Ginseng-Based Nanotherapeutics in Cancer Treatment: State-of-the-Art Progress, Tackling Gaps, and Translational Achievements
Abstract
:1. Introduction
2. Research Methodology: Bibliographic Source, Compilation, and Analysis
3. Ginseng Formulations and Metabolites as Herbal Medicines: Authentication and Commercialization
4. Panax Genus and Cancer Treatment: Understanding Recent Developments
5. Nanobiotechnological Advances in Ginseng: Addressing the Gaps in Therapeutics Development
6. State-of-the-Art Progress in the Development of Ginseng-Based Cancer Nanotherapeutics
7. Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pokrajac, L.; Abbas, A.; Chrzanowski, W.; Dias, G.M.; Eggleton, B.J.; Maguire, S.; Maine, E.; Malloy, T.; Nathwani, J.; Nazar, L. Nanotechnology for a sustainable future: Addressing global challenges with the international network 4 sustainable nanotechnology. ACS Nano 2021, 15, 18608–18623. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, P. Sustainable agriculture and nanotechnologies for food and nutraceutical production—An update. In Plant and Nanoparticles; Chen, J., Ed.; Springer book series; Springer: Berlin/Heidelberg, Germany, 2022; pp. 315–338. [Google Scholar] [CrossRef]
- Mancuso, C.; Santangelo, R. Panax ginseng and Panax quinquefolius: From pharmacology to toxicology. Food Chem. Toxicol. 2017, 107, 362–372. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Abid, S.; Ahn, J.C.; Mathiyalagan, R.; Kim, Y.-J.; Yang, D.-C.; Wang, Y. Characteristics of Panax ginseng cultivars in Korea and China. Molecules 2020, 25, 2635. [Google Scholar] [CrossRef] [PubMed]
- Baeg, I.H.; So, S.H. The world ginseng market and the ginseng (Korea). J. Ginseng Res. 2013, 37, 1–7. [Google Scholar] [CrossRef]
- Christensen, L.P. Ginsenosides: Chemistry, biosynthesis, analysis, and potential health Effects. Adv. Food Nutr. Res. 2009, 55, 1–99. [Google Scholar] [CrossRef]
- Matsuura, H.; Kasai, R.; Tanaka, O.; Saruwatari, Y.; Kunihiro, K.; Fuwa, T. Further studies on the dammarane-saponins of ginseng roots. Chem. Pharm. Bull. 1984, 32, 1188–1192. [Google Scholar] [CrossRef]
- Leung, K.W.; Wong, A.S. Pharmacology of ginsenosides: A literature review. Chin. Med. 2010, 5, 20. [Google Scholar] [CrossRef]
- Kim, J.H.; Yi, Y.S.; Kim, M.Y.; Cho, J.Y. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J. Ginseng Res. 2017, 41, 435–443. [Google Scholar] [CrossRef]
- Kim, J.-H. Pharmacological and medical applications of Panax ginseng and ginsenosides: A review for use in cardiovascular diseases. J. Ginseng Res. 2018, 42, 264–269. [Google Scholar] [CrossRef]
- Sanada, S.; Kondo, N.; Shoji, J.; Tanaka, O.; Shibata, S. Studies on the saponin of ginseng. I. Structures of ginsenoside-Ro, -Rb1, -Rc, and -Rd. Chem. Pharm. Bull. Tokyo 1974, 22, 421–428. [Google Scholar] [CrossRef]
- Namba, T.; Matsushige, K.; Morita, T.; Tanaka, O. Saponins of plants of Panax species collected in central Nepal and their chemotaxonomical significance. Chem. Pharm. Bull. Tokyo 1986, 34, 730–738. [Google Scholar] [CrossRef]
- Chen, H.; Yang, H.; Fan, D.; Deng, J. The anticancer activity and mechanisms of ginsenosides: An updated review. eFood 2020, 1, 226–241. [Google Scholar] [CrossRef]
- Chen, W.; Yao, P.; Vong, C.T.; Li, X.; Chen, Z.; Xiao, J.; Wang, S.; Wang, Y. Ginseng: A bibliometric analysis of 40-year journey of global clinical trials. J. Advan. Res. 2021, 34, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Ratan, Z.A.; Haidere, M.F.; Hong, Y.H.; Park, S.H.; Lee, J.O.; Lee, J.; Cho, J.Y. Pharmacological potential of ginseng and its major component ginsenosides. J. Ginseng Res. 2021, 45, 199–210. [Google Scholar] [CrossRef]
- Mathiyalagan, R.; Yang, D.C. Ginseng nanoparticles: A budding tool for cancer treatment. Nanomedicine 2017, 12, 1091–1094. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, Y.; Sun, Q.; Zhang, Z.; Zhao, M.; Peng, C.; Shi, S. Ginsenosides emerging as both bifunctional drugs and nanocarriers for enhanced antitumor therapies. J. Nanobiotechnol. 2021, 1, 322. [Google Scholar] [CrossRef]
- Wong, A.S.; Che, C.M.; Leung, K.W. Recent advances in ginseng as cancer therapeutics: A functional and mechanistic overview. Nat. Prod. Rep. 2015, 32, 256–272. [Google Scholar] [CrossRef]
- Shah, M.A.; Abuzar, S.M.; Ilyas, K.; Qadees, I.; Bilal, M.; Yousaf, R.; Kassim, M.T.; Rasul, A.; Saleem, U.; Alves, M.S.; et al. Ginsenosides in cancer: Targeting cell cycle arrest and apoptosis. Chem. Biol. Interact. 2023, 382, 110634. [Google Scholar] [CrossRef]
- Tiwari, P. Ginsenosides from Panax species: Recent trends and insights on ginseng products as herbal medicine. Bioingene Plant Sci. J. 2021, 2, 1–7. [Google Scholar]
- Xu, W.; Choi, H.K.; Huang, L. State of Panax ginseng research: A global analysis. Molecules 2017, 22, 1518. [Google Scholar] [CrossRef]
- Sana, S.S.; Chandel, A.K.S.; Raorane, C.J.; Aly, M.A.S.; Kim, S.C.; Raj, V.; Lee, S. Recent advances in nano and micro formulations of ginsenoside to enhance their therapeutic efficacy. Phytomedicine 2024, 134, 156007. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, Y.; Fan, A.; Li, G.; Liu, Q. Pharmacokinetics and bioavailability study of ginsenoside Rk1 in rat by liquid chromatography/electrospray ionization tandem mass spectrometry. Biomed. Chromatogr. 2019, 33, e4580. [Google Scholar] [CrossRef]
- Zhang, B.; Zhu, X.M.; Hu, J.N.; Ye, H.; Luo, T.; Liu, X.-R.; Li, H.-Y.; Li, W.; Zheng, Y.-N.; Deng, Z.-Y. Absorption mechanism of ginsenoside compound K and its butyl and octyl ester prodrugs in Caco-2 cells. J. Agric. Food Chem. 2012, 60, 10278–10284. [Google Scholar] [CrossRef]
- Aalinkeel, R.; Kutscher, H.L.; Singh, A.; Cwiklinski, K.; Khechen, N.; Schwartz, S.A.; Prasad, P.N.; Mahajan, S.D. Neuroprotective effects of a biodegradable poly(lactic-co-glycolic acid)-ginsenoside Rg3 nanoformulation: A potential nanotherapy for Alzheimer’s disease? J. Drug Target. 2018, 26, 182–193. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, G.J.; Wu, X.L.; Zheng, Y.-T.; Zhang, J.-W.; Ai, H.; Sun, J.-G.; Jia, Y.-W. Intestinal absorption mechanisms of ginsenoside Rh2: Stereoselectivity and involvement of ABC transporters. Xenobiotica 2010, 40, 602–612. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, G.; Wen, L.; Yang, F.; Shao, A.-L.; Li, X.; Long, W.; Mu, L. Novel multiple agents loaded PLGA nanoparticles for brain delivery via inner ear administration: In Vitro and In Vivo evaluation. Eur. J. Pharm Sci. 2013, 48, 595–603. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, G.J.; Sun, J.G.; Jia, Y.-W.; Wang, W.; Xu, M.-J.; Lv, T.; Zheng, Y.-T.; Sai, Y. Pharmacokinetic characterization of ginsenoside Rh2, an anticancer nutrient from ginseng, in rats and dogs. Food Chem. Toxicol. 2009, 47, 2257–2268. [Google Scholar] [CrossRef]
- Miele, E.; Spinelli, G.P.; Miele, E.; Fabrizio, E.D.; Ferretti, E.; Tomao, S.; Gulino, A. Nanoparticle-based delivery of small interfering RNA: Challenges for cancer therapy. Int. J. Nanomed. 2012, 7, 3637–3657. [Google Scholar] [CrossRef]
- Sultana, A.; Zare, M.; Thomas, V.; Sampath Kumar, T.S.; Ramakrishna, S. Nano-based drug delivery systems: Conventional drug delivery routes, recent developments and future prospects. Med. Drug Discov. 2022, 15, 100134. [Google Scholar] [CrossRef]
- Pelaz, B.; Alexiou, C.; Alvarez-Puebla, R.A.; Alves, F.; Andrews, A.M.; Ashraf, S.; Balogh, L.P.; Ballerini, L.; Bestetti, A.; Brendel, C.; et al. Diverse applications of nanomedicine. ACS Nano 2017, 11, 2313–2381. [Google Scholar] [CrossRef]
- Desai, N. Challenges in development of nanoparticle-based therapeutics. AAPS J. 2012, 14, 282–295. [Google Scholar] [CrossRef] [PubMed]
- Allen, T.M.; Cullis, P.R. Liposomal drug-delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013, 65, 36–48. [Google Scholar] [CrossRef] [PubMed]
- Zamboni, W.C.; Torchilin, V.; Patri, A.K.; Hrkach, J.; Stern, S.; Lee, R.; Nel, A.; Panaro, N.J.; Grodzinski, P. Best practices in cancer nanotechnology: Perspective from NCI nanotechnology alliance. Clin. Cancer Res. 2012, 18, 3229–3241. [Google Scholar] [CrossRef]
- Precedence Research. Available online: https://www.precedenceresearch.com/press-release/green-technology-and-sustainability-market (accessed on 20 February 2025).
- Darji, S.; Tiwari, P.; Chandra, A.; Sharma, A. Biological synthesis and applications of nanoparticles from selected medicinal plants. In Natural Remedies and Drug Discovery: Nanotechnology and In Silico Tools; Kaneria, M., Ed.; Elsevier Publication: Amsterdam, The Netherlands, 2023; pp. 47–59. [Google Scholar]
- Awlqadr, F.H.; Majeed, K.R.; Altemimi, A.B.; Hassan, A.M.; Qadir, S.A.; Saeed, M.N.; Faraj, A.M.; Salih, T.H.; Abd Al-Manhel, A.J.; Najm, M.A.A.; et al. Nanotechnology-based herbal medicine: Preparation, synthesis, and applications in food and medicine. J. Agric. Food Res. 2025, 19, 101661. [Google Scholar] [CrossRef]
- Balusamy, S.R.; Perumalsamy, H.; Huq, M.A.; Yoon, T.H.; Mijakovic, I.; Thangavelu, L.; Yang, D.C.; Rahimi, S. A comprehensive and systemic review of ginseng-based nanomaterials: Synthesis, targeted delivery, and biomedical applications. Med. Res. Rev. 2023, 43, 1374–1410. [Google Scholar]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.; Horsley, T.; Weeks, L.; et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Google Scholar. Available online: https://scholar.google.com (accessed on 20 February 2025).
- Pubmed. Available online: https://pubmed.ncbi.nlm.nih.gov (accessed on 20 February 2025).
- Scopus. Available online: https://www.scopus.com/ (accessed on 20 February 2025).
- Park, H.J.; Kim, D.H.; Park, S.J.; Kim, J.M.; Ryu, J.H. Ginseng in traditional herbal prescriptions. J. Ginseng Res. 2012, 36, 225–241. [Google Scholar] [CrossRef]
- Blumenthal, M.; Goldberg, A.; Brinckmann, J. Herbal Medicine: Expanded Commission E Monographs; Integrative Medicine Communications: Austin, TX, USA, 2000. [Google Scholar]
- Zhang, Z.-B.; Yu, C.-Y.; Wang, H.-Y.; Jia, X.-B.; Wu, W.; Pang, S.T.; Li, W.; Zahoor, S.; Khan, W.; Liu, Y.-C.; et al. The history, beneficial ingredients, mechanism, processing, and products of Panax ginseng for medicinal and edible value. MFH 2025, 2, 9420059. [Google Scholar] [CrossRef]
- Ichim, M.C.; de Boer, H.J. A review of authenticity and authentication of commercial ginseng herbal medicines and food supplements. Front. Pharmacol. 2020, 11, 612071. [Google Scholar] [CrossRef]
- Ding, M.; Cheng, H.; Li, X.; Li, X.; Zhang, M.; Cui, D.; Yang, Y.; Tian, X.; Wang, H.; Yang, W. Phytochemistry, quality control and biosynthesis in ginseng research from 2021 to 2023: A state-of-the-art review concerning advances and challenges. Chin. Herb. Med. 2024, 16, 505–520. [Google Scholar] [CrossRef]
- Wu, D.; Xiong, F.; Wang, H.; Liu, S.; Zhu, J.; Zhao, D.; Yang, J.; Ma, W.; Guo, L.; Kang, C. Temperature seasonality and soil phosphorus availability shape ginseng quality via regulating ginsenoside contents. BMC Plant Biol. 2024, 24, 824. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.G.; Quilantang, N.G.; Lee, J.S.; Geraldino, P.J.L.; Kim, H.Y.; Lee, S. Quantitative analysis of dammarane-type ginsenosides in different ginseng products. Nat. Prod. Sci. 2018, 24, 229–234. [Google Scholar] [CrossRef]
- Manzanilla, V.; Kool, A.; Nguyen Nhat, L.; Nong Van, H.; Le Thi Thu, H.; de Boer, H.J. Phylogenomics and barcoding of Panax: Toward the identification of ginseng species. BMC Evol. Biol. 2018, 18, 44. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Cheng, M.; Lv, W.; Wu, Y.; Liu, D.; Zhang, X. Peptides as potential biomarkers for authentication of mountain-cultivated ginseng and cultivated ginseng of different ages using UPLC-HRMS. J. Agric. Food Chem. 2020, 68, 2263–2275. [Google Scholar] [CrossRef]
- Yang, Y.; Nan, Y.; Du, Y.; Liu, W.; Ning, N.; Chen, G.; Gu, Q.; Yuan, L. Ginsenosides in cancer: Proliferation, metastasis, and drug resistance. Biomed. Pharmacother. 2024, 177, 117049. [Google Scholar] [CrossRef]
- Yang, Z.; Wu, X.; Shen, J.; Gudamu, A.; Ma, Y.; Zhang, Z.; Hou, M. Ginsenoside Rh1 regulates gastric cancer cell biological behaviours and transplanted tumor growth in nude mice via the TGF-β/Smad pathway. Clin. Exp. Pharmacol. Physiol. 2022, 49, 1270–1280. [Google Scholar] [CrossRef]
- Jin, Y.; Huynh, D.T.N.; Heo, K.S. Ginsenoside Rh1 inhibits tumor growth in MDA- MB-231 breast cancer cells via mitochondrial ROS and ER stress-mediated signaling pathway. Arch. Pharm. Res. 2022, 45, 174–184. [Google Scholar] [CrossRef]
- Park, J.E.; Kim, H.W.; Yun, S.H.; Kim, S.J. Ginsenoside Rh2 upregulates long noncoding RNA STXBP5-AS1 to sponge microRNA-4425 in suppressing breast cancer cell proliferation. J. Ginseng Res. 2021, 45, 754–762. [Google Scholar] [CrossRef]
- Ma, J.; Zhao, D.; Yu, D.; Song, W.; Yang, X.; Yin, H. Ginsenoside Rh2 attenuates the progression of non-small cell lung cancer by sponging miR-28-5p/STK4 axis and inactivating Wnt/β-catenin signaling. Cancer Med. 2023, 12, 12653–12667. [Google Scholar] [CrossRef]
- Ai, Z.Y.; Liu, S.T.; Zhang, J.S.; Hu, Y.; Tang, P.; Cui, L.L.; Wang, X.Z.; Zou, H.Y.; Li, X.; Liu, J.S.; et al. Ginseng glucosyl oleanolate from ginsenoside Ro, exhibited anti-liver cancer activities via MAPKs and gut microbiota In Vitro/Vivo. J. Agric. Food Chem. 2024, 72, 7845–7860. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Han, W.; He, Q.; Wang, Y.; Jin, G.; Zhang, Y. Ginsenoside Rh2 suppresses colon cancer growth by targeting the miR-150-3p/SRCIN1/Wnt axis. Acta Biochim. Biophys. Sin. 2023, 55, 633–648. [Google Scholar] [CrossRef] [PubMed]
- Teng, S.; Lei, X.; Zhang, X.; Shen, D.; Liu, Q.; Sun, Y.; Wang, Y.; Cong, Z. Transcriptome analysis of the anti-proliferative effects of ginsenoside Rh3 on HCT116 colorectal cancer cells. Molecules 2022, 27, 5002. [Google Scholar] [CrossRef] [PubMed]
- Cai, N.; Yang, Q.; Che, D.B.; Jin, X. 20(S)-Ginsenoside Rg3 regulates the Hedgehog signaling pathway to inhibit proliferation and epithelial-mesenchymal transition of lung cancer cells. Die Pharm. 2021, 76, 431–436. [Google Scholar] [CrossRef]
- Li, H.; Han, C.; Chen, C.; Han, G.; Li, Y. (20S) Ginsenoside Rh2-activated, distinct apoptosis pathways in highly and poorly differentiated human Esophageal cancer cells. Molecules 2022, 27, 5602. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, C.; Wang, S. Ginsenoside Rg3 inhibits osteosarcoma progression by reducing circ_0003074 expression in a miR-516b-5p/KPNA4-dependent manner. J. Orthop. Surg. Res. 2021, 16, 724. [Google Scholar] [CrossRef]
- Giaquinto, A.N.; Sung, H.; Miller, K.D.; Kramer, J.L.; Newman, L.A.; Minihan, A.; Jemal, A.; Siegel, R.L. Breast cancer statistics 2022. CA Cancer J. Clin. 2022, 72, 524–541. [Google Scholar] [CrossRef]
- Peng, K.; Luo, T.; Li, J.; Huang, J.; Dong, Z.; Liu, J.; Pi, C.; Zou, Z.; Gu, Q.; Liu, O.; et al. Ginsenoside Rh2 inhibits breast cancer cell growth via ERβ- TNF pathway. Acta Biochim. Biophys. Sin. 2022, 54, 647–656. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Li, H.D.; Li, B.; Jiang, S.D.; Jiang, L.S. Ginsenoside Rg3 induces DNA damage in human osteosarcoma cells and reduces MNNG-induced DNA damage and apoptosis in normal human cells. Oncol. Rep. 2014, 31, 919–925. [Google Scholar] [CrossRef]
- Cong, Z.; Zhao, Q.; Yang, B.; Cong, D.; Zhou, Y.; Lei, X.; Zhang, X. Ginsenoside Rh3 inhibits proliferation and induces apoptosis of colorectal cancer cells. Pharmacology 2020, 105, 329–338. [Google Scholar] [CrossRef]
- Liang, L.D.; He, T.; Du, T.W.; Fan, Y.G.; Chen, D.S.; Wang, Y. Ginsenoside-Rg5 induces apoptosis and DNA damage in human cervical cancer cells. Mol. Med. Rep. 2015, 11, 940–946. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Lv, Q.; Li, Y.; Jin, Y.H. The anti-tumor effect and underlying apoptotic mechanism of ginsenoside Rk1 and Rg5 in human liver cancer cells. Molecules 2021, 26, 3926. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Fan, D. Ginsenoside Rg5 induces G2/M phase arrest, apoptosis, and autophagy via regulating ROS-mediated MAPK pathways against human gastric cancer. Biochem. Pharmacol. 2019, 168, 285–304. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.; Jin, Y.; Myung, C.S.; Heo, K.S. Ginsenoside-Rg2 exerts anti-cancer effects through ROS-mediated AMPK activation associated mitochondrial damage and oxidation in MCF-7 cells. Arch. Pharm. Res. 2021, 44, 702–712. [Google Scholar] [CrossRef]
- Jiang, H.; Ma, P.; Duan, Z.; Liu, Y.; Shen, S.; Mi, Y.; Fan, D. Ginsenoside Rh4 suppresses metastasis of gastric cancer via SIX1-dependent TGF-β/Smad2/3 signaling pathway. Nutrients 2022, 14, 1564. [Google Scholar] [CrossRef]
- Dai, G.; Sun, B.; Gong, T.; Pan, Z.; Meng, Q.; Ju, W. Ginsenoside Rb2 inhibits epithelial-mesenchymal transition of colorectal cancer cells by suppressing TGF-β/Smad signaling. Phytomed. Int. J. Phytother. Phytopharm. 2019, 56, 126–135. [Google Scholar] [CrossRef]
- Li, X.; Liu, W.; Geng, C.; Li, T.; Li, Y.; Guo, Y.; Wang, C. Ginsenoside Rg3 suppresses epithelial-mesenchymal transition via downregulating Notch-Hes1 signaling in colon cancer cells. Am. J. Chin. Med. 2021, 49, 217–235. [Google Scholar] [CrossRef]
- Meng, L.; Ji, R.; Dong, X.; Xu, X.; Xin, Y.; Jiang, X. Antitumor activity of ginsenoside Rg3 in melanoma through downregulation of the ERK and Akt pathways. Int. J. Oncol. 2019, 54, 2069–2079. [Google Scholar] [CrossRef]
- Zheng, W.; Shen, P.; Yu, C.; Tang, Y.; Qian, C.; Yang, C.; Gao, M.; Wu, Y.; Yu, S.; Tang, W.; et al. Ginsenoside Rh1, a novel casein kinase II subunit alpha (CK2 α) inhibitor, retards metastasis via disrupting HHEX/CCL20 signaling cascade involved in tumor cell extravasation across endothelial barrier. Pharmacol. Res. 2023, 198, 106986. [Google Scholar] [CrossRef]
- Hu, Q.R.; Huang, Q.X.; Hong, H.; Pan, Y.; Luo, T.; Li, J.; Deng, Z.Y.; Chen, F. Ginsenoside Rh2 and its octyl ester derivative inhibited invasion and metastasis of hepatocellular carcinoma via the c-Jun/COX2/PGE2 pathway. Phytomed. Int. J. Phytother. Phytopharm. 2023, 121, 155131. [Google Scholar] [CrossRef]
- Hwang, S.J.; Bang, H.J.; Lee, H.J. Ginsenoside Re inhibits melanogenesis and melanoma growth by downregulating microphthalmia-associated transcription factor. Biomed. Pharmacother. Biomed. Pharmacother. 2023, 165, 115037. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Guan, Y. Ginsenosides in cancer: A focus on the regulation of cell metabolism. Biomed. Pharmacother. 2022, 156, 113756. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Lan, X.; Wang, Q.; Shan, M.; Fang, X.; Zhang, Y.; Wu, D.; Luo, H.; Gao, W.; Zhu, D. Renal function protection and the mechanism of ginsenosides: Current progress and future perspectives. Front. Pharmacol. 2023, 14, 1070738. [Google Scholar] [CrossRef]
- Zhao, J.; Duan, Z.; Ma, X.; Liu, Y.; Fan, D. Recent advances in systemic and local delivery of ginsenosides using nanoparticles and nanofibers. Chin. J. Chem. Eng. 2021, 30, 291–300. [Google Scholar] [CrossRef]
- Han, M.; Fang, X.L. Difference in oral absorption of ginsenoside Rg1 between In Vitro and In Vivo models. Acta Pharmacol. Sin. 2006, 27, 499–505. [Google Scholar] [CrossRef]
- Xu, Q.F.; Fang, X.L.; Chen, D.F. Pharmacokinetics and bioavailability of ginsenoside Rb1 and Rg1 from Panax notoginseng in rats. J. Ethnopharmacol. 2003, 84, 187–192. [Google Scholar] [CrossRef]
- Krishnamoorthy, C.; Chatterjee, P.; Paul, U.; Banerjee, S.; Kumar, L.; Chidambaram, R. Nanoencapsulation of antimicrobial agents and antimicrobial effect of silver nanoparticles. In Nanotechnology Applications for Food Safety and Quality Monitoring; Sharma, A., Vijayakumar, P.S., Prabhakar, P.K., Kumar, R., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 435–456. [Google Scholar]
- Tang, C.; Wang, Y.; Long, Y.; An, X.; Shen, J.; Ni, Y. Anchoring 20(R)-ginsenoside Rg3 onto cellulose nanocrystals to increase the hydroxyl radical scavenging activity. ACS Sustain. Chem. Eng. 2017, 5, 7507–7513. [Google Scholar] [CrossRef]
- Kim, E.S.; Lee, J.S.; Lee, H.G. Nanoencapsulation of Red Ginseng extracts using chitosan with polyglutamic acid or fucoidan for improving antithrombotic activities. J. Agric. Food Chem. 2016, 64, 4765–4771. [Google Scholar] [CrossRef]
- Bhavna, K.; Kirar, S.; Reddy, Y.N.; Rawat, K.; Bhaumik, B. Lignin nanoparticles as smart delivery vehicles for the ginseng-assisted treatment of microbial infections. Appl. Nano Mater. 2024, 7, 17101–17110. [Google Scholar] [CrossRef]
- Park, S.-K.; Kim, Y.-K.; Youn, H.-S.; Lee, M.Y. Application of nanotechnology to Korean Black-Red ginseng: Solubility enhancement by particle size reduction. Korea Sci. 2008, 4, 52–60. [Google Scholar]
- Yang, S.; Li, W.; Bai, X.; Nunzio, G.D.; Fan, L.; Zhao, Y.; Zhao, R.; Bian, S.; Liu, M.; Zhao, D.; et al. Ginseng-derived nanoparticles alleviate inflammatory bowel disease via the TLR4/MAPK and p62/Nrf2/Keap1 pathways. J. Nanobiotechnol. 2024, 22, 48. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Zhu, Y.; Chen, S.; Wang, D.; Zhang, S.; Xia, J.; Li, S.; Qiu, Q.; Lee, H.; Wang, J. Anti-glioma effect of ginseng-derived exosomes-like nanoparticles by active blood–brain-barrier penetration and tumor microenvironment modulation. J. Nanobiotechnol. 2023, 21, 253. [Google Scholar] [CrossRef]
- Li, S.; Zhang, R.; Wang, A.; Li, Y.; Zhang, M.; Kim, J.; Zhu, Y.; Wang, Q.; Zhang, Y.; Wei, Y.; et al. Panax notoginseng: Derived exosome-like nanoparticles attenuate ischemia reperfusion injury via altering microglia polarization. J. Nanobiotechnol. 2023, 21, 416. [Google Scholar] [CrossRef]
- Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A.; et al. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2022, 10, 1367–1401. [Google Scholar] [CrossRef]
- Kawish, S.M.; Sharma, S.; Gupta, P.; Ahmad, F.J.; Iqbal, M.; Alshabrmi, F.M.; Anwer, M.K.; Fathi-karkan, S.; Rahdar, A.; Aboudzadeh, M.A. Nanoparticle-based drug delivery platform for simultaneous administration of phytochemicals and chemotherapeutics: Emerging trends in cancer management. Part. Part. Syst. Charact. 2024, 41, 2400049. [Google Scholar] [CrossRef]
- Gao, Q.; Feng, J.; Liu, W.; Wen, C.; Wu, Y.; Liao, Q.; Zou, L.; Sui, X.; Xie, T.; Zhang, J.; et al. Opportunities and challenges for co-delivery nanomedicines based on combination of phytochemicals with chemotherapeutic drugs in cancer treatment. Adv. Drug Deliv. Rev. 2022, 188, 114445. [Google Scholar] [CrossRef]
- Keum, D.I.; Pi, L.-Q.; Hwang, S.T.; Lee, W.-S. Protective effect of Korean red ginseng against chemotherapeutic drug-induced premature catagen development assessed with human hair follicle organ culture model. J. Ginseng Res. 2016, 40, 169–175. [Google Scholar] [CrossRef]
- Barton, D.L.; Liu, H.; Dakhil, S.R.; Linquist, B.; Sloan, J.A.; Nichols, C.R.; McGinn, T.W.; Stella, P.J.; Seeger, G.R.; Sood, A. Wisconsin Ginseng (Panax quinquefolius) to improve cancer-related fatigue: A randomized, double-blind trial, N07C2. J. Natl. Cancer Inst. 2013, 105, 1230–1238. [Google Scholar] [CrossRef]
- Sathyanath, R.; Hanumantha Rao, B.R.; Kim, H.-G.; Cho, J.-H.; Son, C.-G. Saponin and non-saponin fractions of red ginseng ameliorate cisplatin-induced pica in rats. Pharm. Biol. 2013, 51, 1052–1060. [Google Scholar] [CrossRef]
- Oh, G.N.; Son, S.W. Efficacy of Korean Red Ginseng in the treatment of alopecia areata. J. Ginseng Res. 2012, 36, 391. [Google Scholar] [CrossRef]
- Wang, H.; Lin, Y. Advances in anti-tumor effects of ginsenoside Rg3. Med. Recapitul. 2009, 4, 75801777. [Google Scholar]
- Sathishkumar, N.; Sathiyamoorthy, S.; Ramya, M.; Yang, D.-U.; Lee, H.N.; Yang, D.-C. Molecular docking studies of anti-apoptotic BCL-2, BCL-XL, and MCL-1 proteins with ginsenosides from Panax ginseng. J. Enzym. Inhib. Med. Chem. 2012, 27, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-Z.; Du, G.-J.; Yuan, C.-S. Red American ginseng and breast cancer. In Breast Cancerdcurrent and Alternative Thera-Peutic Modalities; InTech: Rijeka, Croatia, 2011. [Google Scholar]
- Mai, T.T.; Moon, J.; Song, Y.; Viet, P.Q.; Van Phuc, P.; Lee, J.M.; Yi, T.-H.; Cho, M.; Cho, S.K. Ginsenoside F2 induces apoptosis accompanied by protective autophagy in breast cancer stem cells. Cancer Lett. 2012, 321, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, U.; Mustafi, R.; Wang, Y.; Musch, M.W.; Wang, C.-Z.; Konda, V.J.; Kulkarni, A.; Hart, J.; Dawson, G.; Kim, K.E. American ginseng suppresses western diet-promoted tumorigenesis in model of inflammation-associated colon cancer: Role of EGFR. BMC Complement. Altern. Med. 2011, 11, 111. [Google Scholar] [CrossRef]
- Castro-Aceituno, V.; Ahn, S.; Simu, S.Y.; Singh, P.; Mathiyalagan, R.; Lee, H.A.; Yang, D.C. Anticancer activity of silver nanoparticles from Panax ginseng fresh leaves in human cancer cells. Biomed. Pharmacother. 2016, 84, 158–165. [Google Scholar] [CrossRef]
- Park, S.; Seo, W.; Eun, H.S.; Kim, S.Y.; Jo, E.; Kim, M.-H.; Choi, W.-M.; Lee, J.-H.; Shim, Y.-R.; Cui, C.-h. Protective effects of ginsenoside F2 on 12-O-tetradecanoylphorbol-13-acetate-induced skin inflammation in mice. Biochem. Biophys. Res. Commun. 2016, 478, 1713–1719. [Google Scholar] [CrossRef]
- Tawab, M.A.; Bahr, U.; Karas, M.; Wurglics, M.; Schubert-Zsilavecz, M. Degradation of ginsenosides in humans after oral administration. Drug Metab. Dispos. 2003, 31, 1065–1071. [Google Scholar] [CrossRef]
- Mathiyalagan, R.; Kim, Y.-J.; Wang, C.; Jin, Y.; Subramaniyam, S.; Singh, P.; Wang, D.; Yang, D.C. Protopanaxadiol aglycone ginsenoside-polyethylene glycol conjugates: Synthesis, physicochemical characterizations, and In Vitro studies. Artif. Cells Nanomed. Biotechnol. 2016, 44, 1803–1809. [Google Scholar] [CrossRef]
- Ganesan, P.; Ko, H.-M.; Kim, I.-S.; Choi, D.-K. Recent trends of nano bioactive compounds from ginseng for its possible preventive role in chronic disease models. RSC Adv. 2015, 5, 98634–98642. [Google Scholar] [CrossRef]
- Mathiyalagan, R.; Subramaniyam, S.; Kim, Y.J.; Kim, Y.C.; Yang, D.C. Ginsenoside compound K-bearing glycol chitosan conjugates: Synthesis, physicochemical characterization, and In Vitro biological studies. Carbohydr. Polym. 2014, 112, 359–366. [Google Scholar] [CrossRef]
- Li, B.; Yuan, H.Y.; Wang, X.; Zhao, G.; Liu, X.-J. Preparation, release-control and cell apoptosis of C6 glioma cells in PEG-PLGA-Rg3 nanoparticles. Chem. Res. Chin. Univ. 2010, 26, 780–784. [Google Scholar]
- Yang, R.; Chen, D.; Li, M.; Miao, F.; Liu, P.; Tang, Q. 20(s)-ginsenoside Rg3-loaded magnetic human serum albumin nanospheres applied to HeLa cervical cancer cells In Vitro. Biomed. Mater. Eng. 2014, 24, 1991–1998. [Google Scholar] [PubMed]
- Dai, L.; Liu, K.; Si, C.; Wang, L.; Liu, J.; He, J.; Lei, J. Ginsenoside nanoparticle: A new green drug delivery system. J. Mater. Chem. B 2016, 4, 529–538. [Google Scholar] [CrossRef]
- Pérez, Z.E.J.; Mathiyalagan, R.; Markus, J.; Kim, Y.-J.; Kang, H.M.; Abbai, R.; Seo, K.H.; Wang, D.; Soshnikova, V.; Yang, D.C. Ginseng-berry-mediated gold and silver nanoparticle synthesis and evaluation of their In Vitro antioxidant, antimicrobial, and cytotoxicity effects on human dermal fibroblast and murine melanoma skin cell lines. Int. J. Nanomed. 2017, 12, 709–723. [Google Scholar] [CrossRef]
- Singh, P.; Singh, H.; Ahn, S.; Castro-Aceituno, V.; Jiménez, Z.; Simu, S.Y.; Kim, Y.J.; Yang, D.C. Pharmacological importance, characterization, and applications of gold and silver nanoparticles synthesized by Panax ginseng fresh leaves. Artif. Cells Nanomed. Biotechnol. 2016, 45, 1415–1424. [Google Scholar] [CrossRef]
- Alinaghi, M.; Mokarram, P.; Ahmadi, M.; Bozorg-ghalati, F. Biosynthesis of palladium, platinum, and their bimetallic nanoparticles using rosemary and ginseng herbal plants: Evaluation of anticancer activity. Sci. Rep. 2024, 14, 5798. [Google Scholar] [CrossRef]
- Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986, 46, 6387–6392. [Google Scholar]
- Wang, Z.; Han, J.; Guo, Z.; Wu, H.; Liu, Y.; Wang, W.; Zhang, C.; Liu, J. Ginseng-based carbon dots inhibit the growth of squamous cancer cells by increasing ferroptosis. Front. Oncol. 2023, 13, 1097692. [Google Scholar] [CrossRef]
- Cao, M.; Yan, H.; Han, X.; Weng, L.; Wei, Q.; Sun, X.; Lu, W.; Wei, Q.; Ye, J.; Cai, X.; et al. Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth. J. Immunother. Cancer 2019, 7, 326. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Li, M.; Weng, L.; Huang, H.; Mao, Y.; Yang, D.A.; Wei, Q.; Zhao, M.; Wei, Q.; Rui, K.; et al. Ginseng-derived nanoparticles reprogram macrophages to regulate arginase-1 release for ameliorating T cell exhaustion in tumor microenvironment. J. Exp. Clin. Cancer Res. 2023, 42, 322. [Google Scholar] [CrossRef] [PubMed]
- Zuo, S.; Wang, J.; An, X.; Wang, Z.; Zheng, X.; Zhang, Y. Fabrication of ginsenoside-based nanodrugs for enhanced antitumor efficacy on triple-negative breast cancer. Front. Bioeng. Biotechnol. 2022, 10, 945472. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiwari, P.; Park, K.-I. Ginseng-Based Nanotherapeutics in Cancer Treatment: State-of-the-Art Progress, Tackling Gaps, and Translational Achievements. Curr. Issues Mol. Biol. 2025, 47, 250. https://doi.org/10.3390/cimb47040250
Tiwari P, Park K-I. Ginseng-Based Nanotherapeutics in Cancer Treatment: State-of-the-Art Progress, Tackling Gaps, and Translational Achievements. Current Issues in Molecular Biology. 2025; 47(4):250. https://doi.org/10.3390/cimb47040250
Chicago/Turabian StyleTiwari, Pragya, and Kyeung-Il Park. 2025. "Ginseng-Based Nanotherapeutics in Cancer Treatment: State-of-the-Art Progress, Tackling Gaps, and Translational Achievements" Current Issues in Molecular Biology 47, no. 4: 250. https://doi.org/10.3390/cimb47040250
APA StyleTiwari, P., & Park, K.-I. (2025). Ginseng-Based Nanotherapeutics in Cancer Treatment: State-of-the-Art Progress, Tackling Gaps, and Translational Achievements. Current Issues in Molecular Biology, 47(4), 250. https://doi.org/10.3390/cimb47040250