Synthesis and Evaluation of Novel Oxyalkylated Derivatives of 2′,4′-Dihydroxychalcone as Anti-Oomycete Agents against Bronopol Resistant Strains of Saprolegnia sp.
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Structure Determination
2.3. Antioomycete Activity against S. parasitica and S. australis in Vitro
3. Materials and Methods
3.1. General
3.2. Plant Material
3.3. Isolation of 2,4-Dihydroxychalcone (1)
3.4. Synthesis
3.4.1. Oxyalkylation Reaction
3.4.2. Synthesis of Oxyalkylated Chalcones
3.5. Oomycete Isolate and Culture Condition
3.6. Microwell Enumeration Method Biological Assays
3.7. Determination of Minimum Inhibitory Concentration (MIC)
3.8. Spores Germination Inhibition Test
3.9. Mycelial Growth Inhibition Test
3.10. Measurement of Cellular Leakage
3.11. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Epifano, F.; Genovese, S.; Menghini, L.; Curini, M. Chemistry and pharmacology of oxyprenylated secondary plant metabolites. Phytochemistry 2007, 68, 939–953. [Google Scholar] [CrossRef] [PubMed]
- Bruyère, C.; Genovese, S.; Lallemand, B.; Ionescu-Motatu, A.; Curini, M.; Kiss, R.; Epifano, F. Growth inhibitory activities of oxyprenylated and non-prenylated naturally occurring phenylpropanoids in cancer cell lines. Bioorg. Med. Chem. Lett. 2011, 21, 4174–4179. [Google Scholar] [CrossRef] [PubMed]
- Nowakowska, Z.; Kedzia, B.; Schroeder, G. Synthesis, physicochemical properties and antimicrobial evaluation of new (E)-chalcones. Eur. J. Med. Chem. 2008, 43, 707–713. [Google Scholar] [CrossRef]
- Botta, B.; Vitali, A.; Menendez, P.; Misitia, D.; Delle Monache, G. Prenylated Flavonoids: Pharmacology and Biotechnology. Curr. Med. Chem. 2005, 12, 713–739. [Google Scholar] [CrossRef]
- Prusky, D.; Keen, N.T. Involvement of preformed antifungal compounds in the resistance of subtropical fruits to fungal decay. Plant Dis. 1993, 77, 114–119. [Google Scholar] [CrossRef]
- Salem, N.; Msaada, K.; Elkahoui, S.; Mangano, G.; Azaeiz, S.; Slimen, I.B.; Kefi, S.; Pintore, G.; Limam, F.; Marzouk, B. Evaluation of antibacterial, antifungal, and antioxidant activities of safflower natural dyes during flowering. BioMed Res. Int. 2014, 2014, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Barron, D.; Ibrahim, R. Isoprenylated flavonoids—A survey. Phytochemistry 1996, 43, 921–982. [Google Scholar] [CrossRef]
- Sritularak, B.; Likhitwitayawuid, K. Flavonoids from the pods of Millettia erythrocalyx. Phytochemistry 2006, 67, 812–817. [Google Scholar] [CrossRef] [PubMed]
- Piccolo, A.; Conte, P.; Patti, A.F. O-Alkylation of a lignite humic acid by phase-transfer catalysis. Anal. Bioanal. Chem. 2006, 384, 994–1001. [Google Scholar] [CrossRef] [PubMed]
- Hans, R.; Guantai, E.M.; Lategan, C.; Smith, P.J.; Wan, B.; Franzblau, S.G.; Gut, J.; Rosenthal, P.J.; Chibale, K. Synthesis, antimalarial and antitubercular activity of acetylenic chalcones. Bioorg. Med. Chem. Lett. 2010, 20, 942–944. [Google Scholar] [CrossRef] [PubMed]
- Wong, E. The role of chalcones and flavanones in flavonoid. Phytochemistry 1968, 7, 1751–1758. [Google Scholar] [CrossRef]
- Seyedi, S.; Jafari, Z.; Attaran, N.; Sadeghian, H.; Saberi, M.; Riazi, M. Design, synthesis and SAR studies of 4-allyoxyaniline amides as potent 15-lipoxygensae inhibitors. Bioorg. Med. Chem. 2009, 17, 1614–1622. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, G.; da Silva, M.; Souza, E.; Barison, A.; Simões, S.; Varotti, F.; Barbosa, L.; Viana, G.; Villar, J. Design and Synthesis of New Chalcones Substituted with Azide/Triazole Groups and Analysis of Their Cytotoxicity Towards HeLa Cells. Molecules 2012, 17, 10331–10343. [Google Scholar] [CrossRef] [PubMed]
- Pottinger, G.; Day, J.G. A Saprolegnia parasitica challenge system for rainbow trout: assessment of Pyceze as an anti-fungal agent for both fish and ova. Dis. Aquat. Org. 1999, 36, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Piamsomboon, P.; Lukkana, M.; Wongtavatchai, J. Safety and Toxicity Evaluation of Bronopol in Striped Catfish (Pangasianodon hypophthalmus). Thai. J. Vet. Med. 2013, 43, 477–481. [Google Scholar]
- Rezinciuc, S.; Sandoval-Sierra, J.V.; Diéguez-Uribeondo, J. Molecular identification of a bronopol tolerant strain of Saprolegnia australis causing egg and fry mortality in farmed brown trout, Salmo trutta. Fungal Biol. 2014, 118, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Blum, M.; Boehler, M.; Randall, E.; Young, V.; Csukai, M.; Kraus, S.; Moulin, F.; Scalliet, G.; Avrova, A.; Whisson, S.; et al. Mandipropamid targets the cellulose synthase-like PiCesA3 to inhibit cell wall biosynthesis in the oomycete plant pathogen, Phytophthora infestans. Mol. Plant Pathol. 2010, 11, 227–243. [Google Scholar] [CrossRef] [PubMed]
- Blum, M.; Waldner, M.; Olaya, G.; Cohen, Y.; Gisi, U.; Sierotzki, H. Resistance mechanism to carboxylic acid amide (CAA) fungicides in the cucurbit downy mildew pathogen Pseudoperonospra cubensis. Pest Manag. Sci. 2011, 67, 1211–1214. [Google Scholar] [CrossRef] [PubMed]
- Blum, M.; Gisi, U. Insights into the molecular mechanism of tolerance to carboxylic acid amide (CAA) fungicides in Pythium aphanidermatum. Pest Manag. Sci. 2012, 68, 1171–1183. [Google Scholar] [CrossRef] [PubMed]
- Warrilow, A.G.S.; Hull, C.; Rolley, N.J.; Parker, E.; Nes, W.N.; Smith, S.N.; Kelly, D.E.; Kelly, S.T. Clotrimazole as a Potent Agent for Treating the Oomycete Fish Pathogen Saprolegnia parasitica through Inhibition of Sterol 14α-Demethylase (CYP51). Appl. Environ. Microbiol. 2014, 80, 6154–6166. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Brahmbhatt, K.; Priyani, A.; Ahmed, M.; Rizvi, T.A.; Sharma, C. Eugenol enhances the chemotherapeutic potential of gemcitabine and induces anticarcinogenic and anti-inflammatory activity in human cervical cancer cells. Cancer Biother. Radiopharm. 2011, 26, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Money, N.P.; Hill, T. Correlation between endoglucanase secretion and cell wall strength in oomycete fungi: Implications for growth and morphogenesis. Mycologia 1997, 89, 777–785. [Google Scholar] [CrossRef]
- Oono, H.; Hatai, K. Antifungal activities of bronopol and 2-methyl-4-isothiazolin-3-one (MT) against Saprolegnia. Biocontrol Sci. 2007, 12, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.; Jain, D.K. Chalcone derivatives as potential antifungal agents: Synthesis, and antifungal activity. J. Adv. Pharm. Technol. Res. 2015, 6, 114–117. [Google Scholar] [CrossRef] [PubMed]
- Bulone, V.; Chanzy, H.; Gay, L.; Girard, V.; Fèvre, M. Characterization of chitin and chitin synthase from the cellulosic cell wall fungus Saprolegnia monoica. Exp. Mycol. 1992, 16, 8–21. [Google Scholar] [CrossRef]
- Guerriero, G.; Avino, M.; Zhou, Q.; Fugelstad, J.; Clergeot, P.H.; Bulone, V. Chitin Synthases from Saprolegnia Are Involved in Tip Growth and Represent a Potential Target for Anti-Oomycete Drugs. PLoS Pathog. 2010, 6, e1001070. [Google Scholar] [CrossRef] [PubMed]
- Iranshahi, M.; Jabbari, A.; Orafaie, A.; Mehri, R.; Zeraatkar, S.; Ahmadi, T.; Alimardani, M.; Sadeghian, H. Synthesis and SAR studies of mono O-prenylated coumarins as potent 15-lipoxygenase inhibitors. Eur. J. Med. Chem. 2012, 57, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Mohri, M.; Kinoshita, H.; Inomata, K.; Kotake, H.; Takagaki, H.; Yamazaki, K. Palladium-Catalyzed Regio- and Stereoselective Reduction of Allylic Compounds with LiHBEt3. Application to the Synthesis of Co-enzyme Q10. Chem. Lett. 1986, 15, 1177–1180. [Google Scholar] [CrossRef]
- Madrid Villegas, A.; Espinoza Catalán, L.; Montenegro Venegas, I.; Villena García, J.; Carrasco Altamirano, H. New Catechol Derivatives of Safrole and Their Antiproliferative Activity towards Breast Cancer Cells. Molecules 2011, 16, 4632–4641. [Google Scholar] [CrossRef] [PubMed]
- Madrid, A.; Espinoza, L.; González, C.; Mellado, M.; Villena, J.; Santander, S.; Silva, V.; Montenegro, I. Antifungal study of the resinous exudate and of meroterpenoids isolated from Psoralea glandulosa (Fabaceae). J. Ethnopharmacol. 2012, 144, 809–811. [Google Scholar] [CrossRef] [PubMed]
- Colegate, S.M.; Molyneux, R.J. Bioactive Natural Products Detection, Isolation, and Structural Determination, 1st ed.; CRC Press, Inc.: Boca Raton, FL, USA, 1993; p. 201. [Google Scholar]
- Wei, Y.; Tang, J.; Conga, X.; Zeng, X. Practical metal-free synthesis of chalcone derivatives via a tandem cross-dehydrogenative-coupling/elimination reaction. Green Chem. 2013, 15, 3165–3169. [Google Scholar] [CrossRef]
- Reddy, M.; Tsai, W.J.; Qian, K.; Lee, K.H.; Wu, T.S. Structure–Activity relationships of chalcone analogs as potential inhibitors of ADP- and collagen-induced platelet aggregation. Bioorg. Med. Chem. 2011, 19, 7711–7719. [Google Scholar] [CrossRef] [PubMed]
- Willoughby, L.G. Fungi and Fish Diseases Pisces; Pisces Press: Stirling, UK, 1994; pp. 57–58. [Google Scholar]
- Hatai, K.; Egusa, S. Studies on pathogenic fungus of mycotic granulomatosis. III. Development of the medium for MG-fungus. Fish Pathol. 1979, 13, 147–152. [Google Scholar] [CrossRef]
- Zaror, L.; Collado, L.; Bohle, H.; Landskron, E.; Montaña, J.; Avendaño, F. Saprolegnia parasitica en salmones y truchas del sur de Chile. Arch. Med. Vet. 2004, 36, 71–78. [Google Scholar] [CrossRef]
- Madrid, A.; Godoy, P.; González, S.; Zaror, L.; Moller, A.; Werner, E.; Cuellar, M.; Villena, J.; Montenegro, I. Chemical Characterization and Anti-Oomycete Activity of Laureliopsis philippianna Essential Oils against Saprolegnia parasitica and S. australis. Molecules 2015, 20, 8033–8047. [Google Scholar] [CrossRef] [PubMed]
- Thoen, E.; Evensen, Ø.; Skaar, I. Microwell enumeration of viable Saprolegniaceae in water samples. Mycologia 2010, 102, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Vandersea, M.W.; Litaker, R.W.; Yonnish, B.; Sosa, E.; Landsberg, J.H.; Pullinger, C.; Moon-Butzin, P.; Green, J.; Morris, J.; Kator, H.; et al. Molecular Assays for Detecting Aphanomyces invadans in Ulcerative Mycotic Fish Lesions. Appl. Environ. Microbiol. 2006, 72, 1551–1557. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.G.; Liu, L.; Hu, K.; Yang, X.L.; Wang, G.X. In vitro screening of fungicidal chemicals for antifungal activity against Saprolegnia. J. World Aquacult. Soc. 2013, 44, 528–535. [Google Scholar] [CrossRef]
- Lunde, C.; Kubo, I. Effect of Polygodial on the Mitochondrial ATPase of Saccharomyces cerevisiae. Antimicrob. Agents Chemother. 2000, 44, 1943–1953. [Google Scholar] [CrossRef] [PubMed]
Compounds | MIC (µg/mL) | Damage (%) a | ||
---|---|---|---|---|
S. parasitica | S. australis | S. parasitica | S. australis | |
1 | 12.5 | 6.25 | 100 | 100 |
2 | >200 | 200 | 0 | 0 |
3 | 200 | 175 | 16 | 20 |
4 | >200 | >200 | 10 | 15 |
5 | 175 | 150 | 28 | 30 |
6 | >200 | >200 | 0 | 0 |
7 | 200 | 175 | 28 | 30 |
8 | >200 | 200 | 0 | 0 |
9 | 200 | 175 | 10 | 15 |
10 | 200 | 175 | 12 | 17 |
11 | 150 | 125 | 30 | 32 |
Bronopol | 175 | 150 | 30 | 35 |
Safrole | 175 | 150 | 30 | 35 |
Eugenol | 150 | 150 | 35 | 38 |
Fluconazole | >200 | >200 | Nd | Nd |
Ketoconazole | 75 | 50 | Nd | Nd |
Sodium Dodecyl Sulfate | - | - | 100 | 100 |
Compounds | MOC (µg/mL) | |
---|---|---|
S. parasitica | S. australis | |
1 | 12.5 | 12.5 |
2 | 200 | 200 |
3 | 200 | 175 |
4 | >200 | >200 |
5 | 175 | 150 |
6 | >200 | >200 |
7 | 175 | 175 |
8 | >200 | >200 |
9 | >200 | 200 |
10 | 200 | 175 |
11 | 125 | 125 |
Bronopol | >200 | 175 |
Safrole | >200 | 200 |
Eugenol | >200 | 175 |
Fluconazole | >200 | >200 |
Ketoconazole | 100 | 75 |
Compounds (200 µg/mL) | MIG (%) | |
---|---|---|
S. parasitica | S. australis | |
1 | 100 | 100 |
2 | 32 | 35 |
3 | 33 | 36 |
4 | 0 | 0 |
5 | 35 | 38 |
6 | 0 | 0 |
7 | 30 | 33 |
8 | 0 | 0 |
9 | 0 | 0 |
10 | 10 | 13 |
11 | 50 | 55 |
Bronopol | 0 | 33 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores, S.; Montenegro, I.; Villena, J.; Cuellar, M.; Werner, E.; Godoy, P.; Madrid, A. Synthesis and Evaluation of Novel Oxyalkylated Derivatives of 2′,4′-Dihydroxychalcone as Anti-Oomycete Agents against Bronopol Resistant Strains of Saprolegnia sp. Int. J. Mol. Sci. 2016, 17, 1366. https://doi.org/10.3390/ijms17081366
Flores S, Montenegro I, Villena J, Cuellar M, Werner E, Godoy P, Madrid A. Synthesis and Evaluation of Novel Oxyalkylated Derivatives of 2′,4′-Dihydroxychalcone as Anti-Oomycete Agents against Bronopol Resistant Strains of Saprolegnia sp. International Journal of Molecular Sciences. 2016; 17(8):1366. https://doi.org/10.3390/ijms17081366
Chicago/Turabian StyleFlores, Susana, Iván Montenegro, Joan Villena, Mauricio Cuellar, Enrique Werner, Patricio Godoy, and Alejandro Madrid. 2016. "Synthesis and Evaluation of Novel Oxyalkylated Derivatives of 2′,4′-Dihydroxychalcone as Anti-Oomycete Agents against Bronopol Resistant Strains of Saprolegnia sp." International Journal of Molecular Sciences 17, no. 8: 1366. https://doi.org/10.3390/ijms17081366
APA StyleFlores, S., Montenegro, I., Villena, J., Cuellar, M., Werner, E., Godoy, P., & Madrid, A. (2016). Synthesis and Evaluation of Novel Oxyalkylated Derivatives of 2′,4′-Dihydroxychalcone as Anti-Oomycete Agents against Bronopol Resistant Strains of Saprolegnia sp. International Journal of Molecular Sciences, 17(8), 1366. https://doi.org/10.3390/ijms17081366