The Therapeutic Potential of MicroRNA-21 in the Treatment of Spinal Cord Injury
Abstract
:1. Introduction
2. Pathophysiology of SCI
2.1. Primary Injury Phase
2.2. Secondary Injury Phase
3. Role of miRNAs in SCI
4. MiR-21
4.1. Structure and Function of miR-21
4.2. Characteristics of miR-21
4.3. Expression Pattern of miR-21 in SCI
4.4. MiR-21 in Inflammation and Immune Response During SCI
4.5. Link Between miR-21 and Apoptosis in SCI
4.6. MiR-21 in Cell Survival and Axonal Regeneration After Spinal Trauma
4.7. The Importance of Different Preclinical Models in SCI Research
4.8. Comparison Between miR-21 and Other miRNAs in SCI
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
miR-21 | microRNA-21 |
SCI | Spinal cord injury |
PTEN | Phosphatase and tensin homolog |
PDCD4 | Programmed cell death protein 4 |
TNF-α | Tumor necrosis factor-α |
NMDA | N-methyl-D-aspartate |
AMPA | alpha-amino-3-hydroxy-5-methyl-4-isooxazole-propionic acid |
ROS | Reactive oxygen species |
RNS | Reactive nitrogen species |
NF-κB | Nuclear factor-kappa B |
NSCs | Neuronal stem cells |
eNOS | Endothelial nitric oxide synthase |
iNOS | Inducible nitric oxide synthase |
BDNF | Brain-derived neurotrophic factor |
NGF | Nerve growth factor |
Smad7 | Mothers against decapentaplegic homolog 7 |
NeuN | Neuron specific nuclear protein |
AKT | Protein kinase B |
Ki67 | Marker of proliferation Kiel 67 |
mTOR | Mammalian target of rapamycin |
Bcl2 | Apoptosis regulator Bcl2 |
Bax | Bcl-2–associated X protein |
JAK | Janus tyrosine kinase |
STAT | Signal transducer and activator of transcription |
H2-D1 | histocompatibility 2, D region locus 1 |
Serping 1 | Serpin family G member 1 |
TSCI | Traumatic spinal cord injury |
CSPGs | Chondroitin sulfate proteoglycans |
LV-NC | Laser capture- negative control |
Bad | BCL2 associated agonist of cell death |
ROR2 | Tyrosine-protein kinase transmembrane receptor 2 |
CNTFRα | Ciliary neurotrophic factor receptor α |
ROSA | Reverse Orientation Splice Acceptor |
GCMIR | Gene Control MicroRNA |
PLAG1 | Pleomorphic Adenoma Gene 1 |
KRIT1 | Krev Interaction Trapped 1 |
SOD3 | Superoxide Dismutase 3 |
TrkB | tropomyosin receptor kinase B |
JNK | c-Jun N-terminal Kinase |
GFAP | Glial Fibrillary Acidic Protein |
PI3K | Phosphoinositide 3-Kinase |
TGF-β | Transforming Growth Factor-β |
FASR | Fas Receptor |
PCNA | Proliferating Cell Nuclear Antigen |
Serping1 | Serpin Family G Member 1 |
Frizzled | represent a family receptors coupled to Wnt signaling |
Casp-3 | Caspase-3 |
Casp-8 | Caspase-8 |
References
- Ardizzone, A.; Bova, V.; Casili, G.; Filippone, A.; Lanza, M.; Repici, A.; Esposito, E.; Paterniti, I. bFGF-like Activity Supported Tissue Regeneration, Modulated Neuroinflammation, and Rebalanced Ca2+ Homeostasis following Spinal Cord Injury. Int. J. Mol. Sci. 2023, 24, 14654. [Google Scholar] [CrossRef]
- Quadri, S.A.; Farooqui, M.; Ikram, A.; Zafar, A.; Khan, M.A.; Suriya, S.S.; Claus, C.F.; Fiani, B.; Rahman, M.; Ramachandran, A. Recent update on basic mechanisms of spinal cord injury. Neurosurg. Rev. 2020, 43, 425–441. [Google Scholar] [CrossRef]
- Niemi-Nikkola, V. Spinal Fractures and Spinal Cord Injuries: Incidence, Epidemiological Characteristics and Survival; University of Oulu: Oulu, Finland, 2021. [Google Scholar]
- Budd, M.A.; Gater, D.R., Jr.; Channell, I. Psychosocial consequences of spinal cord injury: A narrative review. J. Pers. Med. 2022, 12, 1178. [Google Scholar] [CrossRef] [PubMed]
- Ong, B.; Wilson, J.R.; Henzel, M.K. Management of the patient with chronic spinal cord injury. Med. Clin. 2020, 104, 263–278. [Google Scholar] [CrossRef] [PubMed]
- Jeawon, M. Understanding the Experiences and Quality of Life of People with Incomplete Spinal Cord Injury Who Can Ambulate. Master’s Thesis, University of British Columbia, Vancouver, BC, Canada, 2022. [Google Scholar]
- Richard-Denis, A.; Benazet, D.; Thompson, C.; Mac-Thiong, J.-M. Determining priorities in functional rehabilitation related to quality of life one-year following a traumatic spinal cord injury. J. Spinal Cord Med. 2020, 43, 241–246. [Google Scholar] [CrossRef]
- Zeng, C.-W.; Zhang, C.-L. Neuronal regeneration after injury: A new perspective on gene therapy. Front. Neurosci. 2023, 17, 1181816. [Google Scholar] [CrossRef]
- Fiani, B.; Arshad, M.A.; Shaikh, E.S.; Baig, A.; Farooqui, M.; Ayub, M.A.; Zafar, A.; Quadri, S.A. Current updates on various treatment approaches in the early management of acute spinal cord injury. Rev. Neurosci. 2021, 32, 513–530. [Google Scholar] [CrossRef] [PubMed]
- Lambrechts, M.J.; Cook, J.L. Nonsteroidal anti-inflammatory drugs and their neuroprotective role after an acute spinal cord injury: A systematic review of animal models. Glob. Spine J. 2021, 11, 365–377. [Google Scholar] [CrossRef] [PubMed]
- Fakhri, S.; Abbaszadeh, F.; Jorjani, M. On the therapeutic targets and pharmacological treatments for pain relief following spinal cord injury: A mechanistic review. Biomed. Pharmacother. 2021, 139, 111563. [Google Scholar] [CrossRef] [PubMed]
- Hejrati, N.; Wong, R.; Khazaei, M.; Fehlings, M.G. How can clinical safety and efficacy concerns in stem cell therapy for spinal cord injury be overcome? Expert Opin. Biol. Ther. 2023, 23, 883–899. [Google Scholar] [CrossRef] [PubMed]
- Badhiwala, J.H.; Wilson, J.R.; Witiw, C.D.; Harrop, J.S.; Vaccaro, A.R.; Aarabi, B.; Grossman, R.G.; Geisler, F.H.; Fehlings, M.G. The influence of timing of surgical decompression for acute spinal cord injury: A pooled analysis of individual patient data. Lancet Neurol. 2021, 20, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Canseco, J.A.; Karamian, B.A.; Bowles, D.R.; Markowitz, M.P.; DiMaria, S.L.; Semenza, N.C.; Leibensperger, M.R.; Smith, M.L.; Vaccaro, A.R. Updated review: The steroid controversy for management of spinal cord injury. World Neurosurg. 2021, 150, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Somers, M.; Bender-Burnett, J. Spinal Cord Injury: Functional Rehabilitation; FA Davis: Philadelphia, PA, USA, 2024. [Google Scholar]
- Forte, G.; Giuffrida, V.; Scuderi, A.; Pazzaglia, M. Future treatment of neuropathic pain in spinal cord injury: The challenges of nanomedicine, supplements or opportunities? Biomedicines 2022, 10, 1373. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.-W. Advancing spinal cord injury treatment through stem cell therapy: A comprehensive review of cell types, challenges, and emerging technologies in regenerative medicine. Int. J. Mol. Sci. 2023, 24, 14349. [Google Scholar] [CrossRef] [PubMed]
- Ardizzone, A.; Calabrese, G.; Campolo, M.; Filippone, A.; Giuffrida, D.; Esposito, F.; Colarossi, C.; Cuzzocrea, S.; Esposito, E.; Paterniti, I. Role of miRNA-19a in cancer diagnosis and poor prognosis. Int. J. Mol. Sci. 2021, 22, 4697. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Sun, C. The roles of MicroRNAs in neural regenerative medicine. Exp. Neurol. 2020, 332, 113394. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Cai, J. The importance of using exosome-loaded miRNA for the treatment of spinal cord injury. Mol. Neurobiol. 2023, 60, 447–459. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, I.; Chatterjee, A. Recent advances in miRNA delivery systems. Methods Protoc. 2021, 4, 10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Lin, J.; Lin, V.P.H.; Milbreta, U.; Chin, J.S.; Chew, E.G.Y.; Lian, M.M.; Foo, J.N.; Zhang, K.; Wu, W. A 3D fiber-hydrogel based non-viral gene delivery platform reveals that microRNAs promote axon regeneration and enhance functional recovery following spinal cord injury. Adv. Sci. 2021, 8, 2100805. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Liu, J.; Wang, W.; Lin, W.; Ahmed, W.; Duan, W.; Huang, S.; Zhu, Z.; Chen, L. The role of exosomes derived from stem cells in nerve regeneration: A contribution to neurological repair. Exp. Neurol. 2024, 380, 114882. [Google Scholar] [CrossRef]
- Seyhan, A.A. Trials and tribulations of MicroRNA therapeutics. Int. J. Mol. Sci. 2024, 25, 1469. [Google Scholar] [CrossRef]
- Lopez, M.S.; Dempsey, R.J.; Vemuganti, R. The microRNA miR-21 conditions the brain to protect against ischemic and traumatic injuries. Cond. Med. 2017, 1, 35–46. [Google Scholar]
- Han, Z.; Chen, F.; Ge, X.; Tan, J.; Lei, P.; Zhang, J. miR-21 alleviated apoptosis of cortical neurons through promoting PTEN-Akt signaling pathway in vitro after experimental traumatic brain injury. Brain Res. 2014, 1582, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Oehmichen, M.; Auer, R.N.; König, H.G. Injuries of spine and spinal cord. In Forensic Neuropathology and Associated Neurology; Springer: Berlin/Heidelberg, Germany, 2006; pp. 217–239. [Google Scholar]
- Borgens, R.B.; Liu-Snyder, P. Understanding secondary injury. Q. Rev. Biol. 2012, 87, 89–127. [Google Scholar] [CrossRef] [PubMed]
- Anjum, A.; Yazid, M.D.i.; Fauzi Daud, M.; Idris, J.; Ng, A.M.H.; Selvi Naicker, A.; Ismail, O.H.R.; Athi Kumar, R.K.; Lokanathan, Y. Spinal cord injury: Pathophysiology, multimolecular interactions, and underlying recovery mechanisms. Int. J. Mol. Sci. 2020, 21, 7533. [Google Scholar] [CrossRef]
- Freyermuth-Trujillo, X.; Segura-Uribe, J.J.; Salgado-Ceballos, H.; Orozco-Barrios, C.E.; Coyoy-Salgado, A. Inflammation: A target for treatment in spinal cord injury. Cells 2022, 11, 2692. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Stys, P.K. Mechanisms of ionotropic glutamate receptor-mediated excitotoxicity in isolated spinal cord white matter. J. Neurosci. 2000, 20, 1190–1198. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Al Mamun, A.; Yuan, Y.; Lu, Q.; Xiong, J.; Yang, S.; Wu, C.; Wu, Y.; Wang, J. Acute spinal cord injury: Pathophysiology and pharmacological intervention. Mol. Med. Rep. 2021, 23, 417. [Google Scholar] [CrossRef] [PubMed]
- Ardizzone, A.; Capra, A.P.; Repici, A.; Lanza, M.; Bova, V.; Palermo, N.; Paterniti, I.; Esposito, E. Rebalancing NOX2/Nrf2 to limit inflammation and oxidative stress across gut-brain axis in migraine. Free. Radic. Biol. Med. 2024, 213, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Wang, Z.; Wang, D.; Aierxi, M.; Ma, Z.; Wang, Y. Oxidative stress following spinal cord injury: From molecular mechanisms to therapeutic targets. J. Neurosci. Res. 2023, 101, 1538–1554. [Google Scholar] [CrossRef] [PubMed]
- Guha, L.; Singh, N.; Kumar, H. Different ways to die: Cell death pathways and their association with spinal cord injury. Neurospine 2023, 20, 430–448. [Google Scholar] [CrossRef]
- Yang, T.; Dai, Y.; Chen, G.; Cui, S. Dissecting the dual role of the glial scar and scar-forming astrocytes in spinal cord injury. Front. Cell. Neurosci. 2020, 14, 78. [Google Scholar]
- Hasan, A.; Repici, A.; Capra, A.P.; Mannino, D.; Bova, V.; Catalfamo, A.; Campolo, M.; Paterniti, I.; Esposito, E.; Ardizzone, A. CCR1 antagonist as a potential modulator of inflammatory, autophagic, and apoptotic markers in spinal cord injury. Neuropharmacology 2025, 264, 110239. [Google Scholar] [CrossRef]
- Ning, B.; Gao, L.; Liu, R.-H.; Liu, Y.; Zhang, N.-S.; Chen, Z.-Y. microRNAs in spinal cord injury: Potential roles and therapeutic implications. Int. J. Biol. Sci. 2014, 10, 997. [Google Scholar] [CrossRef]
- Nieto-Diaz, M.; Esteban, F.J.; Reigada, D.; Muñoz-Galdeano, T.; Yunta, M.; Caballero-López, M.; Navarro-Ruiz, R.; Del Águila, A.; Maza, R.M. MicroRNA dysregulation in spinal cord injury: Causes, consequences and therapeutics. Front. Cell. Neurosci. 2014, 8, 53. [Google Scholar] [CrossRef] [PubMed]
- Lai, X.; Wang, Y.; Wang, X.; Liu, B.; Rong, L. miR-146a-5p-modified hUCMSC-derived exosomes facilitate spinal cord function recovery by targeting neurotoxic astrocytes. Stem Cell Res. Ther. 2022, 13, 487. [Google Scholar] [CrossRef]
- Gaudet, A.D.; Mandrekar-Colucci, S.; Hall, J.C.; Sweet, D.R.; Schmitt, P.J.; Xu, X.; Guan, Z.; Mo, X.; Guerau-de-Arellano, M.; Popovich, P.G. miR-155 deletion in mice overcomes neuron-intrinsic and neuron-extrinsic barriers to spinal cord repair. J. Neurosci. 2016, 36, 8516–8532. [Google Scholar] [CrossRef]
- Li, D.; Zhang, P.; Yao, X.; Li, H.; Shen, H.; Li, X.; Wu, J.; Lu, X. Exosomes derived from miR-133b-modified mesenchymal stem cells promote recovery after spinal cord injury. Front. Neurosci. 2018, 12, 845. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.M.; Gibbs, K.M.; Davila, J.; Campbell, N.; Sung, S.; Todorova, T.I.; Otsuka, S.; Sabaawy, H.E.; Hart, R.P.; Schachner, M. MicroRNA miR-133b is essential for functional recovery after spinal cord injury in adult zebrafish. Eur. J. Neurosci. 2011, 33, 1587–1597. [Google Scholar] [CrossRef] [PubMed]
- Silvestro, S.; Mazzon, E. MiRNAs as promising translational strategies for neuronal repair and regeneration in spinal cord injury. Cells 2022, 11, 2177. [Google Scholar] [CrossRef]
- He, X.; Zhang, J.; Guo, Y.; Yang, X.; Huang, Y.; Hao, D. Exosomal miR-9-5p derived from BMSCs alleviates apoptosis, inflammation and endoplasmic reticulum stress in spinal cord injury by regulating the HDAC5/FGF2 axis. Mol. Immunol. 2022, 145, 97–108. [Google Scholar] [CrossRef]
- Wang, C.Y.; Yang, S.H.; Tzeng, S.F. MicroRNA-145 as one negative regulator of astrogliosis. Glia 2015, 63, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Huang, H.; Shao, J.; Huang, W. MicroRNA-mediated regulation of reactive astrocytes in central nervous system diseases. Front. Mol. Neurosci. 2023, 15, 1061343. [Google Scholar] [CrossRef] [PubMed]
- Costa, G.; Ribeiro, F.F.; Sebastião, A.M.; Muir, E.M.; Vaz, S.H. Bridging the gap of axonal regeneration in the central nervous system: A state of the art review on central axonal regeneration. Front. Neurosci. 2022, 16, 1003145. [Google Scholar] [CrossRef] [PubMed]
- Bhalala, O.G.; Srikanth, M.; Kessler, J.A. The emerging roles of microRNAs in CNS injuries. Nat. Rev. Neurol. 2013, 9, 328–339. [Google Scholar] [CrossRef] [PubMed]
- Strickland, E.R.; Hook, M.A.; Balaraman, S.; Huie, J.R.; Grau, J.W.; Miranda, R.C. MicroRNA dysregulation following spinal cord contusion: Implications for neural plasticity and repair. Neuroscience 2011, 186, 146–160. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Fan, L.; Li, Y.; Xu, Q.-Q.; Xiong, L.-Y.; Zhang, S.-S.; Liu, J.-H.; Xiao, Z.-C.; Zhang, C.; Yang, J. Recent advances in biomimetic nanodelivery systems: New brain-targeting strategies. J. Control Release 2023, 358, 439–464. [Google Scholar] [CrossRef]
- Ngo, C.; Kothary, R. MicroRNAs in oligodendrocyte development and remyelination. J. Neurochem. 2022, 162, 310–321. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.-F.; Wu, Z.-P.; Chen, Y.; Zhu, Q.-S.; Hamidi, S.; Navab, R. MicroRNA-21 (miR-21) regulates cellular proliferation, invasion, migration, and apoptosis by targeting PTEN, RECK and Bcl-2 in lung squamous carcinoma, Gejiu City, China. PLoS ONE 2014, 9, e103698. [Google Scholar] [CrossRef] [PubMed]
- De Melo, P.; Pineros Alvarez, A.R.; Ye, X.; Blackman, A.; Alves-Filho, J.C.; Medeiros, A.I.; Rathmell, J.; Pua, H.; Serezani, C.H. Macrophage-derived microRNA-21 drives overwhelming glycolytic and inflammatory response during sepsis via repression of the PGE2/IL-10 axis. J. Immunol. 2021, 207, 902–912. [Google Scholar] [CrossRef]
- Bai, X.; Bian, Z. MicroRNA-21 is a versatile regulator and potential treatment target in central nervous system disorders. Front. Mol. Neurosci. 2022, 15, 842288. [Google Scholar] [CrossRef]
- Fujita, S.; Ito, T.; Mizutani, T.; Minoguchi, S.; Yamamichi, N.; Sakurai, K.; Iba, H. miR-21 Gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism. J. Mol. Biol. 2008, 378, 492–504. [Google Scholar] [CrossRef] [PubMed]
- Davis, B.N.; Hilyard, A.C.; Lagna, G.; Hata, A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature 2008, 454, 56–61. [Google Scholar] [CrossRef]
- Daugaard, I.; Hansen, T.B. Biogenesis and function of ago-associated RNAs. Trends Genet. 2017, 33, 208–219. [Google Scholar] [CrossRef]
- Rhim, J.; Baek, W.; Seo, Y.; Kim, J.H. From molecular mechanisms to therapeutics: Understanding MicroRNA-21 in cancer. Cells 2022, 11, 2791. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Liu, R.; Su, Y.; Li, H.; Xie, W.; Ning, B. MicroRNA-21-5p mediates TGF-beta-regulated fibrogenic activation of spinal fibroblasts and the formation of fibrotic scars after spinal cord injury. Int. J. Biol. Sci. 2018, 14, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Tang, S.; Li, H.; Liu, R.; Su, Y.; Shen, L.; Sun, M.; Ning, B. MicroRNA-21a-5p promotes fibrosis in spinal fibroblasts after mechanical trauma. Exp. Cell Res. 2018, 370, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.J.; Chung, W.H.; Do, S.H.; Lee, J.H.; Kim, H.Y. Up-regulation of MicroRNAs-21 and -223 in a Sprague-Dawley Rat Model of Traumatic Spinal Cord Injury. Brain Sci. 2020, 10, 141. [Google Scholar] [CrossRef]
- Xie, W.; Yang, S.Y.; Zhang, Q.; Zhou, Y.; Wang, Y.; Liu, R.; Wang, W.; Shi, J.; Ning, B.; Jia, T. Knockdown of MicroRNA-21 Promotes Neurological Recovery After Acute Spinal Cord Injury. Neurochem. Res. 2018, 43, 1641–1649. [Google Scholar] [CrossRef] [PubMed]
- Jiao, G.; Pan, B.; Zhou, Z.; Zhou, L.; Li, Z.; Zhang, Z. MicroRNA-21 regulates cell proliferation and apoptosis in H2O2-stimulated rat spinal cord neurons. Mol. Med. Rep. 2015, 12, 7011–7016. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Ni, S.; Luo, Z.; Lang, Y.; Hu, J.; Lu, H. The protective effect of microRNA-21 in neurons after spinal cord injury. Spinal Cord 2019, 57, 141–149. [Google Scholar] [CrossRef]
- He, F.; Ren, Y.; Shi, E.; Liu, K.; Yan, L.; Jiang, X. Overexpression of microRNA-21 protects spinal cords against transient ischemia. J. Thorac. Cardiovasc. Surg. 2016, 152, 1602–1608. [Google Scholar] [CrossRef]
- Yang, Z.; Liang, Z.; Rao, J.; Xie, H.; Zhou, M.; Xu, X.; Lin, Y.; Lin, F.; Wang, C.; Chen, C. Hypoxic-preconditioned mesenchymal stem cell-derived small extracellular vesicles promote the recovery of spinal cord injury by affecting the phenotype of astrocytes through the miR-21/JAK2/STAT3 pathway. CNS Neurosci. Ther. 2024, 30, e14428. [Google Scholar] [CrossRef]
- Bhalala, O.G.; Pan, L.; Sahni, V.; McGuire, T.L.; Gruner, K.; Tourtellotte, W.G.; Kessler, J.A. microRNA-21 regulates astrocytic response following spinal cord injury. J. Neurosci. 2012, 32, 17935–17947. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, T.; Chen, J.; Zhang, Y.; Kang, J.; Li, X.; Yu, G.; Tian, L.; Jin, Z.; Dong, H.; et al. miR-21a-5p Promotes Inflammation following Traumatic Spinal Cord Injury through Upregulation of Neurotoxic Reactive Astrocyte (A1) Polarization by Inhibiting the CNTF/STAT3/Nkrf Pathway. Int. J. Biol. Sci. 2021, 17, 2795–2810. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Chen, Z.; Du, H.; Liu, R.; Wang, W.; Li, H.; Ning, B. Silencing miR-21 induces polarization of astrocytes to the A2 phenotype and improves the formation of synapses by targeting glypican 6 via the signal transducer and activator of transcription-3 pathway after acute ischemic spinal cord injury. FASEB J. 2019, 33, 10859–10871. [Google Scholar] [CrossRef]
- Liu, R.; Wang, W.; Wang, S.; Xie, W.; Li, H.; Ning, B. microRNA-21 regulates astrocytic reaction post-acute phase of spinal cord injury through modulating TGF-β signaling. Aging 2018, 10, 1474–1488. [Google Scholar] [CrossRef]
- Ning, S.-L.; Liu, Y.-C.; Lan, J.; Miao, J.; Zhu, H.; Shao, J. MiR-21 inhibitor improves locomotor function recovery by inhibiting IL-6R/JAK-STAT pathway-mediated inflammation after spinal cord injury in model of rat. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 430–440. [Google Scholar]
- Jiang, Y.; Zhao, S.; Ding, Y.; Nong, L.; Li, H.; Gao, G.; Zhou, D.; Xu, N. MicroRNA-21 promotes neurite outgrowth by regulating PDCD4 in a rat model of spinal cord injury. Mol. Med. Rep. 2017, 16, 2522–2528. [Google Scholar] [CrossRef]
- Hu, J.Z.; Huang, J.H.; Zeng, L.; Wang, G.; Cao, M.; Lu, H.B. Anti-apoptotic effect of microRNA-21 after contusion spinal cord injury in rats. J. Neurotrauma 2013, 30, 1349–1360. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Li, Z.; Zhi, Z.; Wang, S.; Xu, G. MiR-21 derived from the exosomes of MSCs regulates the death and differentiation of neurons in patients with spinal cord injury. Gene Ther. 2019, 26, 491–503. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Dong, J.; Lu, L.F. Cell-intrinsic and-extrinsic roles of miRNAs in regulating T cell immunity. Immunol. Rev. 2021, 304, 126–140. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Neilson, J.R.; Kumar, P.; Manocha, M.; Shankar, P.; Sharp, P.A.; Manjunath, N. miRNA profiling of naive, effector and memory CD8 T cells. PLoS ONE 2007, 2, e1020. [Google Scholar] [CrossRef]
- Lu, T.X.; Munitz, A.; Rothenberg, M.E. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J. Immunol. 2009, 182, 4994–5002. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Wang, F.R.; Yu, M.Q. MicroRNA-21-5p promotes the inflammatory response after spinal cord injury by targeting PLAG1. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 5878–5885. [Google Scholar] [PubMed]
- Garcia, E.; Aguilar-Cevallos, J.; Silva-Garcia, R.; Ibarra, A. Cytokine and growth factor activation in vivo and in vitro after spinal cord injury. Mediat. Inflamm. 2016, 2016, 9476020. [Google Scholar] [CrossRef] [PubMed]
- Sheedy, F.J. Turning 21: Induction of miR-21 as a key switch in the inflammatory response. Front. Immunol. 2015, 6, 19. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.H.; Yue, J.; Fan, M.; Pfeffer, L.M. IFN Induces miR-21 through a Signal transducer and activator of transcription 3–dependent pathway as a suppressive negative feedback on IFN-induced apoptosis. Cancer Res. 2010, 70, 8108–8116. [Google Scholar] [CrossRef]
- Gaudet, A.D.; Fonken, L.K.; Watkins, L.R.; Nelson, R.J.; Popovich, P.G. MicroRNAs: Roles in regulating neuroinflammation. Neuroscientist 2018, 24, 221–245. [Google Scholar] [CrossRef]
- Kim, C.; Hu, B.; Jadhav, R.R.; Jin, J.; Zhang, H.; Cavanagh, M.M.; Akondy, R.S.; Ahmed, R.; Weyand, C.M.; Goronzy, J.J. Activation of miR-21-regulated pathways in immune aging selects against signatures characteristic of memory T cells. Cell Rep. 2018, 25, 2148–2162.e5. [Google Scholar] [CrossRef] [PubMed]
- Tofigh, R.; Safaralizadeh, R.; Hosseinpourfeizi, M.; Hemmat, N.; Baradaran, B. miRNA-21, an Important Regulator of Autoimmune Diseases. Curr. Mol. Med. 2024; online ahead of print. [Google Scholar]
- Lv, X.; Liang, J.; Wang, Z. MiR-21-5p reduces apoptosis and inflammation in rats with spinal cord injury through PI3K/AKT pathway. Panminerva Medica 2020, 66, 256–265. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, S.; Huang, Y.; Sun, L. miR-21 protects neonatal rats from hypoxic-ischemic brain damage by targeting CCL3. Apoptosis 2020, 25, 275–289. [Google Scholar] [CrossRef] [PubMed]
- Pelisch, N.; Rosas Almanza, J.; Stehlik, K.E.; Aperi, B.V.; Kroner, A. CCL3 contributes to secondary damage after spinal cord injury. J. Neuroinflamm. 2020, 17, 362. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.; Baker, M.B.; Moore, J.P.; Searles, C.D. MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity. Biochem. Biophys. Res. Commun. 2010, 393, 643–648. [Google Scholar] [CrossRef] [PubMed]
- La Sala, L.; Mrakic-Sposta, S.; Micheloni, S.; Prattichizzo, F.; Ceriello, A. Glucose-sensing microRNA-21 disrupts ROS homeostasis and impairs antioxidant responses in cellular glucose variability. Cardiovasc. Diabetol. 2018, 17, 105. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ng, W.-L.; Wang, P.; Tian, L.; Werner, E.; Wang, H.; Doetsch, P.; Wang, Y. MicroRNA-21 modulates the levels of reactive oxygen species by targeting SOD3 and TNF α. Cancer Res. 2012, 72, 4707–4713. [Google Scholar] [CrossRef]
- Li, M.; Jiang, W.-T.; Li, J.; Ji, W.-C. Exercise protects against spinal cord injury through miR-21-mediated suppression of PDCD4. Am. J. Transl. Res. 2020, 12, 5708–5718. [Google Scholar] [PubMed]
- Han, T.; Song, P.; Wu, Z.; Liu, Y.; Ying, W.; Shen, C. Inflammation modifies miR-21 expression within neuronal extracellular vesicles to regulate Remyelination following spinal cord injury. Stem Cell Rev. Rep. 2023, 19, 2024–2037. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Tian, X.; Schekman, R. Extracellular vesicles from neurons promote neural induction of stem cells through cyclin D1. J. Cell Biol. 2021, 220, e202101075. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Li, X.; Qian, C.; Li, F.; Zhang, Y.; Dang, L.; Xiao, X.; Liu, F.; Li, H.; Zhang, X. MiR-21 functions oppositely in proliferation and differentiation of neural stem/precursor cells via regulating AKT and GSK-3Î2. Cell. Mol. Biol. 2016, 62, 144–149. [Google Scholar] [CrossRef]
- Zhang, W.-M.; Zhang, Z.-R.; Yang, X.-T.; Zhang, Y.-G.; Gao, Y.-S. Overexpression of miR-21 promotes neural stem cell proliferation and neural differentiation via the Wnt/β-catenin signaling pathway in vitro. Mol. Med. Rep. 2018, 17, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Sharif-Alhoseini, M.; Rahimi-Movaghar, V. Animal models in traumatic spinal cord injury. In Topics in Paraplegia; IntechOpen: London, UK, 2014; Volume 46005. [Google Scholar]
- Cheriyan, T.; Ryan, D.; Weinreb, J.; Cheriyan, J.; Paul, J.; Lafage, V.; Kirsch, T.; Errico, T. Spinal cord injury models: A review. Spinal Cord 2014, 52, 588–595. [Google Scholar] [CrossRef]
- Alizadeh, A.; Dyck, S.M.; Karimi-Abdolrezaee, S. Traumatic spinal cord injury: An overview of pathophysiology, models and acute injury mechanisms. Front. Neurol. 2019, 10, 282. [Google Scholar] [CrossRef] [PubMed]
- Ponomarev, E.D.; Veremeyko, T.; Barteneva, N.; Krichevsky, A.M.; Weiner, H.L. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nat. Med. 2011, 17, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.F.; Shi, W.; Done, S.J.; Miller, N.; Pintilie, M.; Voduc, D.; Nielsen, T.O.; Nofech-Mozes, S.; Chang, M.C.; Whelan, T.J.; et al. Identification of a Low-Risk Luminal A Breast Cancer Cohort That May Not Benefit From Breast Radiotherapy. J. Clin. Oncol. 2015, 33, 2035–2040. [Google Scholar] [CrossRef] [PubMed]
- Iyer, A.; Zurolo, E.; Prabowo, A.; Fluiter, K.; Spliet, W.G.; van Rijen, P.C.; Gorter, J.A.; Aronica, E. MicroRNA-146a: A key regulator of astrocyte-mediated inflammatory response. PLoS ONE 2012, 7, e44789. [Google Scholar] [CrossRef]
- Chen, F.; Han, J.; Li, X.; Zhang, Z.; Wang, D. Identification of the biological function of miR-9 in spinal cord ischemia-reperfusion injury in rats. PeerJ 2021, 9, e11440. [Google Scholar] [CrossRef]
- Fei, M.; Li, Z.; Cao, Y.; Jiang, C.; Lin, H.; Chen, Z. MicroRNA-182 improves spinal cord injury in mice by modulating apoptosis and the inflammatory response via IKKβ/NF-κB. Lab. Investig. 2021, 101, 1238–1253. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.M.; Wang, R.Y.; Jiao, Z.X.; Zhang, B.Y.; Zhou, F.Q. MicroRNA-138 and SIRT1 form a mutual negative feedback loop to regulate mammalian axon regeneration. Genes Dev. 2013, 27, 1473–1483. [Google Scholar] [CrossRef]
- Zhou, J.; Guo, F.; Wang, G.; Wang, J.; Zheng, F.; Guan, X.; Chang, A.; Zhang, X.; Dai, C.; Li, S.; et al. miR-20a regulates adipocyte differentiation by targeting lysine-specific demethylase 6b and transforming growth factor-beta signaling. Int. J. Obes. 2015, 39, 1282–1291. [Google Scholar] [CrossRef] [PubMed]
- Tigchelaar, S.; Gupta, R.; Shannon, C.P.; Streijger, F.; Sinha, S.; Flibotte, S.; Rizzuto, M.A.; Street, J.; Paquette, S.; Ailon, T.; et al. MicroRNA Biomarkers in Cerebrospinal Fluid and Serum Reflect Injury Severity in Human Acute Traumatic Spinal Cord Injury. J. Neurotrauma 2019, 36, 2358–2371. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; He, Y.; Li, J. MicroRNA-21: A central regulator of fibrotic diseases via various targets. Curr. Pharm. Des. 2015, 21, 2236–2242. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Zhang, C. MicroRNA-21 in cardiovascular disease. J. Cardiovasc. Transl. Res. 2010, 3, 251–255. [Google Scholar] [CrossRef]
Description of the Study | Groups | Objective | Findings | Effect | Anesthesia/Injury Location | Reference |
---|---|---|---|---|---|---|
In vivo study Male C57BL/6 mice, n = 84 | -Sham group with laminectomy -SCI group -SCI+ antagomir-21(50 μL/day, 100 nmol/mL) -SCI + antagomir-21-NC (50 μL/day, 100 nmol/mL) | Investigating miR-21-5p’s role in scar formation after spinal injury | miR-21-5p enhances TGF-β1’s activation of spinal fibroblasts, leading to fibrotic scar formation after SCI by targeting Smad7. Suppressing miR-21-5p improves motor function recovery. | -Antagomir-21 ↑ brain-derived neurotrophic factor (BDNF), ↑NGF -miR-21-5p ↑TGF-β1 ↓Smad7 ↓Scare formation | 3% pentobarbital g/kg)/T8–T10 | [60] |
In vitro study with primary spinal fibroblasts | Scratch damage and negative control groups | Identify the role of miR-21a-5p in regulating spinal fibroblasts after mechanical trauma | The expression of miR-21a-5p was higher in spinal fibroblasts after scratch damage | miR-21a-5p mimic: promoted fibrogenic activity, enhancing proliferation and attenuating apoptosis in spinal fibroblasts | / | [61] |
In vivo study Male Sprague-Dawley rats (n = 75), 300–330 g | -Sham (n =25) -Mild (n = 25) -Severe (n = 25) | Examine alterations in the degree of transcription of two microRNAs (miR-21 and -223) following TSCI at 4 h and 1, 3 and 7 days | No differences in the level of miR-21 expression were found at 4 h post-lesion between the three experimental groups, whereas such differences were significant at all the other time points | No compound administered | 3% isoflurane and 2.5% isoflurane, ninth thoracic vertebra (T9) | [62] |
In vivo study Female C57BL/6 mice, n = 40 | -Sham group with laminectomy -SCI+ SCI group -miR-21 KD vector group -SCI + NC | Testing if reducing miR-21 encourages nerve repair and function | Knockdown of miR-21 improves motor function recovery and reduces inflammation by decreasing TGF-β1, TNF-α, IL-1β | -miR-21 KD ↑BDNF ↓TNFα, ↓TGF-β, ↓IL-1β, ↓p- Protein kinase B (AKT), T-AKT | 3% pentobarbital (30 mg/kg, i.p.)/T9–T10 | [63] |
In vitro study with rat neuronal spinal cord cells | Control and H2O2 groups | Examine the role of miR-146a, miR-21, and miR-150 during H2O2 stimulation in rat neuronal spinal cord cells. | miR-146a, miR-21 and miR-150 expression was upregulated during H2O2 treatment | / | / | [64] |
In vivo study Male Sprague-Dawley rat, n = 48/180–220 g | -Sham group with laminectomy -SCI group -SCI+ LV-miR21 -SCI+ Laser capture- negative control (LV-NC) | Exploring miR-21’s role in reducing neuron death post-spinal injury. | miR-21 improves neuronal survival and promotes functional recovery after injury. by reducing apoptosis through the miR-21/PDCD4/Casp-3 pathway. | -miR-21 ↓PDCD4/Casp-3 ↑NeuN | 10% chloral hydrate (3 mg/kg)/T10 | [65] |
In vivo study Male Wistar rats, n = 43/250 g | -Sham with just surgical procedure -Control group (vehicles+ SCI) -Pre-miRNA-21+ SCI -Control vectors +SCI | Testing whether miR-21 overexpression protects spinal cells from damage. | Overexpression of miR-21 reduced apoptosis and improved motor function after SCI by inhibiting pro-apoptotic proteins such as Casp-3, FasL, and PDCD4. | -pre-miRNA-21 ↑miR-21, ↓Casp-3, ↓FasL, ↓PDCD4, | 10% chloral hydrate (300 mg/kg)/L4-L6) | [66] |
In vivo study C57BL/6 mice, n = NA | -Wild-Type (WT) Mice -Transgenic Reverse Orientation Splice Acceptor (ROSA)-miR21 -Transgenic ROSA-MSP | Studying how miR-21 impacts the role of astrocytes after injury. | Overexpression of miR-21 after SCI, leading to a reduced hypertrophic response and enhanced axon density at the lesion site. | -Gene Control MicroRNA (GCMIR) ↓GFAP, ↓Vimentin -NO EFFECT Ki67, cleaved Casp-3 | inhalation of 2.5% isoflurane/T11 | [68] |
In vivo study Male C57BL/6 mice, n = 96 | -Sham -Negative control TSCI + NC -TSCI + antagomir-21 -TSCI + antagomir-21+ Cntfr α siRNA | Assessing how miR-21 impacts reactive astrocyte formation and function. | miR-21a-5p promotes inflammation by transforming naïve astrocytes into neurotoxic reactive astrocytes (A1s) following TSCI through inhibition of the CNTF/STAT3/Nkrf pathway. CNTF inhibits A1 polarization by activating the STAT3 signaling pathway. | -Antagomir-21 ↑ S100a10, ↑ Cntfr α, ↑ p-STAT3/STAT3 ↓C3, ↓ Serpin Family G Member 1 (Serping1), ↓histocompatibility 2, D region locus 1(H2-D1) | 3% pentobarbital (30 mg/kg, i.p.)/T8-T10 | [69] |
In vivo study Female C57BL/6 mice, n = 12/25–33 g | -Control -Abdominal Aortic occlusion | Investigating miR-21’s role in astrocyte activity during spinal injury recovery. | Silencing miR-21 promotes astrocyte polarization to the neuroprotective A2 phenotype, enhances synapse formation and nerve growth during ISCI, and targets glypican 6 via the STAT3 pathway. | NA | chloral hydrate (400 mg/kg)/(L4-L6) | [70] |
In vivo study Male C57BL/6 mice, n = 52 | -Sham group with laminectomy -SCI+ agomir-21 -SCI+ antagomir-21 -SCI+ NC | Examining miR-21’s effects on cell growth, cell death, and inflammation. | miR-21 is upregulated after SCI, promoting neuronal recovery by modulating astrocyte proliferation, apoptosis, and secretion via the TGF-β/PI3K/Akt/Mammalian target of rapamycin (mTOR) pathway. | -Agomir-21 ↑BDNF, ↑NGF, ↑GFAP, ↑ Chondroitin sulfate proteoglycans (CSPGs), ↑ Marker of proliferation Kiel 67 (Ki67), ↑p-AKT/AKT -Antagomir-21 ↓p-mTOR, ↓Ki67, ↓ B-cell lymphoma 2/Bcl-2-associated X protein (Bcl2/Bax) | 10% chloral hydrate (3 mg/kg)/T8–T10 | [71] |
In vivo study Male Sprague-Dawley Rats, n = 24 | -Sham group with laminectomy -SCI Group -SCI+ miR-21 Inhibitor | Looking at how miR-21 inhibitor influences inflammation after injury. | The inhibition of miR-21 reduced the expression of inflammatory factors iNOS and TNF-α and downregulated the IL-6R/Janus tyrosine kinase (JAK)-STAT signaling pathway after SCI, leading to improved recovery of locomotor function. | -miR-21 inhibitor ↓IL-6R, ↓JAK2, ↓STAT, ↓iNOS, ↓TNF-α | chloral hydrate (280 mg/kg)/T9-T11 | [72] |
In vivo study Female Sprague-Dawley rats, n = 150/200–250 g | -Sham control with laminectomy -SCI group | Studying miR-21 levels after injury and how they affect specific target genes such as PDCD4 and Phosphatase and tensin homolog (PTEN) | miRNA-21 expression levels decreased at 4 h, 8 h, and 1 day post-injury but increased at 3 and 7 days. Overexpression of miR-21 promotes neurite outgrowth by downregulating the pro-apoptotic protein PDCD4. | -After injury ↓PDCD4, ↓PTEN | 1% pentobarbital sodium ip (50 mg/kg)/T9 | [73] |
In vivo study Sprague–Dawley rats, n = 56/180–220 g | -Negative control group received NC antagomir (1 μL/h, 20 nmol/mL) -Antagomir-21 group received antagomir-21 (1 μL/h, 20 nmol/mL) for 3 days | Investigating how miR-21 regulates apoptosis and affects recovery after spinal trauma. | miR-21 was upregulated after SCI in rats, and its knockdown worsened motor function recovery, increased lesion size, and elevated apoptosis by upregulating pro-apoptotic genes such as FasL and PTEN. | -Antagomir-21 ↑FasL, ↑PTEN, | 10% chloral hydrate (10 mg/kg)/T10 | [74] |
In vivo study Sprague-Dawley rats, n = NA | -Sham control with laminectomy -SCI+ Exosomes—Scramble -SCI+ Exosomes -miR-21 -SCI+ Exosomes—PTEN siRNA: | Exploring how exosome-delivered miR-21 impacts movement recovery and cell death regulation after spinal injury. | miR-21 derived from mesenchymal stem cell (MSC) exosomes inhibits neuron cell death in SCI by modulating the expression of PTEN and PDCD4, promoting neuronal survival and differentiation. | -Exo-miR-21 ↓Casp-3, ↓PTEN, ↓PDCD4 | 10% chloral hydrate in saline (0.33 mL/kg)/T9-10 | [75] |
SCI Model | SCI Level | Severity | Drug Dose | Treatment Duration | Administration Route | Mir-21 > 0.05 | Reference |
---|---|---|---|---|---|---|---|
Contusion | T8–T10 | Moderate | -Antagomir-21 (50 μL/day, 100 nmol/mL) -miR-21 NC (50 μL/day, 100 nmol/mL) | 3 days after SCI | Intrathecal injections | Yes | [60] |
Contusion | T9–T10 | Moderate | -miR-21-KD (1 × 107 Transducing Units). | Single dose after injury | Subdural injection | Yes | [63] |
Contusion | T10 | Moderate | -LV/miR-21 (5 μL) | Not clearly reported | Injection in rostral and caudal areas around the lesion | Yes | [65] |
Ischemia | L4-L6 | Not available | -LV/pre-miRNA-21 (NA) | 5 days before SCI | Intrathecal injection | Yes | [66] |
Contusion | T11 | Severe | -Transgenic mice with overexpressed miR-21 | Not available | Not available | Yes | [68] |
Percussion | T8-T10 | Not available | -Antagomir-21 (2.5 μL, 2 μmol/mL) -Antagomir-21 + Cntfr α siRNA 0.5 nmol (1 μL, 0.5 μmol/mL) | -Antagomir -21 three days 0, 1, 2 after SCI -Antagomir -21 + Cntfr α siRNA one time day 0 | Intrathecal injection | Yes | [69] |
Acute ischemic | L4-L6 | Not available | Not available | Not available | Not available | Yes | [70] |
Contusion | T8–T10 | Moderate | -Antagomir-21 (50 μL/day, 100 nmol/mL) -Agomir-21 (50 μL/day, 100 nmol/mL) | 3 days after SCI | Intrathecal injections | Yes | [71] |
Contusion | T9-T11 | Moderate | -miR-21 inhibitor (NA) | Single dose after injury | Intrathecal injection | Yes | [72] |
Contusion | T9 | Moderate | Not available | Not available | Not available | Yes | [73] |
Contusion | T10 | Moderate | -Antagomir-21 (1 µL/h, 20 nmol/mL) | 3 days | Intrathecal injection | Yes | [74] |
Contusion | T9-10 | Moderate | -Exosomes with miR-21 (NA) -Exosomes with PTEN siRNA (NA) | Not available | Not available | No | [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, A.; Ardizzone, A.; Giosa, D.; Scuderi, S.A.; Calcaterra, E.; Esposito, E.; Capra, A.P. The Therapeutic Potential of MicroRNA-21 in the Treatment of Spinal Cord Injury. Curr. Issues Mol. Biol. 2025, 47, 70. https://doi.org/10.3390/cimb47020070
Hasan A, Ardizzone A, Giosa D, Scuderi SA, Calcaterra E, Esposito E, Capra AP. The Therapeutic Potential of MicroRNA-21 in the Treatment of Spinal Cord Injury. Current Issues in Molecular Biology. 2025; 47(2):70. https://doi.org/10.3390/cimb47020070
Chicago/Turabian StyleHasan, Ahmed, Alessio Ardizzone, Domenico Giosa, Sarah Adriana Scuderi, Elsa Calcaterra, Emanuela Esposito, and Anna Paola Capra. 2025. "The Therapeutic Potential of MicroRNA-21 in the Treatment of Spinal Cord Injury" Current Issues in Molecular Biology 47, no. 2: 70. https://doi.org/10.3390/cimb47020070
APA StyleHasan, A., Ardizzone, A., Giosa, D., Scuderi, S. A., Calcaterra, E., Esposito, E., & Capra, A. P. (2025). The Therapeutic Potential of MicroRNA-21 in the Treatment of Spinal Cord Injury. Current Issues in Molecular Biology, 47(2), 70. https://doi.org/10.3390/cimb47020070