Microbiota Modulation of Radiosensitiveness and Toxicity in Gastrointestinal Cancers: What Radiation Oncologists Need to Know—A Review on Behalf of the Italian Association of Radiobiology (AIRB)
Abstract
:1. Introduction
2. Methods
2.1. Study Selection
- -
- Studies including esophageal cancer, liver cancer, biliary tract and pancreatic cancer, rectal cancer and anal canal cancer.
- -
- Preclinical and clinical studies from 2010 to 2024, with an analyzed interaction between microbiota and radiotherapy concerning microbiota-modulated treatment efficacy and/or treatment toxicity.
- -
- Studies referencing esophageal cancer, liver cancer, biliary tract and pancreatic cancer, and rectal cancer and anal canal cancer.
- -
- Studies in English.
- -
- A disease site not contemporarily treated with radiotherapy as a definitive or neoadjuvant treatment, such as stomach cancer, gallbladder cancer, colon cancer, and gastrointestinal stromal tumors (GIST).
- -
- Rare GI cancer diseases, such as adrenocortical carcinoma, pheocromocytoma, and ampullary carcinoma.
2.2. Study Endpoints
3. Results
3.1. Esophageal Cancer
3.1.1. Microbiota Modulates Radiotherapy Efficacy in Esophageal Cancer
3.1.2. Microbiota Modulates Radiotherapy Toxicity in Esophageal Cancer
3.2. Rectal Cancer
3.2.1. Microbiota Modulates Radiotherapy Efficacy in Colorectal Cancer
3.2.2. Microbiota Modulates Radiotherapy Toxicity in Colorectal Cancer
Enteropathy, Diarrhea, and Protective Effects of Pre- and Probiotics
Fatigue
3.3. HCC
Microbiota Modulates Radiotherapy Efficacy in Hepatocellular Carcinoma Through Immunogenic Cell Death
3.4. Anal Squamous Cell Carcinoma
Modulation of Radiation-Induced Toxicity Through Host Microbiota
3.5. Pancreas
3.6. Other Strategies of Microbiota Modulation to Mitigate GI Radiation-Induced Toxicity
Modern Forms of Administration of Radioprotective Drugs to GI Sites
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Park, E.M.; Chelvanambi, M.; Bhutiani, N.; Kroemer, G.; Zitvogel, L.; Wargo, J.A. Targeting the gut and tumor microbiota in cancer. Nat. Med. 2022, 28, 690–703. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Gazzaniga, F.S.; Wu, M.; Luthens, A.K.; Gillis, J.; Zheng, W.; LaFleur, M.W.; Johnson, S.B.; Morad, G.; Park, E.M.; et al. Targeting PD-L2–RGMb overcomes microbiome-related immunotherapy resistance. Nature 2023, 617, 377–385. [Google Scholar] [CrossRef] [PubMed Central]
- Hajj, C.; Goodman, K.A. Role of Radiotherapy and Newer Techniques in the Treatment of GI Cancers. J. Clin. Oncol. 2015, 33, 1737–1744. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peters, B.A.; Wu, J.; Pei, Z.; Yang, L.; Purdue, M.P.; Freedman, N.D.; Jacobs, E.J.; Gapstur, S.M.; Hayes, R.B.; Ahn, J. Oral Microbiome Composition Reflects Prospective Risk for Esophageal Cancers. Cancer Res. 2017, 77, 6777–6787. [Google Scholar] [CrossRef] [PubMed Central]
- Quante, M.; Bhagat, G.; Abrams, J.A.; Marache, F.; Good, P.; Lee, M.D.; Lee, Y.; Friedman, R.; Asfaha, S.; Dubeykovskaya, Z.; et al. Bile Acid and Inflammation Activate Gastric Cardia Stem Cells in a Mouse Model of Barrett-Like Metaplasia. Cancer Cell 2012, 21, 36–51. [Google Scholar] [CrossRef] [PubMed Central]
- Yang, L.; Lu, X.; Nossa, C.W.; Francois, F.; Peek, R.M.; Pei, Z. Inflammation and Intestinal Metaplasia of the Distal Esophagus Are Associated With Alterations in the Microbiome. Gastroenterology 2009, 137, 588–597. [Google Scholar] [CrossRef] [PubMed Central]
- van den Ende, T.; de Clercq, N.C.; Davids, M.; Goedegebuure, R.; Doeve, B.H.; Ebrahimi, G.; Buijsen, J.; Hoekstra, R.; Mohammad, N.H.; Bijlsma, M.F.; et al. Fecal, duodenal, and tumor microbiota composition of esophageal carcinoma patients, a longitudinal prospective cohort. J. Natl. Cancer Inst. 2024, 116, 1834–1844. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sasaki, T.; Matsumoto, Y.; Murakami, K.; Endo, S.; Toyozumi, T.; Otsuka, R.; Kinoshita, K.; Hu, J.; Iida, S.; Morishita, H.; et al. Gut microbiome can predict chemoradiotherapy efficacy in patients with esophageal squamous cell carcinoma. Esophagus 2023, 20, 691–703. [Google Scholar] [CrossRef]
- Lin, M.-Q.; Wu, Y.-H.; Yang, J.; Lin, H.-C.; Liu, L.-Y.; Yu, Y.-L.; Yao, Q.-W.; Li, J.-C. Gut Microbiota Characteristics Are Associated With Severity of Acute Radiation-Induced Esophagitis. Front. Microbiol. 2022, 13, 883650. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, M.; Buc, E.; Sauvanet, P.; Darcha, C.; Dubois, D.; Pereira, B.; Déchelotte, P.; Bonnet, R.; Pezet, D.; Darfeuille-Michaud, A. Colonization of the Human Gut by E. coli and Colorectal Cancer Risk. Clin. Cancer Res. 2014, 20, 859–867. [Google Scholar] [CrossRef]
- Louis, P.; Flint, H.J. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol. 2017, 19, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Rhee, K.-J.; Zhang, M.; Franco, A.; Sears, C.L. Bacteroides fragilis toxin stimulates intestinal epithelial cell shedding and γ-secretase-dependent E-cadherin cleavage. J. Cell Sci. 2007, 120 Pt 11, 1944–1952. [Google Scholar] [CrossRef] [PubMed Central]
- Gur, C.; Ibrahim, Y.; Isaacson, B.; Yamin, R.; Abed, J.; Gamliel, M.; Enk, J.; Bar-On, Y.; Stanietsky-Kaynan, N.; Coppenhagen-Glazer, S.; et al. Binding of the Fap2 Proteinprogra of Fusobacterium nucleatum to Human Inhibitory Receptor TIGIT Protects Tumors from Immune Cell Attack. Immunity 2015, 42, 344–355. [Google Scholar] [CrossRef] [PubMed Central]
- Kostic, A.D.; Chun, E.; Robertson, L.; Glickman, J.N.; Gallini, C.A.; Michaud, M.; Clancy, T.E.; Chung, D.C.; Lochhead, P.; Hold, G.L.; et al. Fusobacterium nucleatum Potentiates Intestinal Tumorigenesis and Modulates the Tumor-Immune Microenvironment. Cell Host Microbe 2013, 14, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Teng, H.; Wang, Y.; Sui, X.; Fan, J.; Li, S.; Lei, X.; Shi, C.; Sun, W.; Song, M.; Wang, H.; et al. Gut microbiota-mediated nucleotide synthesis attenuates the response to neoadjuvant chemoradiotherapy in rectal cancer. Cancer Cell 2023, 41, 124–138.e126. [Google Scholar] [CrossRef]
- Dong, J.; Wang, B.; Xiao, Y.; Liu, J.; Wang, Q.; Xiao, H.; Jin, Y.; Liu, Z.; Chen, Z.; Li, Y.; et al. Roseburia intestinalis sensitizes colorectal cancer to radiotherapy through the butyrate/OR51E1/RALB axis. Cell Rep. 2024, 43, 113846. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X.; Jin, C.; Yue, K.; Sheng, D.; Zhang, T.; Dou, X.; Liu, J.; Jing, H.; Zhang, L.; et al. Prospective, longitudinal analysis of the gut microbiome in patients with locally advanced rectal cancer predicts response to neoadjuvant concurrent chemoradiotherapy. J. Transl. Med. 2023, 21, 221. [Google Scholar] [CrossRef] [PubMed Central]
- Jang, B.-S.; Chang, J.H.; Chie, E.K.; Kim, K.; Park, J.W.; Kim, M.J.; Song, E.-J.; Nam, Y.-D.; Kang, S.W.; Jeong, S.-Y.; et al. Gut Microbiome Composition Is Associated with a Pathologic Response After Preoperative Chemoradiation in Patients with Rectal Cancer. Int. J. Radiat. Oncol. 2020, 107, 736–746. [Google Scholar] [CrossRef]
- Benej, M.; Hoyd, R.; Kreamer, M.; Wheeler, C.E.; Grencewicz, D.J.; Choueiry, F.; Chan, C.H.; Zakharia, Y.; Ma, Q.; Dodd, R.D.; et al. The Tumor Microbiome Reacts to Hypoxia and Can Influence Response to Radiation Treatment in Colorectal Cancer. Cancer Res. Commun. 2024, 4, 1690–1701. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gerassy-Vainberg, S.; Blatt, A.; Danin-Poleg, Y.; Gershovich, K.; Sabo, E.; Nevelsky, A.; Daniel, S.; Dahan, A.; Ziv, O.; Dheer, R.; et al. Radiation induces proinflammatory dysbiosis: Transmission of inflammatory susceptibility by host cytokine induction. Gut 2018, 67, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.-L.; Xu, J.-Y.; Xing, Y.; Wu, P.; Jin, Y.-W.; Wei, W.; Zhao, L.; Yang, J.; Chen, G.-C.; Qin, L.-Q. Lactobacillus rhamnosus GG alleviates radiation-induced intestinal injury by modulating intestinal immunity and remodeling gut microbiota. Microbiol. Res. 2024, 286, 127821. [Google Scholar] [CrossRef]
- Wang, A.; Ling, Z.; Yang, Z.; Kiela, P.R.; Wang, T.; Wang, C.; Cao, L.; Geng, F.; Shen, M.; Ran, X.; et al. Gut Microbial Dysbiosis May Predict Diarrhea and Fatigue in Patients Undergoing Pelvic Cancer Radiotherapy: A Pilot Study. PLoS ONE 2015, 10, e0126312. [Google Scholar] [CrossRef] [PubMed]
- Rosli, D.; Shahar, S.; Manaf, Z.A.; Lau, H.J.; Yusof, N.Y.M.; Haron, M.R.; Majid, H.A. Randomized controlled trial on the effect of partially hydrolyzed guar gum supplementation on diarrhea frequency and gut microbiome count among pelvic radiation patients. J. Parenter. Enter. Nutr. 2021, 45, 277–286. [Google Scholar] [CrossRef]
- Delia, P.; Sansotta, G.; Donato, V.; Frosina, P.; Messina, G.; De Renzis, C.; Famularo, G. Use of probiotics for prevention of radiation-induced diarrhea. World J. Gastroenterol. 2007, 13, 912–915. [Google Scholar] [CrossRef] [PubMed]
- Demers, M.; Dagnault, A.; Desjardins, J. A randomized double-blind controlled trial: Impact of probiotics on diarrhea in patients treated with pelvic radiation. Clin. Nutr. 2014, 33, 761–767. [Google Scholar] [CrossRef]
- González-Mercado, V.J.; Pérez-Santiago, J.; Lyon, D.; Dilán-Pantojas, I.; Henderson, W.; McMillan, S.; Groer, M.; Kane, B.; Marrero, S.; Pedro, E.; et al. The role of gut microbiome perturbation in fatigue induced by repeated stress from chemoradiotherapy: A proof of concept study. Adv. Med. 2020, 2020, 6375876. [Google Scholar] [CrossRef] [PubMed Central]
- Kang, Y.; Cai, Y.; Yang, Y. The Gut Microbiome and Hepatocellular Carcinoma: Implications for Early Diagnostic Biomarkers and Novel Therapies. Liver Cancer 2022, 11, 113–125. [Google Scholar] [CrossRef] [PubMed Central]
- Li, Z.; Zhang, Y.; Hong, W.; Wang, B.; Chen, Y.; Yang, P.; Zhou, J.; Fan, J.; Zeng, Z.; Du, S. Gut microbiota modulate radiotherapy-associated antitumor immune responses against hepatocellular carcinoma Via STING signaling. Gut Microbes 2022, 14, 2119055. [Google Scholar] [CrossRef] [PubMed Central]
- Elnaggar, J.H.; Huynh, V.O.; Lin, D.; Hillman, R.T.; Abana, C.O.; El Alam, M.B.; Tomasic, K.C.; Karpinets, T.V.; Kouzy, R.; Phan, J.L.; et al. HPV-related anal cancer is associated with changes in the anorectal microbiome during cancer development. Front. Immunol. 2023, 14, 1051431. [Google Scholar] [CrossRef] [PubMed Central]
- Lin, D.; El Alam, M.B.; Jaoude, J.A.; Kouzy, R.; Phan, J.L.; Elnaggar, J.H.; Resendiz, B.; Medrano, A.Y.D.; Lynn, E.J.; Nguyen, N.D.; et al. Microbiome Dynamics During Chemoradiation Therapy for Anal Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2022, 113, 974–984. [Google Scholar] [CrossRef]
- Nista, E.C.; Del Gaudio, A.; Del Vecchio, L.E.; Mezza, T.; Pignataro, G.; Piccioni, A.; Gasbarrini, A.; Franceschi, F.; Candelli, M. Pancreatic Cancer Resistance to Treatment: The Role of Microbiota. Biomedicines 2023, 11, 157. [Google Scholar] [CrossRef] [PubMed]
- Kouvaris, J.R.; Kouloulias, V.E.; Vlahos, L.J. Amifostine: The first selective-target and broad-spectrum radioprotector. Oncologist 2007, 12, 738–747. [Google Scholar] [CrossRef]
- Zhang, D.; Zhong, D.; Ouyang, J.; He, J.; Qi, Y.; Chen, W.; Zhang, X.; Tao, W.; Zhou, M. Microalgae-based oral microcarriers for gut microbiota homeostasis and intestinal protection in cancer radiotherapy. Nat. Commun. 2022, 13, 1413. [Google Scholar] [CrossRef] [PubMed Central]
- Liu, J.; Liu, C.; Yue, J. Radiotherapy and the gut microbiome: Facts and fiction. Radiat. Oncol. 2021, 16, 9. [Google Scholar] [CrossRef] [PubMed Central]
- Moustakis, C.; Blanck, O.; Grohmann, M.; Albers, D.; Bartels, D.; Bathen, B.; Borzì, G.R.; Broggi, S.; Bruschi, A.; Casale, M.; et al. Planning Benchmark Study for Stereotactic Body Radiation Therapy of Pancreas Carcinomas With Simultaneously Integrated Boost and Protection: Results of the DEGRO/DGMP Working Group on Stereotactic Radiation Therapy and Radiosurgery. Int. J. Radiat. Oncol. Biol. Phys. 2025, 121, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Sanford, N.N.; Aguilera, T.A.; Bassetti, M.F.; Chuong, M.D.; Erickson, B.A.; Goodman, K.A.; Herman, J.M.; Hong, T.S.; Intven, M.P.W.; Kilcoyne, A.; et al. Nrg oncology international consensus atlas on target volumes for dose-escalated pancreatic cancer radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2024, 120, S144. [Google Scholar] [CrossRef]
- Bonù, M.L.; Pedersoli, G.; Balduzzi, J.; Cefaratti, M.; Mataj, E.; Cossali, G.; Granello, L.; Singh, N.; Morelli, V.; Tomasini, D.; et al. Stereotactic Radiotherapy for Critically Located Pancreatic and Biliary Targets: A Review on Simultaneous Integrated Protection and Other Dose-Painting Strategies to Minimize Dose to Critical Organs at Risk. Radiation 2023, 3, 98–109. [Google Scholar] [CrossRef]
- Bonù, M.L.; Mataj, E.; Balduzzi, J.; Cefaratti, M.T.; Pedersoli, G.; Cossali, G.; Triggiani, L.; Tomasini, D.; Buglione, M.; Magrini, S.M. Stereotactic radiotherapy with simultaneous integrated protection planning technique for synovial sarcoma with stomach abutment: A case report of a complete response. Tumor Discov. 2023, 2. [Google Scholar] [CrossRef]
- Comito, T.; Cozzi, L.; Clerici, E.; Franzese, C.; Tozzi, A.; Iftode, C.; Navarria, P.; D’agostino, G.; Rimassa, L.; Carnaghi, C.; et al. Can Stereotactic Body Radiation Therapy Be a Viable and Efficient Therapeutic Option for Unresectable Locally Advanced Pancreatic Adenocarcinoma? Results of a Phase 2 Study. Technol. Cancer Res. Treat. 2017, 16, 295–301. [Google Scholar] [CrossRef] [PubMed Central]
- Chuong, M.D.; Herrera, R.; Kaiser, A.; Rubens, M.; Romaguera, T.; Alvarez, D.; Kotecha, R.; Hall, M.D.; McCulloch, J.; Ucar, A.; et al. Induction Chemotherapy and Ablative Stereotactic Magnetic Resonance Image-Guided Adaptive Radiation Therapy for Inoperable Pancreas Cancer. Front. Oncol. 2022, 12, 888462. [Google Scholar] [CrossRef] [PubMed Central]
- Simoni, N.; Micera, R.; Paiella, S.; Guariglia, S.; Zivelonghi, E.; Malleo, G.; Rossi, G.; Addari, L.; Giuliani, T.; Pollini, T.; et al. Hypofractionated Stereotactic Body Radiation Therapy With Simultaneous Integrated Boost and Simultaneous Integrated Protection in Pancreatic Ductal Adenocarcinoma. Clin. Oncol. 2021, 33, e31–e38. [Google Scholar] [CrossRef]
- Loi, M.; Magallon-Baro, A.; Suker, M.; van Eijck, C.; Sharma, A.; Hoogeman, M.; Nuyttens, J. Pancreatic cancer treated with SBRT: Effect of anatomical interfraction variations on dose to organs at risk. Radiother. Oncol. 2019, 134, 67–73. [Google Scholar] [CrossRef]
- Franzese, C.; Bonu, M.L.; Comito, T.; Clerici, E.; Loi, M.; Navarria, P.; Franceschini, D.; Pressiani, T.; Rimassa, L.; Scorsetti, M. Stereotactic body radiotherapy in the management of oligometastatic and recurrent biliary tract cancer: Single-institution analysis of outcome and toxicity. J. Cancer Res. Clin. Oncol. 2020, 146, 2289–2297. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonù, M.L.; Georgopulos, A.; Ramera, M.; Andreuccetti, J.; Guerini, A.E.; Bozzola, A.M.; Morelli, V.; Balduzzi, J.; Katica, M.; Cefaratti, M.; et al. Microbiota Modulation of Radiosensitiveness and Toxicity in Gastrointestinal Cancers: What Radiation Oncologists Need to Know—A Review on Behalf of the Italian Association of Radiobiology (AIRB). Curr. Issues Mol. Biol. 2025, 47, 265. https://doi.org/10.3390/cimb47040265
Bonù ML, Georgopulos A, Ramera M, Andreuccetti J, Guerini AE, Bozzola AM, Morelli V, Balduzzi J, Katica M, Cefaratti M, et al. Microbiota Modulation of Radiosensitiveness and Toxicity in Gastrointestinal Cancers: What Radiation Oncologists Need to Know—A Review on Behalf of the Italian Association of Radiobiology (AIRB). Current Issues in Molecular Biology. 2025; 47(4):265. https://doi.org/10.3390/cimb47040265
Chicago/Turabian StyleBonù, Marco Lorenzo, Andrea Georgopulos, Marco Ramera, Jacopo Andreuccetti, Andrea Emanuele Guerini, Anna Maria Bozzola, Vittorio Morelli, Jacopo Balduzzi, Mirsada Katica, Mariateresa Cefaratti, and et al. 2025. "Microbiota Modulation of Radiosensitiveness and Toxicity in Gastrointestinal Cancers: What Radiation Oncologists Need to Know—A Review on Behalf of the Italian Association of Radiobiology (AIRB)" Current Issues in Molecular Biology 47, no. 4: 265. https://doi.org/10.3390/cimb47040265
APA StyleBonù, M. L., Georgopulos, A., Ramera, M., Andreuccetti, J., Guerini, A. E., Bozzola, A. M., Morelli, V., Balduzzi, J., Katica, M., Cefaratti, M., Granello, L., Triggiani, L., Buglione, M., Magrini, S. M., Marampon, F., Mondini, M., Parisi, S., Timon, G., Bellu, L., ... Scorsetti, M. (2025). Microbiota Modulation of Radiosensitiveness and Toxicity in Gastrointestinal Cancers: What Radiation Oncologists Need to Know—A Review on Behalf of the Italian Association of Radiobiology (AIRB). Current Issues in Molecular Biology, 47(4), 265. https://doi.org/10.3390/cimb47040265