MMP-9 Activation via ROS/NF-κB Signaling in Colorectal Cancer Progression: Molecular Insights and Prognostic–Therapeutic Perspectives
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Tissue Samples
2.2. Preparation of Tissue Samples
2.3. Biochemical Assays
2.3.1. Quantitative Expression of NF-κB
2.3.2. AOPP Concentration
2.3.3. MMP-9 Activity
2.3.4. Protein Content
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CRC | Colorectal cancer |
AOPPs | Advanced oxidation protein products |
ROS | Reactive oxygen species |
MMP-9 | Matrix metalloproteinase-9 |
NF-κB | Nuclear transcription factor κB |
References
- Olfatifar, M.; Rafiei, F.; Sadeghi, A.; Ataei, E.; Habibi, M.A.; Modarres, M.P.; Ghalavand, Z.; Houri, H. Assessing the Colorectal Cancer Landscape: A Comprehensive Exploration of Future Trends in 216 Countries and Territories from 2021 to 2040. J. Epidemiol. Glob. Health 2025, 15, 5. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.C.; Kunnumakkara, A.B.; Aggarwal, S.; Aggarwal, B.B. Inflammation, a Double-Edge Sword for and Other Age-Related Diseases. Front. Immunol. 2018, 9, 2160. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Hu, B.; Li, Q.; Cao, W. Prognostic Value and Clinicopathological Significance of Pre- and Post-Treatment Systemic Immune-Inflammation Index in Colorectal Cancer Patients: A Meta-Analysis. World J. Surg. Oncol. 2025, 23, 11. [Google Scholar] [CrossRef] [PubMed]
- Colombo, F.; Zambrano, S.; Agresti, A. NF-kappaB, the Importance of Being Dynamic: Role and Insights in Cancer. Biomedicines 2018, 6, 45. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Tan, S.; Zhou, Y.; Lin, J.; Wang, H.; Oyang, L.; Tian, Y.; Liu, L.; Su, M.; Wang, H.; et al. Role of the NF-κB-signaling pathway in cancer. Oncotargets Ther. 2018, 11, 2063–2073. [Google Scholar] [CrossRef] [PubMed]
- Dardis, G.J.; Wang, J.; Simon, J.M.; Wang, G.G.; Baldwin, A.S. An EZH2-NF-κB Regulatory Axis Drives Expression of Pro-Oncogenic Gene Signatures in Triple Negative Breast Cancer. iScience 2023, 26, 107115. [Google Scholar] [CrossRef] [PubMed]
- Balkwill, F.; Mantovani, A. Inflammation and Cancer: Back to Virchow? Lancet 2001, 357, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Żebrowska-Nawrocka, M.; Szmajda-Krygier, D.; Krygier, A.; Jeleń, A.; Balcerczak, E. Bioinformatic Analysis of IKK Complex Genes Expression in Selected Gastrointestinal Cancers. Int. J. Mol. Sci. 2024, 25, 9868. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Peng, H.; Huang, Y.; Kong, W.; Cui, Q.; Du, J.; Jin, H. Post-Translational Modifications of IκBα: The State of the Art. Front. Cell Dev. Biol. 2020, 8, 574706. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Mani, A.M.; Wu, Z.H. DNA Damage-Induced Nuclear Factor-κB Activation and Its Roles in Cancer Progression. J. Cancer Metastasis Treat. 2017, 3, 45. [Google Scholar] [CrossRef] [PubMed]
- De Simone, V.; Franze, E.; Ronchetti, G.; Colantoni, A.; Fantini, M.; Di Fusco, D.; Sica, G.; Sileri, P.; MacDonald, T.T.; Pallone, F.; et al. Th17-type cytokines, IL-6 and TNF-synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth. Oncogene 2015, 34, 3493. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.S.; Kim, S.Y.; Lee, J.S.; Nam, B.H.; Kim, J.E.; Kim, K.P.; Park, J.O.; Park, Y.S.; Baek, J.Y.; Lee, K.-W.; et al. Long-term results of the ADORE trial: Adjuvant oxaliplatin, leucovorin, and 5-fluorouracil (FOLFOX) versus 5-fluorouracil and leucovorin (FL) after preoperative chemoradiotherapy and surgery for locally advanced rectal cancer. Am. Soc. Clin. Oncol. 2018, 36, 3501. [Google Scholar] [CrossRef]
- Harris, I.; DeNicola, G. The Complex Interplay between Antioxidants and ROS in Cancer. Trends Cell Biol. 2020, 30, 440–451. [Google Scholar] [CrossRef] [PubMed]
- Bardelčíková, A.; Šoltys, J.; Mojžiš, J. Oxidative Stress, Inflammation and Colorectal Cancer: An Overview. Antioxidants 2023, 12, 901. [Google Scholar] [CrossRef] [PubMed]
- Arneth, B. Tumor microenvironment. Medicina 2019, 56, 15. [Google Scholar] [CrossRef] [PubMed]
- Brassart-Pasco, S.; Brézillon, S.; Brassart, B.; Ramont, L.; Oudart, J.B.; Monboisse, J.C. Tumor microenvironment: Extracellular matrix alterations influence tumor progression. Front. Oncol. 2020, 10, 397. [Google Scholar] [CrossRef] [PubMed]
- Fang, M.; Yuan, J.; Peng, C.; Li, Y. Collagen as a double-edged sword in tumor progression. Tumour Biol. 2014, 35, 2871–2882. [Google Scholar] [CrossRef] [PubMed]
- Alaseem, A.; Alhazzani, K.; Dondapati, P.; Alobid, S.; Bishayee, A.; Rathinavelu, A. Matrix Metalloproteinases: A Challenging Paradigm of Cancer Management. Semin. Cancer Biol. 2019, 56, 100–115. [Google Scholar] [CrossRef] [PubMed]
- Greenlee, J.D.; Subramanian, T.; Liu, K.; King, M.R. Rafting down the metastatic cascade: The role of lipid rafts in cancer metastasis, cell death, and clinical outcomes. Cancer Res. 2021, 81, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Yu, X.; Sun, S.; Zhang, X.; Yang, W.; Zhang, J.; Zhang, Z.; Jiang, Z. Increased expression of MMP-2 and MMP-9 indicates poor prognosis in glioma recurrence. Biomed. Pharmacother. 2019, 118, 109369. [Google Scholar] [CrossRef] [PubMed]
- Cathcart, J.; Pulkoski-Gross, A.; Cao, J. Targeting Matrix Metalloproteinases in Cancer: Bringing New Life to Old Ideas. Genes. Dis. 2015, 2, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Pezeshkian, Z.; Nobili, S.; Peyravian, N.; Shojaee, B.; Nazari, H.; Soleimani, H.; Asadzadeh-Aghdaei, H.; Ashrafian Bonab, M.; Nazemalhosseini-Mojarad, E.; Mini, E. Insights into the Role of Matrix Metalloproteinases in Precancerous Conditions and in Colorectal Cancer. Cancers 2021, 13, 6226. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H. Principles and Reactions of Protein Extraction, Purification, and Characterization; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Kocic, G.; Pavlovic, R.; Najman, S.; Nikolic, G.; Sokolovic, D.; Jevtovic-Stoimenov, T.; Musovic, D.; Veljkovic, A.; Kocic, R.; Djindjic, N. Circulating ribonucleic acids and metabolic stress parameters may reflect progression of autoimmune or inflammatory conditions in juvenile type 1 diabetes. Sci. World J. 2011, 11, 1496–1508. [Google Scholar] [CrossRef] [PubMed]
- Witko-Sarsat, V.; Friedlander, M.; Capeillere-Blandin, C.; Nguyen-Khoa, T.; Nguyen, A.T.; Zingraff, J.; Jungers, P.; Descamps-Latscha, B. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 1996, 49, 1304–1313. [Google Scholar] [CrossRef] [PubMed]
- Popović, D.; Kocic, G.; Katic, V.; Jovic, Z.; Zarubica, A.; Velickovic, L.J.; Nikolic, V.; Jovic, A.; Kundalic, B.; Rakic, V.; et al. Protective Effects of Anthocyanins from Bilberry Extract in Rats Exposed to Nephrotoxic Effects of Carbon Tetrachloride. Chem. Biol. Interact. 2019, 304, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, V.A.; Gheorghe, G.; Bacalbasa, N.; Chiotoroiu, A.L.; Diaconu, C. Colorectal Cancer: From Risk Factors to Oncogenesis. Medicina 2023, 59, 1646. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, A.; Rahmani, F.; Ferns, G.A.; Ryzhikov, M.; Avan, A.; Hassanian, S.M. Role of the NF-κB Signaling Pathway in the Pathogenesis of Colorectal Cancer. Gene 2020, 726, 144132. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Li, C.; Zhang, W.; Jin, C.; Shao, Y.; Xuemei, D.; Qingxi, H. Nemo like kinase negatively regulates NF-κB activation and coelomocytes apoptosis in Apostichopus japonicus. Dev. Comp. Immunol. 2016, 54, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Mittal, S.; Brown, N.J.; Holen, I. The breast tumor microenvironment: Role in cancer development, progression and response to therapy. Expert. Rev. Mol. Diagn. 2018, 18, 227–243. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yang, X.; Wang, L.; Zhang, C. Interplay between Inflammatory Tumor Microenvironment and Cancer Stem Cells. Oncol. Lett. 2018, 16, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Greten, F.R.; Grivennikov, S.I. Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity 2019, 51, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Piotrowski, I.; Kulcenty, K.; Suchorska, W. Interplay between inflammation and cancer. Rep. Pract. Oncol. Radiother. 2020, 25, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Zhang, T.; Zhu, X.; Yang, C.; Wang, Y.; Zhou, N.; Ju, B.; Zhou, T.; Deng, G.; Qiu, C. Hyperoside Induces Breast Cancer Cells Apoptosis via ROS-Mediated NF-κB Signaling Pathway. Int. J. Mol. Sci. 2020, 21, 131. [Google Scholar] [CrossRef] [PubMed]
- Veljković, A.; Stanojević, G.; Branković, B.; Pavlović, D.; Stojanovic, I.; Cvetković, T.; Jevtović, T.; Sokolović, D.; Bašić, J.; Despotović, M.; et al. Parameters of oxidative stress in colon cancer tissue. Acta Med. Median. 2016, 55, 32–37. [Google Scholar] [CrossRef]
- Acevedo-León, D.; Monzó-Beltrán, L.; Pérez-Sánchez, L.; Naranjo-Morillo, E.; Gómez-Abril, S.Á.; Estañ-Capell, N.; Bañuls, C.; Sáez, G. Oxidative Stress and DNA Damage Markers in Colorectal Cancer. Int. J. Mol. Sci. 2022, 23, 2847. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, A.H.; Wu, F.F.; Wang, X.J. Alterations in the Gut Microbiota and Their Metabolites in Colorectal Cancer: Recent Progress and Future Prospects. Front. Oncol. 2022, 12, 841552. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Guo, X.; Zhang, L.; Wang, D.; Li, Y. Mitochondria: A Crucial Factor in the Progression and Drug Resistance of Colorectal Cancer. Front. Immunol. 2024, 15, 1512469. [Google Scholar] [CrossRef] [PubMed]
- Pustovrh, M.C.; Jawerbaum, A.; Capobianco, E.; White, V.; Martinez, N.; Lopez-Costa, J.J.; Gonzalez, E. Oxidative Stress Promotes the Increase of Matrix Metalloproteinases-2 and -9 Activities in the Feto-Placental Unit of Diabetic Rats. Free Radic. Res. 2005, 39, 1285–1293. [Google Scholar] [CrossRef] [PubMed]
- Barillari, G. The Impact of Matrix Metalloproteinase-9 on the Sequential Steps of the Metastatic Process. Int. J. Mol. Sci. 2020, 21, 4526. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Tang, F.; Zhang, B.; Zhao, Y.; Feng, J.; Rao, Z. Matrix metalloproteinase-9 overexpression is closely related to poor prognosis in patients with colon cancer. World J. Surg. Oncol. 2014, 12, 24. [Google Scholar] [CrossRef] [PubMed]
- Jayadev, R.; Sherwood, D.R. Basement membranes. Curr. Biol. 2017, 27, R207–R211. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.Y.; Li, S.; Wang, M.; Li, X.; Yang, Y.; Xu, Z.; Li, B.; Li, Y.; Xia, K.; Chen, H.; et al. Krüppel-like factor 9 down-regulates matrix metalloproteinase 9 transcription and suppresses human breast cancer invasion. Cancer Lett. 2018, 412, 224–235. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ung, T.T.; Nguyen, T.T.; Sah, D.K.; Park, S.Y.; Jung, Y.D. Cholic Acid Stimulates MMP-9 in Human Colon Cancer Cells via Activation of MAPK, AP-1, and NF-κB Activity. Int. J. Mol. Sci. 2020, 21, 3420. [Google Scholar] [CrossRef] [PubMed]
- Santibanez, J.F.; Krstic, J. Transforming growth factor-beta and urokinase type plasminogen interplay in cancer. Curr. Protein Pept. Sci. 2018, 19, 1155–1163. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, J.; Li, C.; Hu, H.; Qin, B.; Wang, T.; Lu, Y.; Wang, S. The Activation of ROS/NF-κB/MMP-9 Pathway Promotes Calcium-Induced Kidney Crystal Deposition. Oxidative Med. Cell. Longev. 2021, 2021, 8836355. [Google Scholar] [CrossRef] [PubMed]
- Bond, M.; Fabunmi, R.P.; Baker, A.H.; Newby, A.C. Synergistic upregulation of metalloproteinase-9 by growth factors and infammatory cytokines: An absolute requirement for transcription factor NF-kB. FEBS Lett. 1998, 435, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Janion, K.; Szczepańska, E.; Nowakowska-Zajdel, E.; Strzelczyk, J.; Copija, A. Selected Oxidative Stress Markers in Colorectal Cancer Patients in Relation to Primary Tumor Location-A Preliminary Research. Medicina 2020, 56, 47. [Google Scholar] [CrossRef] [PubMed]
- Avinash, S.S.; Anitha, M.; Vinodchandran Rao, G.M.; Sudha, K.; Shetty, B.V. Advanced oxidation protein products and total antioxidant activity in colorectal carcinoma. Indian. J. Physiol. Pharmacol. 2009, 53, 370–374. [Google Scholar] [PubMed]
- Murlikiewicz, L.; Grzegorczyk, K.; Lewicka, M.; Buczyński, A.; Rutkowski, M. Oxidative stress in colonic adenocarcinoma: An impact on the body’s antioxidative status and oxidative protein damage. Adv. Clin. Exp. Med. 2018, 27, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Azevedo Martins, J.M.; Rabelo-Santos, S.H.; do Amaral Westin, M.C.; Zeferino, L.C. Tumoral and stromal expression of MMP-2, MMP-9, MMP-14, TIMP-1, TIMP-2, and VEGF-A in cervical cancer patient survival: A competing risk analysis. BMC Cancer 2020, 20, 660. [Google Scholar] [CrossRef] [PubMed]
- El Baba, N.; Farran, M.; Khalil, E.; Jaafar, L.; Fakhoury, I.; El-Sibai, M. The Role of Rho GTPases in VEGF Signaling in Cancer Cells. Anal. Cell Pathol. 2020, 2020, 2097214. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Avila, G.; Sommer, B.; Mendoza-Posada, D.A.; Ramos, C.; Garcia-Hernandez, A.A.; Falfan-Valencia, R. Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer. Crit. Rev. Oncol. Hematol. 2019, 137, 57–83. [Google Scholar] [CrossRef] [PubMed]
- Apte, R.S.; Chen, D.S.; Ferrara, N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell 2019, 176, 1248–1264. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-L.; Wang, Z.; Wei, G.; Yong, Y.; Wang, X. Changes in extracellular matrix in different stages of colorectal cancer and their effects on proliferation of cancer cells. World J. Gastrointest. Oncol. 2020, 12, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, N.; Kim, S.; Suh, Y.; Lee, S.J. Proinvasive extracellular matrix remodeling for tumor progression. Arch. Pharm. Res. 2019, 42, 40–47. [Google Scholar] [CrossRef] [PubMed]
Tumor Stage | Gender | Age (Mean) | |
---|---|---|---|
m | f | ||
T1 | 2 | 1 | 48.3 |
T2 | 6 | 5 | 54.7 |
T3 | 18 | 14 | 62.1 |
T4 | 3 | 1 | 60.5 |
In total | 29 | 21 | 56.4 |
Tissue | All | Colon Cancer | Tumor-Adjacent | Healthy Tissue | p Between Tissues | |
---|---|---|---|---|---|---|
Marker | ||||||
NF-κB (%) | 122.14 (88.52–251.15) | 155.73 (115.34–251.15) | 125.58 (88.52–156.34) | 100 | <0.001 | |
Advanced oxidation protein products (μmol/mg) | 2.26 (0.87–6.98) | 3.83 (1.87–6.98) | 2.19 (1.13–4.98) | 1.86 (0.87–2.98) | <0.001 | |
Matrix metalloproteinase 9 (ng/mg) | 16.25 (1–205) | 77.5 (8–205) | 16.75 (2–32) | 4 (1–9) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veljkovic, A.; Stanojevic, G.; Brankovic, B.; Roumeliotis, S.; Leivaditis, K.; Djordjevic, B.; Li, X.; Klisic, A.; Hadzi-Djokic, J.; Kocic, G. MMP-9 Activation via ROS/NF-κB Signaling in Colorectal Cancer Progression: Molecular Insights and Prognostic–Therapeutic Perspectives. Curr. Issues Mol. Biol. 2025, 47, 557. https://doi.org/10.3390/cimb47070557
Veljkovic A, Stanojevic G, Brankovic B, Roumeliotis S, Leivaditis K, Djordjevic B, Li X, Klisic A, Hadzi-Djokic J, Kocic G. MMP-9 Activation via ROS/NF-κB Signaling in Colorectal Cancer Progression: Molecular Insights and Prognostic–Therapeutic Perspectives. Current Issues in Molecular Biology. 2025; 47(7):557. https://doi.org/10.3390/cimb47070557
Chicago/Turabian StyleVeljkovic, Andrej, Goran Stanojevic, Branko Brankovic, Stefanos Roumeliotis, Konstantinos Leivaditis, Branka Djordjevic, Xiaobo Li, Aleksandra Klisic, Jovan Hadzi-Djokic, and Gordana Kocic. 2025. "MMP-9 Activation via ROS/NF-κB Signaling in Colorectal Cancer Progression: Molecular Insights and Prognostic–Therapeutic Perspectives" Current Issues in Molecular Biology 47, no. 7: 557. https://doi.org/10.3390/cimb47070557
APA StyleVeljkovic, A., Stanojevic, G., Brankovic, B., Roumeliotis, S., Leivaditis, K., Djordjevic, B., Li, X., Klisic, A., Hadzi-Djokic, J., & Kocic, G. (2025). MMP-9 Activation via ROS/NF-κB Signaling in Colorectal Cancer Progression: Molecular Insights and Prognostic–Therapeutic Perspectives. Current Issues in Molecular Biology, 47(7), 557. https://doi.org/10.3390/cimb47070557