Modification and Potential Application of Short-Chain-Length Polyhydroxyalkanoate (SCL-PHA)
Abstract
:1. Introduction
2. Modification of scl-PHA
2.1. Basic Properties of scl-PHA
2.1.1. Crystal Structure and Crystallization Behavior of scl-PHA
2.1.2. Thermal Properties of scl-PHA
The Multiple Melting Behavior of scl-PHA
Thermal Stability of scl-PHA
2.2. Scl-PHA-Based Composites Prepared by Physical Blending
2.2.1. Scl-PHA/Nanocomposites
Influence of Nanoparticles on the Crystallization Behavior of scl-PHA
Effect of Nanoparticles on the Thermal Stability of scl-PHA
Mechanical Properties of scl-PHA Improved by Nanoparticles
2.2.2. Scl-PHA/Polymer Composites
Influence of Polymers on the Crystallization Behavior of scl-PHA
Effect of Polymers on the Thermal Stability of scl-PHA
Mechanical Properties of scl-PHA Enhanced by Polymers
2.3. Chemical Structure Design of scl-PHA
2.3.1. Influence of Chemical Structure Design on the Crystallization Behavior of scl-PHA
Graft Modification of scl-PHA
scl-PHA-Based Block Copolymers
Crosslinking Modification of scl-PHA
2.3.2. Effect of Chemical Structure Design on the Thermal Properties of scl-PHA
2.3.3. Mechanical Properties of scl-PHA Improved by Chemical Structure Design
2.4. Processing of scl-PHA
2.4.1. Influence of Processing Condition on the Crystallization Behavior of scl-PHA
2.4.2. Effect of Processing Conditions on the Mechanical Properties of scl-PHA
3. Potential Applications of scl-PHA
3.1. Scl-PHA as Packaging Material
3.2. Scl-PHA as a Fiber Material
3.3. Scl-PHA as Biomaterial
3.4. Other Potential Applications of scl-PHA
3.4.1. Scl-PHA as a Source of Biofuel
3.4.2. Scl-PHA as a Precursor of Carbon Material
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wilbon, P.A.; Chu, F.; Tang, C. Progress in renewable polymers from natural terpenes, terpenoids, and rosin. Macromol. Rapid Commun. 2013, 34, 8–37. [Google Scholar] [CrossRef] [PubMed]
- Meier, M.A.R.; Metzger, J.O.; Schubert, U.S. Plant oil renewable resources as green alternatives in polymer science. Chem. Soc. Rev. 2007, 36, 1788–1802. [Google Scholar] [CrossRef] [PubMed]
- Petersen, K.; Væggemose Nielsen, P.; Bertelsen, G.; Lawther, M.; Olsen, M.B.; Nilsson, N.H.; Mortensen, G. Potential of biobased materials for food packaging. Trends Food Sci. Technol. 1999, 10, 52–68. [Google Scholar] [CrossRef]
- John, M.; Thomas, S. Biofibres and biocomposites. Carbohydr. Polym. 2008, 71, 343–364. [Google Scholar] [CrossRef]
- Manavitehrani, I.; Fathi, A.; Badr, H.; Daly, S.; Shirazi, A.N.; Dehghani, F. Biomedical applications of biodegradable polyesters. Polymers 2016, 8, 20. [Google Scholar] [CrossRef]
- Gross, R.A.; Kalra, B. Biodegradable polymers for the environment. Science 2002, 297, 803–807. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.Q.; Patel, M.K. Plastics derived from biological sources: Present and future: A technical and environmental review. Chem. Rev. 2012, 112, 2082–2099. [Google Scholar] [CrossRef] [PubMed]
- Poirier, Y.; Nawrath, C.; Somerville, C. Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. Nat. Biotechnol. 1995, 13, 142–150. [Google Scholar] [CrossRef]
- Tan, G.Y.A.; Chen, C.L.; Li, L.; Ge, L.; Wang, L.; Razaad, I.M.N.; Li, Y.; Zhao, L.; Mo, Y.; Wang, J.-Y. Start a research on biopolymer Polyhydroxyalkanoate (PHA): A review. Polymers 2014, 6, 706–754. [Google Scholar] [CrossRef]
- Kessler, B.; Witholt, B. Factors involved in the regulatory network of Polyhydroxyalkanoate metabolism. J. Biotechnol. 2001, 86, 97–104. [Google Scholar] [CrossRef]
- Guo, M.; Stuckey, D.C.; Murphy, R.J. Is it possible to develop biopolymer production systems independent of fossil fuels? Case study in energy profiling of Polyhydroxybutyratevalerate (PHBV). Green Chem. 2013, 15, 706–717. [Google Scholar] [CrossRef]
- Steinbuchel, A.; Valentin, H.E. Diversity of bacterial polyhydroxyalkanoic acids. Fems Microbiol. Lett. 1995, 128, 219–228. [Google Scholar] [CrossRef]
- Bugnicourt, E.; Cinelli, P.; Alvarez, V.; Lazzeri, A. Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. Express Polym. Lett. 2014, 8, 791–808. [Google Scholar] [CrossRef]
- Ke, Y.; Zhang, X.Y.; Ramakrishna, S.; He, L.M.; Wu, G. Synthetic routes to degradable copolymers deriving from the biosynthesized polyhydroxyalkanoates: A mini review. Express Polym. Lett. 2016, 10, 36–53. [Google Scholar] [CrossRef]
- Lenz, R.W.; Marchessault, R.H. Bacterial polyesters: Biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 2005, 6, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Tappel, R.C.; Pan, W.Y.; Bergey, N.S.; Wang, Q.; Patterson, I.L.; Ozumba, O.A.; Matsumoto, K.; Taguchi, S.; Nomura, C.T. Engineering escherichia coli for improved production of short-chain-length-co-medium-chain-length Poly(R)-3-hydroxyalkanoate (scl-co-mcl PHA) copolymers from renewable nonfatty acid feedstocks. ACS Sustain. Chem. Eng. 2014, 2, 1879–1887. [Google Scholar] [CrossRef]
- Chen, G.Q. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem. Soc. Rev. 2009, 38, 2434–2446. [Google Scholar] [CrossRef] [PubMed]
- Bloembergen, S.; Holden, D.A.; Hamer, G.K.; Bluhm, T.L.; Marchessault, R.H. Studies of composition and crystallinity of bacterial Poly(β-hydroxybutyrate-co-β-hydroxyvalerate). Macromolecules 1986, 19, 2865–2871. [Google Scholar] [CrossRef]
- Pundsack, A.; Bluhm, T. Technique for determining unit-cell constants of polyhydroxyvalerate using electron diffraction. J. Mater. Sci. 1981, 16, 545–547. [Google Scholar] [CrossRef]
- Kunioka, M.; Tamaki, A.; Doi, Y. Crystalline and thermal properties of bacterial copolyesters: Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules 1989, 22, 694–697. [Google Scholar] [CrossRef]
- Gunaratne, L.M.W.K.; Shanks, R.A. Multiple melting behaviour of poly(3-hydroxybutyrate-co-hydroxyvalerate) using step-scan DSC. Eur. Polym. J. 2005, 41, 2980–2988. [Google Scholar] [CrossRef]
- Bluhm, T.L.; Hamer, G.K.; Marchessault, R.H.; Fyfe, C.A.; Veregin, R.P. Isodimorphism in bacterial poly (β-hydroxybutyrate-co-β-hydroxyvalerate). Macromolecules 1986, 19, 2871–2876. [Google Scholar] [CrossRef]
- Mitomo, H.; Morishita, N.; Doi, Y. Composition range of crystal phase transition of isodimorphism in poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Macromolecules 1993, 26, 5809–5811. [Google Scholar] [CrossRef]
- Pan, P.; Inoue, Y. Polymorphism and isomorphism in biodegradable polyesters. Progress Polym. Sci. 2009, 34, 605–640. [Google Scholar] [CrossRef]
- Lu, X.P.; Wen, X.; Yang, D. Isothermal crystallization kinetics and morphology of biodegradable Poly(3-hydroxybutyrate-co-4-hydroxybutyrate). J. Mater. Sci. 2011, 46, 1281–1288. [Google Scholar] [CrossRef]
- Ding, C.; Cheng, B.; Wu, Q. Dsc analysis of isothermally melt-crystallized bacterial Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) films. J. Thermal Anal. Calorim. 2011, 103, 1001–1006. [Google Scholar] [CrossRef]
- Wellen, R.M.R.; Rabello, M.S.; Fechine, G.J.M.; Canedo, E.L. The melting behaviour of Poly(3-hydroxybutyrate) by DSC. Reproducibility study. Polym. Test. 2013, 32, 215–220. [Google Scholar] [CrossRef]
- Grassie, N.; Murray, E.; Holmes, P. The thermal degradation of poly(-(D)-β-hydroxybutyric acid): Part 2-changes in molecular weight. Polym. Degrad. Stab. 1984, 6, 95–103. [Google Scholar] [CrossRef]
- Abe, H. Thermal degradation of environmentally degradable poly(hydroxyalkanoic acid)s. Macromol. Biosci. 2006, 6, 469–486. [Google Scholar] [CrossRef] [PubMed]
- Kopinke, F.D.; Remmler, M.; Mackenzie, K. Thermal decomposition of biodegradable polyesters-i: Poly (β-hydroxybutyric acid). Polym. Degrad. Stab. 1996, 52, 25–38. [Google Scholar] [CrossRef]
- Liu, Q.S.; Zhu, M.F.; Wu, W.H.; Qin, Z.Y. Reducing the formation of six-membered ring ester during thermal degradation of biodegradable PHBV to enhance its thermal stability. Polym. Degrad. Stab. 2009, 94, 18–24. [Google Scholar] [CrossRef]
- Nguyen, S.; Yu, G.e.; Marchessault, R. Thermal degradation of poly(3-hydroxyalkanoates): Preparation of well-defined oligomers. Biomacromolecules 2002, 3, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Kunioka, M.; Doi, Y. Thermal degradation of microbial copolyesters: Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules 1990, 23, 1933–1936. [Google Scholar] [CrossRef]
- Kim, K.J.; Doi, Y.; Abe, H. Effects of residual metal compounds and chain-end structure on thermal degradation of poly (3-hydroxybutyric acid). Polym. Degrad. Stab. 2006, 91, 769–777. [Google Scholar] [CrossRef]
- Ariffin, H.; Nishida, H.; Shirai, Y.; Hassan, M.A. Determination of multiple thermal degradation mechanisms of poly (3-hydroxybutyrate). Polym. Degrad. Stab. 2008, 93, 1433–1439. [Google Scholar] [CrossRef]
- Hablot, E.; Bordes, P.; Pollet, E.; Avérous, L. Thermal and thermo-mechanical degradation of poly (3-hydroxybutyrate)-based multiphase systems. Polym. Degrad. Stab. 2008, 93, 413–421. [Google Scholar] [CrossRef]
- Kawalec, M.; Adamus, G.; Kurcok, P.; Kowalczuk, M.; Foltran, I.; Focarete, M.L.; Scandola, M. Carboxylate-induced degradation of poly(3-hydroxybutyrate)s. Biomacromolecules 2007, 8, 1053–1058. [Google Scholar] [CrossRef] [PubMed]
- Janigová, I.; Lacík, I.; Chodak, I. Thermal degradation of plasticized poly(3-hydroxybutyrate) investigated by DSC. Polym. Degrad. Stab. 2002, 77, 35–41. [Google Scholar] [CrossRef]
- Aoyagi, Y.; Yamashita, K.; Doi, Y. Thermal degradation of poly[(R)-3-hydroxybutyrate], poly [ε-caprolactone], and poly [(S)-lactide]. Polym. Degrad. Stab. 2002, 76, 53–59. [Google Scholar] [CrossRef]
- Li, S.D.; He, J.D.; Yu, P.H.; Cheung, M.K. Thermal degradation of poly(3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) as studied by TG, TG-FTIR, and PY-GC/MS. J. Appl. Polym. Sci. 2003, 89, 1530–1536. [Google Scholar] [CrossRef]
- Xiang, H.X.; Wen, X.S.; Miu, X.H.; Li, Y.; Zhou, Z.; Zhu, M.F. Thermal depolymerization mechanisms of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Progress Nat. Sci. Mater. Int. 2016, 26, 58–64. [Google Scholar] [CrossRef]
- Yang, X.; Odelius, K.; Hakkarainen, M. Microwave-assisted reaction in green solvents recycles PHB to functional chemicals. Acs Sustain. Chem. Eng. 2014, 2, 2198–2203. [Google Scholar] [CrossRef]
- Hong, S.G.; Hsu, H.W.; Ye, M.T. Thermal properties and applications of low molecular weight Polyhydroxybutyrate. J. Thermal Anal. Calorim. 2013, 111, 1243–1250. [Google Scholar] [CrossRef]
- Ding, Y.C.; He, J.Y.; Yang, Y.Y.; Cui, S.J.; Xu, K.T. Mechanical properties, thermal stability, and crystallization kinetics of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/calcium carbonate composites. Polym. Compos. 2011, 32, 1134–1142. [Google Scholar] [CrossRef]
- Naffakh, M.; Marco, C.; Ellis, G. Inorganic ws2 nanotubes that improve the crystallization behavior of poly (3-hydroxybutyrate). Crystengcomm 2014, 16, 1126–1135. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.J.; Zhu, W.F.; Chen, Z.F.; Pan, J.Y.; Xu, K.T. Effect of nucleation agents on the crystallization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3HB4HB). J. Appl. Polym. Sci. 2010, 116, 1116–1123. [Google Scholar]
- Shan, G.F.; Gong, X.; Chen, W.P.; Chen, L.; Zhu, M.F. Effect of multi-walled carbon nanotubes on crystallization behavior of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Colloid Polym. Sci. 2011, 289, 1005–1014. [Google Scholar] [CrossRef]
- Abdul Khalil, H.; Bhat, A.; Ireana Yusra, A. Green composites from sustainable cellulose nanofibrils: A review. Carbohydr. Polym. 2012, 87, 963–979. [Google Scholar] [CrossRef]
- Hu, X.; Xu, C.; Gao, J.; Yang, G.; Geng, C.; Chen, F.; Fu, Q. Toward environment-friendly composites of poly(propylene carbonate) reinforced with cellulose nanocrystals. Compos. Sci. Technol. 2013, 78, 63–68. [Google Scholar] [CrossRef]
- Salam, A.; Lucia, L.A.; Jameel, H. A novel cellulose nanocrystals-based approach to improve the mechanical properties of recycled paper. ACS Sustain. Chem. Eng. 2013, 1, 1584–1592. [Google Scholar] [CrossRef]
- Mesquita, J.P.D.; Donnici, C.L.; Teixeira, I.F.; Pereira, F.V. Bio-based nanocomposites obtained through covalent linkage between chitosan and cellulose nanocrystals. Carbohydr. Polym. 2012, 90, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Sanz, M.; Villano, M.; Oliveira, C.; Albuquerque, M.G.E.; Majone, M.; Reis, M.; Lopez-Rubio, A.; Lagaron, J.M. Characterization of polyhydroxyalkanoates synthesized from microbial mixed cultures and of their nanobiocomposites with bacterial. New Biotechnol. 2014, 31, 364–376. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, C.; Wang, K.; Zhang, Q.; Chen, F.; Du, R.; Fu, Q. Direct formation of nanohybrid shish-kebab in the injection molded bar of polyethylene/multiwalled carbon nanotubes composite. Macromolecules 2009, 42, 7016–7023. [Google Scholar] [CrossRef]
- Yu, H.Y.; Qin, Z.Y.; Liu, Y.N.; Chen, L.; Liu, N.; Zhou, Z. Simultaneous improvement of mechanical properties and thermal stability of bacterial polyester by cellulose nanocrystals. Carbohydr. Polym. 2012, 89, 971–978. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Li, J.; Zhang, J.; Li, H.; Chen, P.; Gu, Q.; Wang, Z. Thermo-mechanical properties of the composite made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and acetylated chitin nanocrystals. Carbohydr. Polym. 2013, 95, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Buzarovska, A.; Grozdanov, A.; Avella, M.; Gentile, G.; Errico, M. Poly(hydroxybutyrate-co-hydroxyvalerate)/titanium dioxide nanocomposites: A degradation study. J. Appl. Polym. Sci. 2009, 114, 3118–3124. [Google Scholar] [CrossRef]
- Wu, T.M.; Hsu, S.F.; Shih, Y.F.; Liao, C.S. Thermal degradation kinetics of biodegradable poly(3-hydroxybutyrate)/layered double hydroxide nanocomposites. J. Polym. Sci. Part B Polym. Phys. 2008, 46, 1207–1213. [Google Scholar] [CrossRef]
- Bruzaud, S.; Bourmaud, A. Thermal degradation and (nano)mechanical behavior of layered silicate reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites. Polym. Test. 2007, 26, 652–659. [Google Scholar] [CrossRef]
- Mook Choi, W.; Wan Kim, T.; Ok Park, O.; Keun Chang, Y.; Woo Lee, J. Preparation and characterization of poly(hydroxybutyrate-co-hydroxyvalerate)-organoclay nanocomposites. J. Appl. Polym. Sci. 2003, 90, 525–529. [Google Scholar] [CrossRef]
- Wang, S.; Song, C.; Chen, G.; Guo, T.; Liu, J.; Zhang, B.; Takeuchi, S. Characteristics and biodegradation properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/organophilic montmorillonite (PHBV/OMMT) nanocomposite. Polym. Degrad. Stab. 2005, 87, 69–76. [Google Scholar] [CrossRef]
- Jiang, L.; Morelius, E.; Zhang, J.; Wolcott, M.; Holbery, J. Study of the poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhisker composites prepared by solution casting and melt processing. J. Compos. Mater. 2008, 42, 2629–2645. [Google Scholar] [CrossRef]
- Ten, E.; Turtle, J.; Bahr, D.; Jiang, L.; Wolcott, M. Thermal and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. Polymer 2010, 51, 2652–2660. [Google Scholar] [CrossRef]
- Sridhar, V.; Lee, I.; Chun, H.H.; Park, H. Graphene reinforced biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) nano-composites. Express Polym. Lett. 2013, 7, 320–328. [Google Scholar] [CrossRef] [Green Version]
- Oner, M.; Idotlhan, B. Fabrication of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biocomposites with reinforcement by hydroxyapatite using extrusion processing. Mater. Sci. Eng. C (Mater. Biol. Appl.) 2016, 65, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Patricio, P.; Pereira, F.V.; dos Santos, M.C.; de Souza, P.P.; Roa, J.P.B.; Orefice, R.L. Increasing the elongation at break of Polyhydroxybutyrate biopolymer: Effect of cellulose nanowhiskers on mechanical and thermal properties. J. Appl. Polym. Sci. 2013, 127, 3613–3621. [Google Scholar] [CrossRef]
- Zhang, R.; Zhu, C.J.; Shan, X.Y.; Xia, J.; Zhu, Q.; Hu, Y. Study on the poly(3-hydroxybutyrate-co-4-hydroxybutyrate)-based nanocomposites reinforced by surface modified nanocrystalline cellulose. J. Appl. Polym. Sci. 2013, 130, 2015–2022. [Google Scholar] [CrossRef]
- Wang, S.C.; Xiang, H.X.; Wang, R.L.; Peng, C.; Zhou, Z.; Zhu, M.F. Morphology and properties of renewable poly (3-hydroxybutyrate-co-3-hydroxyvalerate) blends with thermoplastic polyurethane. Polym. Eng. Sci. 2014, 54, 1113–1119. [Google Scholar] [CrossRef]
- Jian, Y.; Zongbao, W.; Yang, W.; Xiangfa, W.; Qun, G. Crystallization behavior of incompatible PHBV/PS and PHBV/PMMA crystalline/amorphous blends. Acta Polym. Sin. 2010, 987–994. [Google Scholar]
- Madbouly, S.A.; Mansour, A.A.; Abdou, N.Y. Crystallization kinetics of PHB/PVAc blends using time resolved dielectric spectroscopy. Eur. Polym. J. 2007, 43, 3933–3942. [Google Scholar] [CrossRef]
- Ma, P.M.; Hristova-Bogaerds, D.G.; Zhang, Y.; Lemstra, P.J. Enhancement in crystallization kinetics of the bacterially synthesized poly(β-hydroxybutyrate) by poly(butylene succinate). Polym. Bull. 2014, 71, 907–923. [Google Scholar] [CrossRef]
- Wang, S.C.; Xiang, H.X.; Wang, R.L.; Zhou, Z.; Zhu, M.F. Influence of amorphous alkaline lignin on the crystallization behavior and thermal properties of bacterial polyester. J. Appl. Polym. Sci. 2015, 132, 41325. [Google Scholar]
- Javadi, A.; Srithep, Y.; Pilla, S.; Lee, J.; Gong, S.; Turng, L.S. Processing and characterization of solid and microcellular PHBV/coir fiber composites. Mater. Sci. Eng. C-Mater. Biol. Appl. 2010, 30, 749–757. [Google Scholar] [CrossRef]
- Nagarajan, V.; Misra, M.; Mohanty, A.K. New engineered biocomposites from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/poly(butylene adipate-co-terephthalate) (PBAT) blends and switchgrass: Fabrication and performance evaluation. Ind. Crops Prod. 2013, 42, 461–468. [Google Scholar] [CrossRef]
- Lovera, D.; Márquez, L.; Balsamo, V.; Taddei, A.; Castelli, C.; Müller, A.J. Crystallization, morphology, and enzymatic degradation of polyhydroxybutyrate/polycaprolactone (PHB/PCL) blends. Macromol. Chem. Phys. 2007, 208, 924–937. [Google Scholar] [CrossRef]
- Furukawa, T.; Sato, H.; Murakami, R.; Zhang, J.; Noda, I.; Ochiai, S.; Ozaki, Y. Comparison of miscibility and structure of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/poly(l-lactic acid) blends with those of poly(3-hydroxybutyrate)/poly(l-lactic acid) blends studied by wide angle x-ray diffraction, differential scanning calorimetry, and ftir microspectroscopy. Polymer 2007, 48, 1749–1755. [Google Scholar]
- Zhu, W.; Wang, X.; Chen, X.; Xu, K. Miscibility, crystallization, and mechanical properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/poly(butylene succinate) blends. J. Appl. Polym. Sci. 2009, 114, 3923–3931. [Google Scholar] [CrossRef]
- Buzarovska, A.; Bogoeva-Gaceva, G.; Grozdanov, A.; Avella, M.; Gentile, G.; Errico, M. Crystallization behavior of poly(hydroxybytyrate-co-valerate) in model and bulk PHBV/kenaf fiber composites. J. Mater. Sci. 2007, 42, 6501–6509. [Google Scholar] [CrossRef]
- Roa, J.P.; Patrício, P.S.d.O.; Oréfice, R.L.; Lago, R.M. Improvement of the thermal properties of poly (3-hydroxybutyrate)(PHB) by low molecular weight polypropylene glycol (lmwPPG) addition. J. Appl. Polym. Sci. 2013, 128, 3019–3025. [Google Scholar] [CrossRef]
- Nerkar, M.; Ramsay, J.A.; Ramsay, B.A.; Kontopoulou, M. Melt compounded blends of short and medium chain-length poly-3-hydroxyalkanoates. J. Polym. Environ. 2014, 22, 236–243. [Google Scholar] [CrossRef]
- Zembouai, I.; Bruzaud, S.; Kaci, M.; Benhamida, A.; Corre, Y.-M.; Grohens, Y.; Taguet, A.; Lopez-Cuesta, J.-M. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/polylactide blends: Thermal stability, flammability and thermo-mechanical behavior. J. Polym. Environ. 2014, 22, 131–139. [Google Scholar] [CrossRef]
- Audic, J.L.; Lemiegre, L.; Corre, Y.M. Thermal and mechanical properties of a polyhydroxyalkanoate plasticized with biobased epoxidized broccoli oil. J. Appl. Polym. Sci. 2014, 131, 39983. [Google Scholar] [CrossRef]
- Ma, P. Partially bio-based thermoplastic elastomers by physical blending of poly(hydroxyalkanoate)s and poly(ethylene-co-vinyl acetate). Express Polym. Lett. 2014, 8, 517–527. [Google Scholar] [CrossRef]
- Rosa, D.D.S.; Gaboardi, F.; Guedes, C.d.G.F.; Calil, M.R. Influence of oxidized polyethylene wax (OPW) on the mechanical, thermal, morphological and biodegradation properties of PHB/LDPPE blends. J. Mater. Sci. 2007, 42, 8093–8100. [Google Scholar] [CrossRef]
- Jandas, P.J.; Mohanty, S.; Nayak, S.K. Morphology and thermal properties of renewable resource-based polymer blend nanocomposites influenced by a reactive compatibilizer. ACS Sustain. Chem. Eng. 2014, 2, 377–386. [Google Scholar] [CrossRef]
- Gregorova, A.; Wimmer, R.; Hrabalova, M.; Koller, M.; Ters, T.; Mundigler, N. Effect of surface modification of beech wood flour on mechanical and thermal properties of Poly (3-hydroxybutyrate)/wood flour composites. Holzforschung 2009, 63, 565–570. [Google Scholar] [CrossRef]
- Ahankari, S.S.; Mohanty, A.K.; Misra, M. Mechanical behaviour of agro-residue reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate), (PHBV) green composites: A comparison with traditional Polypropylene composites. Compos. Sci. Technol. 2011, 71, 653–657. [Google Scholar] [CrossRef]
- Berthet, M.A.; Gontard, N.; Angellier-Coussy, H. Impact of fibre moisture content on the structure/mechanical properties relationships of PHBV/wheat straw fibres biocomposites. Compos. Sci. Technol. 2015, 117, 386–391. [Google Scholar] [CrossRef]
- Teramoto, N.; Urata, K.; Ozawa, K.; Shibata, M. Biodegradation of aliphatic polyester composites reinforced by abaca fiber. Polym. Degrad. Stab. 2004, 86, 401–409. [Google Scholar] [CrossRef]
- Ma, P.; Spoelstra, A.B.; Schmit, P.; Lemstra, P.J. Toughening of poly (lactic acid) by poly (β-hydroxybutyrate-co-β-hydroxyvalerate) with high β-hydroxyvalerate content. Eur. Polym. J. 2013, 49, 1523–1531. [Google Scholar] [CrossRef]
- Xiang, H.X.; Chen, S.H.; Cheng, Y.H.; Zhou, Z.; Zhu, M.F. Structural characteristics and enhanced mechanical and thermal properties of full biodegradable tea polyphenol/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) composite films. eXPRESS Polym. Lett. 2013, 7, 778–786. [Google Scholar] [CrossRef]
- Xiang, H.X.; Li, L.L.; Wang, S.C.; Wang, R.L.; Cheng, Y.H.; Zhou, Z.; Zhu, M.F. Natural polyphenol tannic acid reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) composite films with enhanced tensile strength and fracture toughness. Polym. Compos. 2015, 36, 2303–2308. [Google Scholar] [CrossRef]
- Yu, L.; Dean, K.; Li, L. Polymer blends and composites from renewable resources. Progress Polym. Sci. 2006, 31, 576–602. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.B.; Li, J.; Wang, B.J.; Liu, J.; Chen, P.; Miao, M.H.; Gu, Q. Chitin nanocrystals grafted with poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and their effects on thermal behavior of PHBV. Carbohydr. Polym. 2012, 87, 784–789. [Google Scholar] [CrossRef]
- Yu, H.Y.; Qin, Z.Y.; Wang, L.F.; Zhou, Z. Crystallization behavior and hydrophobic properties of biodegradable ethyl cellulose-g-poly(3-hydroxybutyrate-co-3-hydroxyvalerate): The influence of the side-chain length and grafting density. Carbohydr. Polym. 2012, 87, 2447–2454. [Google Scholar] [CrossRef]
- Liu, Q.; Shyr, T.W.; Tung, C.H.; Liu, Z.; Shan, G.; Zhu, M.; Deng, B. Particular thermal properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) oligomers. J. Polym. Res. 2012, 19, 1–9. [Google Scholar] [CrossRef]
- Liu, Q.; Zhu, M.; Chen, Y. Synthesis and characterization of multi-block copolymers containing poly [(3-hydroxybutyrate)-co-(3-hydroxyvalerate)] and poly(ethylene glycol). Polym. Int. 2010, 59, 842–850. [Google Scholar] [CrossRef]
- Haberlein, H.; Seliger, H.; Kohler, R.; Sulzberger, P. Cost-Effective synthesis of environmentally benign materials on the basis of poly-3-hydroxybutyrate. Polimeros 2005, 15, 122–126. [Google Scholar] [CrossRef]
- Liu, K.L.; Choo, E.S.G.; Wong, S.Y.; Li, X.; Bin He, C.; Wang, J.; Li, J. Designing poly (R)-3-hydroxybutyrate-based polyurethane block copolymers for electrospun nanofiber scaffolds with improved mechanical properties and enhanced mineralization capability. J. Phys. Chem. B 2010, 114, 7489–7498. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zhu, M.; Deng, B.; Tung, C.-H.; Shyr, T.-W. Evolution of concentric spherulites in crystalline-crystalline poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-b-poly (ethylene glycol) copolymers. Eur. Polym. J. 2013, 49, 3937–3946. [Google Scholar] [CrossRef]
- Xiang, H.X.; Wang, S.C.; Wen, X.S.; Zhou, Z.; Zhu, M.F. Synthesis and thermostability of crystalline/amorphous triblock copolymer consisting of PHBV and PMMA. Acta Polym. Sin. 2014, 40–48. [Google Scholar]
- Xiang, H.X.; Wang, S.C.; Wang, R.L.; Wen, X.S.; Zhou, Z.; Zhu, M.F. Synthesis, structure and thermal properties of poly(A-block-B-block-A) copolymer based on biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and amorphous polystyrene. Mater. Res. Innov. 2014, 18, 864–868. [Google Scholar] [CrossRef]
- Hu, D.; Chung, A.L.; Wu, L.P.; Zhang, X.; Wu, Q.; Chen, J.-C.; Chen, G.-Q. Biosynthesis and characterization of polyhydroxyalkanoate block copolymer P3HB-b-P4HB. Biomacromolecules 2011, 12, 3166–3173. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Y.; Dong, C.L.; Wang, S.Y.; Ye, H.M.; Chen, G.-Q. Microbial production of polyhydroxyalkanoate block copolymer by recombinant Pseudomonas putida. Appl. Microbiol. Biotechnol. 2011, 90, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, L.; Wu, L.P.; Chen, J.; Chen, G.Q. Synthesis of diblock copolymer poly-3-hydroxybutyrate -block-poly-3-hydroxyhexanoate PHB-b-PHHx by a β-oxidation weakened Pseudomonas putida KT2442. Microb. Cell Factor. 2012, 11, 54. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, L.; Wu, L.P.; Meng, D.; Chen, J.; Chen, G.Q. Biosynthesis and characterization of diblock copolymer of p(3-hydroxypropionate)-block-p(4-hydroxybutyrate) from recombinant Escherichia coli. Biomacromolecules 2013, 14, 862–870. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.M.; Cai, X.X.; Wang, W.; Duan, F.; Shi, D.J.; Lemstra, P.J. Crystallization behavior of partially crosslinked poly(β-hydroxyalkonates)/poly(butylene succinate) blends. J. Appl. Polym. Sci. 2014, 131, 41020. [Google Scholar] [CrossRef]
- Xiang, H.X.; Wang, S.C.; Wang, R.L.; Zhou, Z.; Peng, C.; Zhu, M.F. Synthesis and characterization of an environmentally friendly PHBV/PEG copolymer network as a phase change material. Sci. China-Chem. 2013, 56, 716–723. [Google Scholar] [CrossRef]
- Bian, Y.J.; Han, L.J.; Han, C.Y.; Lin, H.J.; Zhang, H.L.; Bian, J.J.; Dong, L.S. Intriguing crystallization behavior and rheological properties of radical-based crosslinked biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Crystengcomm 2014, 16, 2702–2714. [Google Scholar] [CrossRef]
- Bian, Y.J.; Han, C.Y.; Han, L.J.; Lin, H.J.; Zhang, H.L.; Bian, J.J.; Dong, L.S. Toughening mechanism behind intriguing stress-strain curves in tensile tests of highly enhanced compatibilization of biodegradable poly(Lactic acid)/poly(3-hydroxybutyrate-co-4-hydroxybutyrate)blends. Rsc Adv. 2014, 4, 41722–41733. [Google Scholar] [CrossRef]
- Ma, P.M.; Cai, X.X.; Lou, X.W.; Dong, W.F.; Chen, M.Q.; Lemstra, P.J. Styrene-assisted melt free-radical grafting of maleic anhydride onto poly(β-hydroxybutyrate). Polym. Degrad. Stab. 2014, 100, 93–100. [Google Scholar] [CrossRef]
- Lee, S.N.; Lee, M.Y.; Park, W.H. Thermal stabilization of poly(3-hydroxybutyrate) by poly(glycidyl methacrylate). J. Appl. Polym. Sci. 2002, 83, 2945–2952. [Google Scholar] [CrossRef]
- Fei, B.; Chen, C.; Chen, S.; Peng, S.; Zhuang, Y.; An, Y.; Dong, L. Crosslinking of poly [(3-hydroxybutyrate)-co-(3-hydroxyvalerate)] using dicumyl peroxide as initiator. Polym. Int. 2004, 53, 937–943. [Google Scholar] [CrossRef]
- Dong, W.F.; Ma, P.M.; Wang, S.F.; Chen, M.Q.; Cai, X.X.; Zhang, Y. Effect of partial crosslinking on morphology and properties of the poly(β-hydroxybutyrate)/poly(d,l-lactic acid) blends. Polym. Degrad. Stab. 2013, 98, 1549–1555. [Google Scholar] [CrossRef]
- Laycock, B.; Halley, P.; Pratt, S.; Werker, A.; Lant, P. The chemomechanical properties of microbial Polyhydroxyalkanoates. Progress Polym. Sci. 2014, 39, 397–442. [Google Scholar] [CrossRef]
- Barker, P.; Barham, P.; Martinez-Salazar, J. Effect of crystallization temperature on the cocrystallization of hydroxybutyrate/hydroxyvalerate copolymers. Polymer 1997, 38, 913–919. [Google Scholar]
- Cao, Q.K.; Qiao, X.P.; Wang, H.; Liu, J.P. Spherulites structure and its growth mechanism from melt film or solution of PHB. Sci. China 2008, 38, 700–704. [Google Scholar]
- Liu, J.; Qiao, X.; He, S.; Cao, Q.; Wang, H. Influence of the thin-film thickness and crystallization temperature on the spherulitic structure of polymer thin films. J. Appl. Polym. Sci. 2010, 115, 1616–1621. [Google Scholar] [CrossRef]
- Xu, H.; Xie, L.; Chen, Y.H.; Huang, H.D.; Xu, J.Z.; Zhong, G.J.; Hsiao, B.S.; Li, Z.M. Strong shear flow-driven simultaneous formation of classic shish-kebab, hybrid shish-kebab, and transcrystallinity in poly(lactic acid)/natural fiber biocomposites. ACS Sustain. Chem. Eng. 2013, 1, 1619–1629. [Google Scholar] [CrossRef]
- Yin, H.Y.; Wei, X.F.; Bao, R.Y.; Dong, Q.X.; Liu, Z.Y.; Yang, W.; Xie, B.H.; Yang, M.B. Enhancing thermomechanical properties and heat distortion resistance of poly(l-lactide) with high crystallinity under high cooling rate. ACS Sustain. Chem. Eng. 2015, 3, 654–661. [Google Scholar] [CrossRef]
- Iwata, T. Strong fibers and films of microbial polyesters. Macromol. Biosci. 2005, 5, 689–701. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Fujita, M.; Takeuchi, A.; Suzuki, Y.; Uesugi, K.; Ito, K.; Fujisawa, T.; Doi, Y.; Iwata, T. Formation of highly ordered structure in poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] high-strength fibers. Macromolecules 2006, 39, 2940–2946. [Google Scholar] [CrossRef]
- Gordeyev, S.A.; Nekrasov, Y.P.; Shilton, S.J. Processing of gel-spun poly(β-hydroxybutyrate) fibers. J. Appl. Polym. Sci. 2001, 81, 2260–2264. [Google Scholar] [CrossRef]
- Iwata, T.; Aoyagi, Y.; Fujita, M.; Yamane, H.; Doi, Y.; Suzuki, Y.; Takeuchi, A.; Uesugi, K. Processing of a strong biodegradable poly[(R)-3-hydroxybutyrate] fiber and a new fiber structure revealed by micro-beam x-ray diffraction with synchrotron radiation. Macromol. Rapid Commun. 2004, 25, 1100–1104. [Google Scholar] [CrossRef]
- Furuhashi, Y.; Imamura, Y.; Jikihara, Y.; Yamane, H. Higher order structures and mechanical properties of bacterial homo poly(3-hydroxybutyrate) fibers prepared by cold-drawing and annealing processes. Polymer 2004, 45, 5703–5712. [Google Scholar] [CrossRef]
- Ten, E.; Jiang, L.; Wolcott, M.P. Preparation and properties of aligned poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. Carbohydr. Polym. 2013, 92, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Fabra, M.J.; Lopez-Rubio, A.; Lagaron, J.M. On the use of different hydrocolloids as electrospun adhesive interlayers to enhance the barrier properties of Polyhydroxyalkanoates of interest in fully renewable food packaging concepts. Food Hydrocolloids 2014, 39, 77–84. [Google Scholar] [CrossRef]
- Scarfato, P.; Di Maio, L.; Incarnato, L. Recent advances and migration issues in biodegradable polymers from renewable sources for food packaging. J. Appl. Polym. Sci. 2015, 132, 42597. [Google Scholar] [CrossRef]
- Fabra, M.J.; Sanchez, G.; Lopez-Rubio, A.; Lagaron, J.M. Microbiological and ageing performance of polyhydroxyalkanoate-based multilayer structures of interest in food packaging. Lwt-Food Sci. Technol. 2014, 59, 760–767. [Google Scholar] [CrossRef]
- Cretois, R.; Follain, N.; Dargent, E.; Soulestin, J.; Bourbigot, S.; Marais, S.; Lebrun, L. Microstructure and barrier properties of PHBV/organoclays bionanocomposites. J. Membr. Sci. 2014, 467, 56–66. [Google Scholar] [CrossRef]
- Chea, V.; Angellier-Coussy, H.; Peyron, S.; Kemmer, D.; Gontard, N. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films for food packaging: Physical-chemical and structural stability under food contact conditions. J. Appl. Polym. Sci. 2016, 133, 41850. [Google Scholar] [CrossRef]
- Kovalcik, A.; Machovsky, M.; Kozakova, Z.; Koller, M. Designing packaging materials with viscoelastic and gas barrier properties by optimized processing of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with lignin. React. Funct. Polym. 2015, 94, 25–34. [Google Scholar] [CrossRef]
- Diez-Pascual, A.M.; Diez-Vicente, A.L. Zno-reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bionanocomposites with antimicrobial function for food packaging. ACS Appl. Mater. Interfaces 2014, 6, 9822–9834. [Google Scholar] [CrossRef] [PubMed]
- Norrrahim, M.N.F.; Ariffin, H.; Hassan, M.A.; Ibrahim, N.A.; Nishida, H. Performance evaluation and chemical recyclability of a polyethylene/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blend for sustainable packaging. Rsc Adv. 2013, 3, 24378–24388. [Google Scholar] [CrossRef]
- Arrieta, M.P.; Fortunati, E.; Dominici, F.; Lopez, J.; Kenny, J.M. Bionanocomposite films based on plasticized PLA-PHB/cellulose nanocrystal blends. Carbohydr. Polym. 2015, 121, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, B.; Chen, Y.M.; Zhang, Y.; Zhu, M.F. The formation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibers. J. Donghua Univ. 2007, 33, 425–430. [Google Scholar]
- Li, L.; Huang, W.; Wang, B.; Wei, W.; Gu, Q.; Chen, P. Properties and structure of polylactide/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PLA/PHBV) blend fibers. Polymer 2015, 68, 183–194. [Google Scholar] [CrossRef]
- Hufenus, R.; Reifler, F.A.; Maniura-Weber, K.; Spierings, A.; Zinn, M. Biodegradable bicomponent fibers from renewable sources: Melt-spinning of poly(lactic acid) and poly (3-hydroxybutyrate)-co-(3-hydroxyvalerate). Macromol. Mater. Eng. 2012, 297, 75–84. [Google Scholar] [CrossRef]
- Hufenus, R.; Reifler, F.A.; Fernandez-Ronco, M.P.; Heuberger, M. Molecular orientation in melt-spun poly(3-hydroxybutyrate) fibers: Effect of additives, drawing and stress-annealing. Eur. Polym. J. 2015, 71, 12–26. [Google Scholar] [CrossRef]
- El-hadi, A.M.; Al-Jabri, F.Y. Influence of electrospinning parameters on fiber diameter and mechanical properties of poly(3-hydroxybutyrate) (PHB) and polyanilines (PANI) blends. Polymers 2016, 8, 97. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, K.; Zhu, M.; Yu, H.; Zhou, Z.; Chen, Y.; Hsiao, B.S. Continuous polymer nanofiber yarns prepared by self-bundling electrospinning method. Polymer 2008, 49, 2755–2761. [Google Scholar] [CrossRef]
- Yang, D.Z.; Zhang, J.F.; Xue, J.; Nie, J.; Zhang, Z.P. Electrospinning of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanofibers with feature surface microstructure. J. Appl. Polym. Sci. 2013, 127, 2867–2874. [Google Scholar] [CrossRef]
- Yoon, Y.I.; Moon, H.S.; Lyoo, W.S.; Lee, T.S.; Park, W.H. Superhydrophobicity of PHBV fibrous surface with bead-on-string structure. J. Colloid Interface Sci. 2008, 320, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Zuo, W.; Yu, H.; Yang, W.; Chen, Y. Superhydrophobic surface directly created by electrospinning based on hydrophilic material. J. Mater. Sci. 2006, 41, 3793–3797. [Google Scholar] [CrossRef]
- Wu, J.; Xue, K.; Li, H.Y.; Sun, J.Y.; Liu, K. Improvement of PHBV scaffolds with bioglass for cartilage tissue engineering. PLoS ONE 2013, 8, e71563. [Google Scholar] [CrossRef] [PubMed]
- Meischel, M.; Eichler, J.; Martinelli, E.; Karr, U.; Weigel, J.; Schmoeller, G.; Tschegg, E.K.; Fischerauer, S.; Weinberg, A.M.; Stanzl-Tschegg, S.E. Adhesive strength of bone-implant interfaces and in-vivo degradation of PHB composites for load-bearing applications. J. Mech. Behav. Biomed. Mater. 2016, 53, 104–118. [Google Scholar] [CrossRef] [PubMed]
- Ke, Y.; Wang, Y.; Ren, L.; Wu, G.; Xue, W. Surface modification of PHBV films with different functional groups: Thermal properties and in vitro degradation. J. Appl. Polym. Sci. 2010, 118, 390–398. [Google Scholar] [CrossRef]
- Chen, Z.F.; Cheng, S.T.; Xu, K.T. Block poly(ester-urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxyhexanoate-co-3-hydroxyoctanoate). Biomaterials 2009, 30, 2219–2230. [Google Scholar] [CrossRef] [PubMed]
- Ou, W.F.; Qiu, H.D.; Chen, Z.F.; Xu, K.T. Biodegradable block poly(ester-urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymers. Biomaterials 2011, 32, 3178–3188. [Google Scholar] [CrossRef] [PubMed]
- Grondahl, L.; Chandler-Temple, A.; Trau, M. Polymeric grafting of acrylic acid onto poly (3-hydroxybutyrate-co-3-hydroxyvalerate): Surface functionalization for tissue engineering applications. Biomacromolecules 2005, 6, 2197–2203. [Google Scholar] [CrossRef] [PubMed]
- Keen, I.; Broota, P.; Rintoul, L.; Fredericks, P.; Trau, M.; Grøndahl, L. Introducing amine functionalities on a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) surface: Comparing the use of ammonia plasma treatment and ethylenediamine aminolysis. Biomacromolecules 2006, 7, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Y.; Lu, L.X.; Shi, J.C.; Wang, H.F.; Xiao, Z.D.; Huang, N.P. Introducing RGD peptides on PHBV films through PEG-containing cross-linkers to improve the biocompatibility. Biomacromolecules 2011, 12, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Koller, M.; Hesse, P.; Bona, R.; Kutschera, C.; Atlic, A.; Braunegg, G. Biosynthesis of high quality polyhydroxyalkanoate co-and terpolyesters for potential medical application by the archaeon Haloferax mediterranei. Biomater. Regen. Med. 2007, 253, 33–39. [Google Scholar]
- Chen, W.H.; Tong, Y.W. PHBV microspheres as neural tissue engineering scaffold support neuronal cell growth and axon-dendrite polarization. Acta Biomater. 2012, 8, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Hazer, D.B.; Kılıçay, E.; Hazer, B. Poly(3-hydroxyalkanoate)s: Diversification and biomedical applications. Mater. Sci. Eng. C 2012, 32, 637–647. [Google Scholar] [CrossRef]
- Li, H.Y.; Chang, J. Preparation, characterization and in vitro release of gentamicin from PHBV /wollastonite composite microspheres. J. Controlled Release 2005, 107, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, D.F.; Pashkuleva, I.H.; Alves, C.M.; Marques, A.P.; Neves, N.M.; Reis, R.L. The effect of chitosan on the in vitro biological performance of chitosan−poly (butylene succinate) blends. Biomacromolecules 2008, 9, 1139–1145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shih, W.J.; Chen, Y.H.; Shih, C.J.; Hon, M.H.; Wang, M.C. Structural and morphological studies on poly(3-hydroxybutyrate acid) (PHB)/Chitosan drug releasing microspheres prepared by both single and double emulsion processes. J. Alloys Compounds 2007, 434–435, 826–829. [Google Scholar] [CrossRef]
- Gao, X.; Chen, J.C.; Wu, Q.; Chen, G.Q. Polyhydroxyalkanoates as a source of chemicals, polymers, and biofuels. Curr. Opin. Biotechnol. 2011, 22, 768–774. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, R.; Jaiswal, A.K. Exploitation of food industry waste for high-value products. Trends Biotechnol. 2016, 34, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Luo, R.; Wang, Z.; Deng, Y.; Chen, G.Q. Application of (R)-3-hydroxyalkanoate methyl esters derived from microbial polyhydroxyalkanoates as novel biofuels. Biomacromolecules 2009, 10, 707–711. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Y.; Wang, Z.; Liu, M.M.; Xu, Y.; Zhang, X.J.; Chen, G.-Q. Properties of a new gasoline oxygenate blend component: 3-hydroxybutyrate methyl ester produced from bacterial poly-3-hydroxybutyrate. Biomass Bioenergy 2010, 34, 1216–1222. [Google Scholar] [CrossRef]
- Bond-Watts, B.B.; Bellerose, R.J.; Chang, M.C.Y. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat. Chem. Biol. 2011, 7, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Xiao, S.J.; Zhang, R.J.; Guo, F.M.; Wang, K.L.; Zhu, H.W. Spindle-Like hierarchical carbon structure grown from polyhydroxyalkanoate/ferrocene/chloroform precursor. Carbon 2016, 103, 346–351. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Xiang, H.; Zhou, Z.; Chang, T.; Zhu, M. Low cost carbon fibers from bio-renewable lignin/poly(lactic acid) (PLA) blends. Compos. Sci. Technol. 2015, 119, 20–25. [Google Scholar] [CrossRef]
HV mol % | Crystallinity (%) | Crystal Structure | d Spacings (nm) | |||
---|---|---|---|---|---|---|
(020) | (110) | (002) | (211) | |||
0 | 55 ± 5 | P3HB | 0.659 | 0.525 | 0.296 | – |
9 | 58 ± 5 | P3HB | 0.664 | 0.532 | 0.294 | – |
21 | 56 ± 5 | P3HB | 0.664 | 0.536 | 0.295 | – |
37 | 52 ± 5 | P3HB | 0.663 | 0.546 | 0.298 | – |
53 | 63 ± 5 | P3HV | 0.503 | 0.695 | – | 0.342 |
62 | 57 ± 5 | P3HV | 0.504 | 0.691 | – | 0.342 |
83 | 66 ± 5 | P3HV | 0.503 | 0.691 | – | 0.346 |
95 | 70 ± 5 | P3HV | 0.503 | 0.691 | – | 0.343 |
Samples | Mw | PDI | Processing methods | Tensile strength (MPa) | Young’s modulus (GPa) | Elongation (%) | Ref. |
---|---|---|---|---|---|---|---|
P3HB | 3 × 105 | – | Gel spinning, three step stretch | 360 | 5.6 | 37 | [122] |
4.2 × 105 | 1.35 | Cold drawing, heat treatment | 416 | 5.2 | – | [124] | |
3.72 × 106 | 1.70 | Two-step cold drawing, Annealing | 1320 | 18.1 | 35 | [123] | |
PHBHV (8% HV) | 1 × 106 | 2.8 | Two-step cold drawing, Annealing | 1065 | 8.0 | 40 | [121] |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Chen, W.; Xiang, H.; Yang, J.; Zhou, Z.; Zhu, M. Modification and Potential Application of Short-Chain-Length Polyhydroxyalkanoate (SCL-PHA). Polymers 2016, 8, 273. https://doi.org/10.3390/polym8080273
Wang S, Chen W, Xiang H, Yang J, Zhou Z, Zhu M. Modification and Potential Application of Short-Chain-Length Polyhydroxyalkanoate (SCL-PHA). Polymers. 2016; 8(8):273. https://doi.org/10.3390/polym8080273
Chicago/Turabian StyleWang, Shichao, Wei Chen, Hengxue Xiang, Junjie Yang, Zhe Zhou, and Meifang Zhu. 2016. "Modification and Potential Application of Short-Chain-Length Polyhydroxyalkanoate (SCL-PHA)" Polymers 8, no. 8: 273. https://doi.org/10.3390/polym8080273
APA StyleWang, S., Chen, W., Xiang, H., Yang, J., Zhou, Z., & Zhu, M. (2016). Modification and Potential Application of Short-Chain-Length Polyhydroxyalkanoate (SCL-PHA). Polymers, 8(8), 273. https://doi.org/10.3390/polym8080273