathways: Implications for Breast Cancer Prevention. J. Agric. Food Chem. 2012, 60, 5693–5708. [Google Scholar] [CrossRef]
- Manickam, M.; Ramanathan, M.; Farboodniay Jahromi, M.A.; Chansouria, J.P.; Ray, A.B. Antihyperglycemic Activity of Phenolics from Pterocarpus marsupium. J. Nat. Prod. 1997, 60, 609–610. [Google Scholar] [CrossRef]
- Fuendjiep, V.; Wandji, J.; Tillequin, F.; Mulholland, D.A.; Budzikiewicz, H.; Fomum, Z.T.; Nyemba, A.M.; Koch, M. Chalconoid and stilbenoid glycosides from Guibourtia tessmanii. Phytochemistry 2002, 60, 803–806. [Google Scholar] [CrossRef]
- Teka, T.; Zhang, L.; Ge, X.; Li, Y.; Han, L.; Yan, X. Stilbenes: Source plants, chemistry, biosynthesis, pharmacology, application and problems related to their clinical Application-A comprehensive review. Phytochemistry 2022, 197, 113128. [Google Scholar] [CrossRef]
- Rimando, A.M.; Pan, Z.; Polashock, J.J.; Dayan, F.E.; Mizuno, C.S.; Snook, M.E.; Liu, C.J.; Baerson, S.R. In planta production of the highly potent resveratrol analogue pterostilbene via stilbene synthase and O-methyltransferase co-expression. Plant Biotechnol. J. 2012, 10, 269–283. [Google Scholar] [CrossRef]
- Siti, H.N.; Kamisah, Y.; Kamsiah, J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascul. Pharmacol. 2015, 71, 40–56. [Google Scholar] [CrossRef] [PubMed]
- Kosuru, R.; Rai, U.; Prakash, S.; Singh, A.; Singh, S. Promising therapeutic potential of pterostilbene and its mechanistic insight based on preclinical evidence. Eur. J. Pharmacol. 2016, 789, 229–243. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, S.; Mohandas, S.; Ganesan, K.; Xu, B.; Ramkumar, K.M. New Insights into Dietary Pterostilbene: Sources, Metabolism, and Health Promotion Effects. Molecules 2022, 27, 6316. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Hu, X.; Wang, M. Pterostilbene inhibited advanced glycation end products (AGEs)-induced oxidative stress and inflammation by regulation of RAGE/MAPK/NF-κB in RAW264.7 cells. J. Funct. Foods 2018, 40, 272–279. [Google Scholar] [CrossRef]
- Pari, L.; Satheesh, M.A. Effect of pterostilbene on hepatic key enzymes of glucose metabolism in streptozotocin- and nicotinamide-induced diabetic rats. Life Sci. 2006, 79, 641–645. [Google Scholar] [CrossRef]
- Nemes-Nagy, E.; Szocs-Molnár, T.; Dunca, I.; Balogh-Sămărghiţan, V.; Hobai, S.T.; Morar, R.; Pusta, D.L.; Crăciun, E.C. Effect of a dietary supplement containing blueberry and sea buckthorn concentrate on antioxidant capacity in type 1 diabetic children. Acta Physiol. Hung. 2008, 95, 383–393. [Google Scholar] [CrossRef]
- Lu, D.; Le, Y.; Ding, J.; Dou, X.; Mao, W.; Zhu, J. CLIC1 Inhibition Protects Against Cellular Senescence and Endothelial Dysfunction Via the Nrf2/HO-1 Pathway. Cell Biochem. Biophys. 2021, 79, 239–252. [Google Scholar] [CrossRef]
- Meephat, S.; Prasatthong, P.; Potue, P.; Bunbupha, S.; Pakdeechote, P.; Maneesai, P. Diosmetin Ameliorates Vascular Dysfunction and Remodeling by Modulation of Nrf2/HO-1 and p-JNK/p-NF-κB Expression in Hypertensive Rats. Antioxidants 2021, 10, 1487. [Google Scholar] [CrossRef]
- Bhakkiyalakshmi, E.; Sireesh, D.; Sakthivadivel, M.; Sivasubramanian, S.; Gunasekaran, P.; Ramkumar, K.M. Anti-hyperlipidemic and anti-peroxidative role of pterostilbene via Nrf2 signaling in experimental diabetes. Eur. J. Pharmacol. 2016, 777, 9–16. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Y.R.; Chen, J.; Chen, Y.J.; Wang, Z.X.; Geng, M.; Xu, D.C.; Wang, Z.Y.; Li, J.H.; Xu, Z.D.; et al. Pterostilbene Attenuates Experimental Atherosclerosis through Restoring Catalase-Mediated Redox Balance in Vascular Smooth Muscle Cells. J. Agric. Food Chem. 2019, 67, 12752–12760. [Google Scholar] [CrossRef]
- Li, J.; Deng, R.; Hua, X.; Zhang, L.; Lu, F.; Coursey, T.G.; Pflugfelder, S.C.; Li, D.Q. Blueberry Component Pterostilbene Protects Corneal Epithelial Cells from Inflammation via Anti-oxidative Pathway. Sci. Rep. 2016, 6, 19408. [Google Scholar] [CrossRef] [PubMed]
- Shiby, P.; Agnes, M.R.; Hong, J.L.; Yan, J.; Bandaru, S. Anti-inflammatory action of pterostilbene is mediated through the p38 MAPK pathway in colon cancer cells. Cancer Prev. Res. 2009, 2, 650–657. [Google Scholar]
- Liu, J.; Fan, C.; Yu, L.; Yang, Y.; Jiang, S.; Ma, Z.; Hu, W.; Li, T.; Yang, Z.; Tian, T.; et al. Pterostilbene exerts an anti-inflammatory effect via regulating endoplasmic reticulum stress in endothelial cells. Cytokine 2016, 77, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Lu, W.; Zhang, K.; Zhou, W. Pterostilbene reduces endothelial cell apoptosis by regulation of the Nrf2-mediated TLR-4/MyD88/NF-κB pathway in a rat model of atherosclerosis. Exp. Ther. Med. 2020, 20, 2090–2098. [Google Scholar] [CrossRef]
- Chinetti, G.; Fruchart, J.-C.; Staels, B. Peroxisome proliferator-activated receptors (PPARs): Nuclear receptors with functions in the vascular wall. Z. Für Kardiol. 2001, 90, 125–132. [Google Scholar] [CrossRef]
- Marion-Letellier, R.; Savoye, G.; Ghosh, S. Fatty acids, eicosanoids and PPAR gamma. Eur. J. Pharmacol. 2016, 785, 44–49. [Google Scholar] [CrossRef]
- Rimando, A.M.; Nagmani, R.; Feller, D.R.; Yokoyama, W. Pterostilbene, a New Agonist for the Peroxisome Proliferator-Activated Receptor α-Isoform, Lowers Plasma Lipoproteins and Cholesterol in Hypercholesterolemic Hamsters. J. Agric. Food Chem. 2005, 53, 3403–3407. [Google Scholar] [CrossRef]
- Kalamkar, S.D.; Bose, G.S.; Ghaskadbi, S.; Mittal, S. Andrographolide and pterostilbene inhibit adipocyte differentiation by downregulating PPARγ through different regulators. Nat. Prod. Res. 2023, 37, 3145–3151. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, G.; Song, W.; Tan, X.; Guo, Y.; Zhou, B.; Jing, H.; Zhao, S.; Chen, L. Pterostilbene protects vascular endothelial cells against oxidized low-density lipoprotein-induced apoptosis in vitro and in vivo. Apoptosis 2012, 17, 25–36. [Google Scholar] [CrossRef]
- Zhang, L.; Cui, L.; Zhou, G.; Jing, H.; Guo, Y.; Sun, W. Pterostilbene, a natural small-molecular compound, promotes cytoprotective macroautophagy in vascular endothelial cells. J. Nutr. Biochem. 2013, 24, 903–911. [Google Scholar] [CrossRef]
- Satheesh, M.A.; Pari, L. The antioxidant role of pterostilbene in streptozotocin-nicotinamide-induced type 2 diabetes mellitus in Wistar rats. J. Pharm. Pharmacol. 2010, 58, 1483–1490. [Google Scholar] [CrossRef] [PubMed]
- Ng, Y.; Ramm, G.; Lopez, J.A.; James, D.E. Rapid Activation of Akt2 Is Sufficient to Stimulate GLUT4 Translocation in 3T3-L1 Adipocytes. Cell Metab. 2008, 7, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Zorita, S.; Fernández-Quintela, A.; Aguirre, L.; Macarulla, M.T.; Rimando, A.M.; Portillo, M.P. Pterostilbene improves glycaemic control in rats fed an obesogenic diet: Involvement of skeletal muscle and liver. Food Funct. 2015, 6, 1968–1976. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Liu, X.; Long, S.R.; Ge, H.; Wang, Y.; Yu, S.; Xue, Y.; Zhang, Y.; Li, X.; Li, W. Antidiabetic effects of pterostilbene through PI3K/Akt signal pathway in high fat diet and STZ-induced diabetic rats. Eur. J. Pharmacol. 2019, 859, 172526. [Google Scholar] [CrossRef]
- Sachinidis, A.; Locher, R.; Vetter, W.; Tatje, D.; Hoppe, J. Different effects of platelet-derived growth factor isoforms on rat vascular smooth muscle cells. J. Biol. Chem. 1990, 265, 10238–10243. [Google Scholar] [CrossRef]
- Park, E.S.; Lim, Y.; Hong, J.T.; Yoo, H.S.; Lee, C.K.; Pyo, M.Y.; Yun, Y.P. Pterostilbene, a natural dimethylated analog of resveratrol, inhibits rat aortic vascular smooth muscle cell proliferation by blocking Akt-dependent pathway. Vascul. Pharmacol. 2010, 53, 61–67. [Google Scholar] [CrossRef]
- Lu, H.; Sun, J.; Liang, W.; Chang, Z.; Rom, O.; Zhao, Y.; Zhao, G.; Xiong, W.; Wang, H.; Zhu, T.; et al. Cyclodextrin Prevents Abdominal Aortic Aneurysm via Activation of Vascular Smooth Muscle Cell Transcription Factor EB. Circulation 2020, 142, 483–498. [Google Scholar] [CrossRef]
- Zou, J.; Zheng, Z.; Ye, W.; Jin, M.; Yang, P.; Little, P.J.; Wang, J.; Liu, Z. Targeting the smooth muscle cell KEAP1-Nrf2-STING axis with pterostilbene attenuates abdominal aortic aneurysm. Phytomedicine 2024, 130, 155696. [Google Scholar] [CrossRef]
- Zhou, Y.-X.; Zhang, H.; Peng, C. Effects of Puerarin on the Prevention and Treatment of Cardiovascular Diseases. Front. Pharmacol. 2021, 12, 771793. [Google Scholar] [CrossRef]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Simoons, M.L.; Chaitman, B.R.; White, H.D. Third Universal Definition of Myocardial Infarction. Circulation 2012, 126, 2020–2035. [Google Scholar] [CrossRef]
- Rafacho, B.P.M. Pterostilbeno Pós Infarto Agudo do Miocárdio: Efeito no Coração e Pulmão. Arq. Bras. Cardiol. 2022, 118, 446–447. [Google Scholar] [CrossRef] [PubMed]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Simoons, M.L.; Chaitman, B.R.; White, H.D. Task Force for the Universal Definition of Myocardial Infarction. Third universal definition of myocardial infarction. Nat. Rev. Cardiol. 2012, 9, 620–633. [Google Scholar] [CrossRef] [PubMed]
- Complications of Acute Coronary Syndromes—Cardiovascular Disorders. Merck Manual Professional Edition. Available online: https://www.merckmanuals.com/professional/cardiovascular-disorders/coronary-artery-disease/complications-of-acute-coronary-syndromes (accessed on 1 June 2024).
- Acute Myocardial Infarction (MI)—Cardiovascular Disorders. MSD Manual Professional Edition. Available online: https://www.msdmanuals.com/professional/cardiovascular-disorders/coronary-artery-disease/acute-myocardial-infarction-mi (accessed on 6 June 2024).
- Tasca, S.; Campos, C.; Lacerda, D.; Ortiz, V.D.; Turck, P.; Bianchi, S.E.; Castro, A.L.; Belló-Klein, A.; Bassani, V.; Araújo, A.S. Pterostilbeno Reduz o Estresse Oxidativo no Pulmão e no Ventrículo Direito Induzido por Infarto do Miocárdio Experimental. Arq. Bras. Cardiol. 2022, 118, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Gonca, E. Comparison of thiopental and ketamine xylazine anesthesia inischemia/reperfusion-induced arrhythmias in rats. Turk. J. Med. Sci. 2015, 45, 1413–1420. [Google Scholar] [CrossRef]
- Shimizu, Y.; Lambert, J.P.; Nicholson, C.K.; Kim, J.J.; Wolfson, D.W.; Cho, H.C.; Husain, A.; Naqvi, N.; Chin, L.S.; Li, L.; et al. DJ-1 protects the heart against ischemia–reperfusion injury by regulating mitochondrial fission. J. Mol. Cell. Cardiol. 2016, 97, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.E.; Sarafraz, N.; Marber, M.S. Potential of p38-MAPK inhibitors in the treatment of ischaemic heart disease. Pharmacol. Ther. 2007, 116, 192–206. [Google Scholar] [CrossRef]
- Shao, S.; Cao, T.; Jin, L.; Li, B.; Fang, H.; Zhang, J.; Zhang, Y.; Hu, J.; Wang, G. Increased Lipocalin-2 Contributes to the Pathogenesis of Psoriasis by Modulating Neutrophil Chemotaxis and Cytokine Secretion. J. Invest. Dermatol. 2016, 136, 1418–1428. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, S.; Zhang, X.; Li, Y.; Zhao, Q.; Liu, T. Pterostilbene protects against myocardial ischemia/reperfusion injury via suppressing oxidative/nitrative stress and inflammatory response. Int. Immunopharmacol. 2017, 43, 7–15. [Google Scholar] [CrossRef]
- Lv, M.; Liu, K.; Fu, S.; Li, Z.; Yu, X. Pterostilbene attenuates the inflammatory reaction induced by ischemia/reperfusion in rat heart. Mol. Med. Rep. 2015, 11, 724–728. [Google Scholar] [CrossRef]
- Feigin, V.L.; Lawes, C.M.; Bennett, D.A.; Barker-Collo, S.L.; Parag, V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: A systematic review. Lancet Neurol. 2009, 8, 355–369. [Google Scholar] [CrossRef]
- Broderick, J. Recanalization Therapies for Acute Ischemic Stroke. Semin. Neurol. 1998, 18, 471–484. [Google Scholar] [CrossRef] [PubMed]
- Sacco, R.L.; Kasner, S.E.; Broderick, J.P.; Caplan, L.R.; Connors, J.J.; Culebras, A.; Elkind, M.S.; George, M.G.; Hamdan, A.D.; Higashida, R.T.; et al. An Updated Definition of Stroke for the 21st Century. Stroke 2013, 44, 2064–2089. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.L.; Lloyd, H.G.E.; Cowan, A.I. The early events of oxygen and glucose deprivation: Setting the scene for neuronal death? Trends Neurosci. 1994, 17, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.M.; Ahmad, U.; Akhtar, J.; Khan, M.I.; Khan, M.F. Cerebroprotective effect of pterostilbene against global cerebral ischemia in rats. Heliyon 2021, 7, e07083. [Google Scholar] [CrossRef]
- Hsia, C.W.; Huang, W.C.; Yang, C.H.; Hsia, C.H.; Jayakumar, T.; Bhavan, P.S.; Sheu, J.R.; Chiou, K.R. Comparison of the Potency of Pterostilbene with NF-κB Inhibitors in Platelet Activation: Mutual Activation by Akt-NF-κB Signaling in Human Platelets. Appl. Sci. 2021, 11, 6149. [Google Scholar] [CrossRef]
- Penz, S.; Reininger, A.J.; Brandl, R.; Goyal, P.; Rabie, T.; Bernlochner, I.; Rother, E.; Goetz, C.; Engelmann, B.; Smethurst, P.A.; et al. Human atheromatous plaques stimulate thrombus formation by activating platelet glycoprotein VI. FASEB J. 2005, 19, 898–909. [Google Scholar] [CrossRef]
- Paul, B.; Masih, I.; Deopujari, J.; Charpentier, C. Occurrence of resveratrol and pterostilbene in age-old darakchasava, an ayurvedic medicine from India. J. Ethnopharmacol. 1999, 68, 71–76. [Google Scholar] [CrossRef]
- Joseph, J.A.; Fisher, D.R.; Cheng, V.; Rimando, A.M.; Shukitt-Hale, B. Cellular and Behavioral Effects of Stilbene Resveratrol Analogues: Implications for Reducing the Deleterious Effects of Aging. J. Agric. Food Chem. 2008, 56, 10544–10551. [Google Scholar] [CrossRef]
Parts of Plants | Source | Content of Pterostilbene | Reference |
---|---|---|---|
Heartwood | Red sandalwood (Pterocarpus santalinus) | Pterostilbene was first isolated from the heartwood of red sandalwood in 1940 | [3] |
Skin | Grapes (non-UV-induced berries of Chardonnay variety) | ~4.7 μg/g fresh samples | [4] |
Fruit | Rabbit-eye blueberry (Vaccinium ashei) | 99–151 ng/g dry samples | [5] |
Fruit | Deerberry (Vaccinium stamineum) | 520 ng/g dry samples | [5] |
Fruit | Blueberry | 9.9–15.1 μg/kg fresh samples | [6] |
Wood | Pterocarpus marsupium | No specific information | [7] |
stem bark | Guibourtia tessmanii | 40 mg/kg dry samples | [8] |
Types | Classification | Pathogenesis |
---|---|---|
Type 1 | Spontaneous MI | Accompanied by atherosclerosis, intraluminal thrombus occurs in coronary arteries, subsequently slowing down blood flow velocity and blocking the vessels, which finally leads to myocyte necrosis [43,44]. |
Type 2 | MI secondary to an ischemic imbalance | There is an imbalance between increasing oxygen demand precipitated by conditions like hypertension and a decreasing supply of oxygen due to coronary artery spasm, arrhythmia, hypotension, etc. [44]. |
Type 3 | MI caused by sudden unexpected cardiac death | Sudden cardiac death (SCD) arises due to acute myocardial ischemia [43]. |
Type 4 and 5 | MI related to revascularization procedures | Whether from percutaneous coronary intervention (PCI) or coronary artery bypass grafting (CABG), patients with periprocedural myocardial injury or infarction may suffer from MI [42]. |
Diseases | Signaling Pathways | Models | Dose | Reference |
---|---|---|---|---|
Inflammation | RAGE/MAPK/NF-κB pathways | RAW264.7 cells induced by AGEs to create oxidative stress and inflammation | 10 μM | [14] |
Inflammation | Endoplasmic reticulum stress (ERS) pathways | HUVECs induced by TNF-α | 1 μM | [23] |
Atherosclerosis | CAT-PTEN pathways | HFD-fed ApoE−/− mice | 30 mg/kg/d i.g. | [20] |
Atherosclerosis | Nrf2-mediated TLR-4/MyD88/NF-κB pathways | SD rats fed with a 2.5% cholesterol diet | 10 mg/kg/day orally | [24] |
Dyslipidemia | PPAR-α pathways | HFD-fed male golden Syrian hamsters | 25 mg/kg/day orally | [27] |
Dyslipidemia | PPAR-γ pathways | Human mesenchymal stromal cell (hMSC) adipogenic differentiation | 5 μM | [28] |
Apoptosis | Lectin-like ox-LDL receptor1 (LOX-1)-related pathways | HUVECs induced by ox-LDL | 1 mM | [29] |
Diabetes | Nrf2 pathway | Streptozotocin-induced diabetic Swiss albino mice | 5 mg/kg i.p. 10 mg/kg i.p. | [19] |
Diabetes | / | Streptozotocin–nicotinamide-induced diabetic male albino Wistar rats | 40 mg/kg/day orally | [31] |
Diabetes | Akt pathways | Streptozotocin- and nicotinamide-induced diabetic male albino Wistar rats | 15 mg/kg/day orally (low) 30 mg/kg/day orally (high) | [33] |
Diabetes | Nrf2 pathways | Streptozotocin-induced diabetic Swiss albino mice | 10 mg/kg i.p. | [34] |
Lesions of VSMCs | Akt pathways | Platelet-derived growth factor (PDGF)-BB-induced abnormal proliferation of VSMCs | 1 μM (low) 3 μM (middle) 5 μM (high) | [36] |
Abdominal aortic aneurysm (AAA) | KEAP1-Nrf2-STING pathways | Angiotensin II (AngII)-infused ApoE−/− mice | 15 mg/kg/day orally (low) 30 mg/kg/day orally (high) | [38] |
Myocardial infarction (MI) | Nrf2 pathways | Male Wistar rats with ligation and reperfusion-induced myocardial infarction | 100 mg/kg/day orally | [45] |
Myocardial ischemia/reperfusion (MI/R) injury | P38 MAPK and ROS-related pathways | Male Sprague-Dawley rats with MI/R surgery around the left anterior descending coronary artery (LAD) | 10 mg/kg i.v. 10 min before reperfusion | [50] |
Myocardial ischemia/reperfusion (MI/R) injury | TNF-α and cGMP-related pathways | Male Sprague-Dawley rats with MI/R surgery on left heart | 10 μM i.v. 10 min before reperfusion | [51] |
MI/R and stroke | / | Male Sprague-Dawley rats with MI/R surgery on bilateral carotid artery | 200 mg/kg orally (low) 400 mg/kg orally (high) | [56] |
Inflammation and thrombosis | NF-κB pathways | Platelets activated by collagen | 3 μM (low) 7 μM (high) | [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, R.; Miao, L.; Cheang, W.-S. Effects of Pterostilbene on Cardiovascular Health and Disease. Curr. Issues Mol. Biol. 2024, 46, 9576-9587. https://doi.org/10.3390/cimb46090569
Tian R, Miao L, Cheang W-S. Effects of Pterostilbene on Cardiovascular Health and Disease. Current Issues in Molecular Biology. 2024; 46(9):9576-9587. https://doi.org/10.3390/cimb46090569
Chicago/Turabian StyleTian, Rui, Lingchao Miao, and Wai-San Cheang. 2024. "Effects of Pterostilbene on Cardiovascular Health and Disease" Current Issues in Molecular Biology 46, no. 9: 9576-9587. https://doi.org/10.3390/cimb46090569
APA StyleTian, R., Miao, L., & Cheang, W.-S. (2024). Effects of Pterostilbene on Cardiovascular Health and Disease. Current Issues in Molecular Biology, 46(9), 9576-9587. https://doi.org/10.3390/cimb46090569