Molecular and Electronic Structures of Neutral Polynitrogens: Review on the Theory and Experiment in 21st Century
Abstract
:1. Introduction
2. Theoretical Background for the Existence of Various Polynitrogens
3. Neutral Polynitrogens Nk Containing an Even Number of Atoms
3.1. Polynitrogens N4–N10
3.2. Polynitrogens N12–N20
3.3. Polynitrogens with More than 20 Nitrogen Atoms
4. Neutral Polynitrogens Nk Containing an Odd Number of Atoms
5. Oligomeric/Polymeric Nitrogen Compounds
6. Possibilities of Practical Application of Polynitrogens
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wikipedia. Nitrogen. Available online: https://en.wikipedia.org/wiki/Nitrogen (accessed on 31 January 2022).
- Greenwood, N.N.; Earnshaw, A. Chemistry of the Elements, 2nd ed.; Elsevier: Amsterdam, The Netherlands; Boston, MA, USA; Heidelberg, Germany; London, UK; New York, NY, USA; Oxford, UK; Paris, France; San Diego, CA, USA; San Francisco, CA, USA; Singapore; Sydney, Australia; Tokyo, Japan, 2012; p. 412. [Google Scholar]
- Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: New York, NY, USA, 1960; p. 189. [Google Scholar]
- Liechtenstein, G.I.; Shilov, A.E. On the thermodynamic and kinetic features of the reductive fixation of molecular nitrogen. Zh. Fiz. Khim. 1970, 44, 849. (In Russian) [Google Scholar]
- Francl, M.M.; Chesick, J.P. The nitrogen (N4) molecule and its metastability. J. Phys. Chem. 1990, 94, 526–528. [Google Scholar] [CrossRef]
- Cacace, F.; de Petris, G.; Troiani, A. Experimental Detection of Tetranitrogen. Science 2002, 295, 480. [Google Scholar] [CrossRef] [PubMed]
- Mailhiot, C.; Yang, L.H.; McMahan, A.K. Polymeric nitrogen. Phys. Rev. B 1992, 46, 14419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, M.T. Polynitrogen compounds: 1. Structure and stability of N4 and N5 systems. Coord. Chem. Revs. 2003, 244, 93. [Google Scholar] [CrossRef]
- Samartzis, P.C.; Woodtke, A.M. All-nitrogen chemistry: How far are we from N60? Int. Revs. Phys. Chem. 2006, 25, 552. [Google Scholar] [CrossRef]
- Carnovale, F.; Peel, J.B.; Rothwell, R.G. Photoelectron spectroscopy of the nitrogen dimer (N2)2 and clusters (N2)n: N2 dimer revealed as the chromophore in photoionization of condensed nitrogen. J. Chem. Phys. 1988, 88, 642. [Google Scholar] [CrossRef]
- Lee, T.J.; Rice, J.E. Theoretical characterization of tetrahedral N4. J. Chem. Phys. 1991, 94, 1215–1221. [Google Scholar] [CrossRef]
- Lauderdale, W.J.; Stanton, J.F.; Bartlett, R.J. Stability and energetics of metastable molecules: Tetraazatetrahedrane (N4), hexaazabenzene (N6), and octaazacubane (N8). J. Phys. Chem. 1992, 96, 1173–1178. [Google Scholar] [CrossRef]
- Glukhovtsev, M.N.; Schleyer, P.V.R. The N4 molecule has an open-chain triplet C2h structure. Int. J. Quant. Chem. 1993, 46, 119–125. [Google Scholar] [CrossRef]
- Gimarc, B.M.; Zhao, M. Strain Energies in Homoatomic Nitrogen Clusters N4, N6, and N8. Inorg. Chem. 1996, 35, 3289–3297. [Google Scholar] [CrossRef] [PubMed]
- Leininger, M.L.; Van Huis, T.J.; Schaefer, H.F., III. Protonated High Energy Density Materials: N4 Tetrahedron and N8 Octahedron. J. Phys. Chem. A 1997, 101, 4460–4464. [Google Scholar] [CrossRef]
- Bittererová, M.; Östmark, H.; Brinck, T. Ab initio study of the ground state and the first excited state of the rectangular (D2h) N4 molecule. Chem. Phys. Lett. 2001, 347, 220–228. [Google Scholar] [CrossRef]
- Brinck, T.; Bittererova, M.; Östmark, H. Chapter 15—Electronic structure calculations as a tool in the quest for experimental verification of N4. Theor. Comput. Chem. 2003, 12, 421–439. [Google Scholar]
- Nguyen, M.T.; Nguyen, T.L.; Mebel, A.M.; Flammang, R. Azido-Nitrene Is Probably the N4 Molecule Observed in Mass Spectrometric Experiments. J. Phys. Chem. A 2003, 107, 5452. [Google Scholar] [CrossRef]
- Renie, E.E.; Mayer, P.M. Confirmation of the long-lived tetra-nitrogen (N4) molecule using neutralization-reionization mass spectrometry and ab initio calculations. J. Chem. Phys. 2004, 120, 10561–10578. [Google Scholar] [CrossRef]
- Elesin, V.F.; Degtyarenko, N.N.; Pazhitnykh, K.S.; Matveev, N.V. Modeling of synthesis and dissociation of the N4 nitrogen cluster of D2h symmetry. Russ. Phys. J. 2009, 52, 1224. [Google Scholar] [CrossRef]
- Mikhailov, O.V.; Chachkov, D.V. On the Possibility of the Existence of Molecular Nitrogen Allotropes. Russ. J. Inorg. Chem. 2017, 62, 955–959. [Google Scholar] [CrossRef]
- Mikhailov, O.V.; Chachkov, D.V. Molecular structures and thermodynamics of stable N4, N6 and N8 neutral poly-nitrogens according to data of QCISD(T)/TZVP method. Chem. Phys. Lett. 2020, 753, 137594. [Google Scholar] [CrossRef]
- Chachkov, D.V.; Mikhailov, O.V. Tetra-, hexa-, and octanitrogen molecules: A quantum chemical design and thermodynamic properties. Russ. Chem. Bull. 2020, 69, 2067. [Google Scholar] [CrossRef]
- Gimaldinova, M.A.; Zemenkov, L.I.; Merinov, V.A. Stabilization of small nitrogen clusters via spatial constraint. J. Phys. Conf. Ser. 2020, 1435, 012062. [Google Scholar] [CrossRef]
- Hayon, E.; Simic, M. Absorption spectra and kinetics of the intermediate produced from the decay of azide radicals. J. Amer. Chem. Soc. 1970, 92, 7486–7487. [Google Scholar] [CrossRef]
- Mikhailov, O.V.; Chachkov, D.V. O syschestvovanii allotropii molekularnogo azota. Zh. Neorg. Khim. 2017, 62, 956–960. [Google Scholar]
- Ha, T.K.; Cimiraglia, R.; Nguyen, M.T. Can hexazine (N6) be stable? Chem. Phys. Lett. 1981, 83, 317–319. [Google Scholar] [CrossRef]
- Saxe, P.; Schaefer, H.F. Cyclic D6h hexaazabenzene—A relative minimum on the hexaazabenzene potential energy hypersurface? J. Amer. Chem. Soc. 1983, 105, 1760–1764. [Google Scholar] [CrossRef]
- Huber, H.; Ha, T.K.; Nguyen, M.T. Is N6 an open-chain molecule? Theochem.—J. Mol. Struct. 1983, 105, 351–358. [Google Scholar] [CrossRef]
- Ramek, M. Comment on “Is N6 an open-chain molecule”? Theochem—J. Mol. Struct. 1984, 18, 391. [Google Scholar] [CrossRef]
- Engelke, R. Five stable points on the N6 energy hypersurface: Structures, energies, frequencies, and chemical shifts. J. Phys. Chem. 1989, 93, 5722–5727. [Google Scholar] [CrossRef]
- Nguyen, M.T. Comments on the stable points on the N6 energy hypersurface. J. Phys. Chem. 1990, 94, 6923–6924. [Google Scholar] [CrossRef]
- Engelke, R. Reply to comments on the stable points on the N6 energy hypersurface. J. Phys. Chem. 1990, 94, 6924–6925. [Google Scholar] [CrossRef]
- Ha, T.K.; Nguyen, M.T. The identity of the six nitrogen atoms (N6 species). Chem. Phys. Lett. 1992, 195, 179–183. [Google Scholar] [CrossRef]
- Engelke, R. Ab initio correlated calculations of six nitrogen (N6) isomers. J. Phys. Chem. 1992, 96, 10789–10792. [Google Scholar] [CrossRef]
- Tobita, M.; Bartlett, R.J. Structure and Stability of N6 Isomers and Their Spectroscopic Characteristics. J. Phys. Chem. A 2001, 105, 4107–4113. [Google Scholar] [CrossRef]
- Gagliardi, L.; Evangelisti, S.; Barone, V.; Roos, B.O. On the Dissociation of N6 into 3N2 Molecules. Chem. Phys. Lett. 2000, 320, 518–522. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, M.T.; Ha, T.K. Decomposition mechanism of the polynitrogen N5 and N6 clusters and their ions. Chem. Phys. Lett. 2001, 335, 311–320. [Google Scholar] [CrossRef]
- Wang, L.J.; Warburton, P.; Mezey, P.G. Theoretical Prediction on the Synthesis Reaction Pathway of N6 (C2h). J. Phys. Chem. A 2002, 106, 2748–2752. [Google Scholar] [CrossRef]
- Li, Q.S.; Liu, Y.D. Theoretical Studies of the N6 Potential Energy Surface. J. Phys. Chem. A 2002, 106, 9538–9542. [Google Scholar] [CrossRef]
- Hirshberg, B.; Gerber, R.B. Decomposition mechanisms and dynamics of N6: Bond orders and partial charges along classical trajectories. Chem. Phys. Lett. 2012, 531, 46–51. [Google Scholar] [CrossRef]
- Türker, L. Contemplation on Some Prismatic Polynitrogen Structures-A DFT Treatment. Z. Anorg. Allg. Chem. 2019, 645, 1118–1126. [Google Scholar] [CrossRef]
- Gomes, A.C.R.; Silva, M.X.; Galvao, B.R.L. Stability of neutral molecular polynitrogens: Energy content and decomposition mechanisms. RSC Adv. 2021, 11, 21567–21578. [Google Scholar] [CrossRef]
- Wilson, K.J.; Perera, S.A.; Bartlett, R.J.; Watts, J.D. Stabilization of the Pseudo-Benzene N6 Ring with Oxygen. J. Phys. Chem. A 2001, 105, 7693–7699. [Google Scholar] [CrossRef]
- Straka, M. N6 ring as a planar hexagonal ligand in novel M(η6-N6) species. Chem. Phys. Lett. 2002, 358, 531–536. [Google Scholar] [CrossRef]
- Raczyn’ska, E.D. On the basicity and p-electron delocalization of ‘hexaazabenzene’ N6—Quantum-chemical studies. Comp. Theor. Chem. 2011, 971, 38. [Google Scholar] [CrossRef]
- Trinquier, G.; Malrieu, J.P.; Daudey, J.P. AB initio study of the regular polyhedral molecules N4, P4, As4, N8, P8 and As8. Chem. Phys. Lett. 1981, 80, 552–557. [Google Scholar] [CrossRef]
- Leininger, M.L.; Sherrill, C.D.; Schaefer, H.F., III. N8: A Structure Analogous to Pentalene, and Other High-Energy Density Minima. J. Phys. Chem. 1995, 99, 2324–2328. [Google Scholar] [CrossRef]
- Gorini, J.A.C.; Farras, J.; Feliz, M.; Olivella, S.; Sole, A.; Vilarrasa, J. 4-31G ab initio and MNDO semi-empirical calculations on bicyclic CN7− and N8 species, and n.m.r. and i.r. studies on 15N-labelled CN7−. J. Chem. Soc. Chem. Commun. 1986, 959–961. [Google Scholar] [CrossRef]
- Tian, A.; Ding, F.; Zhang, L.; Xie, Y.; Schaefer, H.F., III. New Isomers of N8 without Double Bonds. J. Phys. Chem. A 1997, 101, 1946–1950. [Google Scholar] [CrossRef]
- Chung, G.; Schmidt, M.W.; Gordon, M.S. An ab initio study of potential energy surfaces for N8 isomers. J. Phys. Chem. A 2000, 104, 5647–5650. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.J.; Xu, W.G.; Li, Q.S. Stability of N8 isomers and isomerization reaction of N8(C2v) to N8(Cs). J. Mol. Struct. 2000, 531, 135–141. [Google Scholar] [CrossRef]
- Wang, L.J.; Li, S.; Li, Q.S. Theoretical Studies on a Possible Synthesis Reaction Pathway on N8 (CS) Clusters. J. Comput. Chem. 2001, 22, 1334–1339. [Google Scholar] [CrossRef]
- Li, Q.S.; Wang, L.J. Theoretical Studies on the Potential Energy Surfaces of N8 Clusters. J. Phys. Chem. A. 2001, 105, 1979–1982. [Google Scholar] [CrossRef]
- Evangelisti, S.; Leininger, T. Ionic nitrogen clusters. J. Mol. Struct. Theochem. 2003, 621, 43–50. [Google Scholar] [CrossRef]
- Hirshberg, B.; Gerber, R.B.; Krylov, A.I. Calculations predict a stable molecular crystal of N8. Nat. Chem. 2014, 6, 52–56. [Google Scholar] [CrossRef]
- Duwal, S.; Ryu, Y.-J.; Kim, M.; Yoo, C.-S.; Bang, S.; Kim, K.; Hur, N.H. Transformation of hydrazinium azide to molecular N8 at 40 GPa. J. Chem. Phys. 2018, 148, 134310. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Sun, K.C.; Shyu, S.F. Theoretical study of various N10 structures. J. Mol. Struct. Theochem. 1999, 459, 113–122. [Google Scholar] [CrossRef]
- Manaa, M.R. Toward new energy-rich molecular systems: From N10 to N60. Chem. Phys. Lett. 2000, 331, 262–268. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.; Wang, X.; Wong, N.; Tian, A.; Ding, F.; Zhang, L. Theoretical Study of the N10 Clusters without Double Bonds. Int. J. Quant. Chem. 2001, 82, 34–43. [Google Scholar] [CrossRef]
- Strout, D.L. Acyclic N10 fails as a high energy density material. J. Phys. Chem. A 2002, 106, 816–818. [Google Scholar] [CrossRef]
- Wang, L.J.; Mezey, P.G.; Zgierski, M.Z. Stability and the structures of Nitrogen clusters N10. Chem. Phys. Lett. 2004, 391, 338–343. [Google Scholar] [CrossRef]
- Zhou, H.; Zheng, W.; Wang, X.; Ren, Y.; Wong, N.; Shu, Y.; Tian, A. A Gaussian-3 investigation on the stabilities and bonding of the nine N10 clusters. J. Mol. Struct. Theochem. 2005, 732, 139–148. [Google Scholar] [CrossRef]
- Bondarchuk, S.V. Bipentazole (N10): A Low-Energy Molecular Nitrogen Allotrope with High Intrinsic Stability. J. Phys. Chem. Lett. 2020, 11, 5544–5548. [Google Scholar] [CrossRef] [PubMed]
- Glukhovtsev, M.N.; Jiao, H.; von Ragué Schleyer, P. Besides N2, What Is the Most Stable Molecule Composed Only of Nitrogen Atoms? Inorg. Chem. 1996, 35, 7124–7133. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Li, Q.S.; Zhu, H.S. Quantum chemical calculations of nitrogen cages N12. Chin. Sci. Bull. 1997, 42, 462–465. [Google Scholar] [CrossRef]
- Klapötke, T.M.; Harcourt, R.D. The inconversion of N12 to N8 and two equivalents of N2. J. Mol. Struct. Theochem. 2001, 541, 237–242. [Google Scholar] [CrossRef]
- Li, Q.S.; Zhao, J.F. Theoretical Study of Potential Energy Surfaces for N12 Clusters. J. Phys. Chem. A 2002, 106, 5367–5372. [Google Scholar] [CrossRef]
- Bruney, L.Y.; Bledson, T.M.; Strout, D.L. What Makes an N12 Cage Stable? Inorg. Chem. 2003, 42, 8117–8120. [Google Scholar] [CrossRef]
- Guan, J.; Zhang, S.; Xu, W.; Li, Q. A Quantum Chemical Study of N14 Cluster. Struct. Chem. 2004, 15, 121–132. [Google Scholar] [CrossRef]
- Strout, D.L. Cage Isomers of N14 and N16: Nitrogen Molecules That Are Not a Multiple of Six. J. Phys. Chem. A 2004, 108, 10911–10916. [Google Scholar] [CrossRef]
- Najafpour, J.; Foroutan-Nejad, C.; Shafiee, G.H.; Peykani, M.K. How does electron delocalization affect the electronic energy? A survey of neutral poly-nitrogen clusters. Comput. Theor. Chem. 2011, 974, 86–91. [Google Scholar] [CrossRef]
- Sturdivant, S.E.; Nelson, F.A.; Strout, D.L. Trends in Stability for N18 Cages. J. Phys. Chem. A 2004, 108, 7087–7090. [Google Scholar] [CrossRef]
- Bliznyuk, A.A.; Shen, M.; Schaefer, H.F., III. The dodecahedral N20 molecule. Some theoretical predictions. Chem. Phys. Lett. 1992, 198, 249–252. [Google Scholar] [CrossRef]
- Ha, T.-K.; Suleimenov, O.; Nguyen, M.T. A quantum chemical study of three isomers of N20. Chem. Phys. Lett. 1999, 315, 327–334. [Google Scholar] [CrossRef]
- Strout, D.L. Why Isn’t the N20 Dodecahedron Ideal for Three-Coordinate Nitrogen? J. Phys. Chem. A 2005, 109, 1478–1480. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Wong, N.-B.; Zhou, G.; Tian, A. Theoretical Study on “Multilayer” Nitrogen Cages. J. Phys. Chem. A 2006, 110, 3845–3852. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.H.; Luo, Q.; Guo, M.; Li, Q.S. What are the roles of N3 and N5 rings in designing polynitrogen molecules? Dalton Trans. 2012, 41, 12075–12081. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Shyu, S.F. Theoretical study of single-bonded nitrogen cluster-type molecules. Int. J. Quantum Chem. 1999, 73, 349–356. [Google Scholar] [CrossRef]
- Strout, D.L. Isomer Stability of N24, N30, and N36 Cages: Cylindrical versus Spherical Structure. J. Phys. Chem. A 2004, 108, 2555–2558. [Google Scholar] [CrossRef]
- Jasper, S.; Hammond, A.; Thomas, J.; Kidd, L.; Strout, D.L. N22C2 versus N24: Role of molecular curvature in determining isomer stability. J. Phys. Chem. A 2011, 115, 11915–11918. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Qu, H.; Li, Q.S. Quantum Chemical Study on N60. Chem. J. Chin. Univ. 1997, 18, 297–299. [Google Scholar]
- Wang, L.J.; Zgierski, M.Z. Super-high energy-rich nitrogen cluster N60. Chem. Phys. Lett. 2003, 376, 698–703. [Google Scholar] [CrossRef]
- Zhou, H.; Beuve, M.; Yang, F.; Wong, N.-B.; Li, W.-K. Theoretical investigation on the cylinder-shaped N66 cage. Comput. Theor. Chem. 2013, 1005, 68–74. [Google Scholar] [CrossRef]
- Zhou, H.; Wong, N.-B.; Zhou, G.; Tian, A. What Makes the Cylinder-Shaped N72 Cage Stable? J. Phys. Chem. A 2006, 110, 7441–7446. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Wong, N.-B.; Tian, A. Theoretical study on the cylinder-shaped N78 cage. J. Mol. Graph. Model. 2006, 25, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Wong, N.-B. Theoretical investigation on the cylinder-shaped N84 cage. Chem. Phys. Lett. 2007, 449, 272–275. [Google Scholar] [CrossRef]
- Guo, Q.; He, B.; Zhou, H. Theoretical study on prismatic (N6)n (n = 16–35) molecules. J. Mol. Graph. Model. 2020, 96, 107508. [Google Scholar] [CrossRef]
- Tan, B.; Huang, M.; Long, X.; Li, J.; Yuan, X.; Xu, R. From planes to cluster: The design of polynitrogen molecules. Int J. Quantum Chem. 2015, 115, 84–89. [Google Scholar] [CrossRef]
- Katin, K.P.; Merinov, V.B.; Kochaev, A.I.; Kaya, S.; Maslov, M.M. All-Nitrogen Cages and Molecular Crystals: Topological Rules, Stability, and Pyrolysis Paths. Computation 2020, 8, 91. [Google Scholar] [CrossRef]
- Wang, X.; Hu, H.R.; Tian, A.M.; Wong, N.B.; Chien, S.H.; Li, W.K. An isomeric study of N5+, N5, and N5−: A Gaussian-3 investigation. Chem. Phys. Lett. 2000, 329, 483–489. [Google Scholar] [CrossRef]
- Li, Q.S.; Hu, X.; Xu, W. Structure and stability of N7 cluster. Chem. Phys. Lett. 1998, 287, 94–99. [Google Scholar] [CrossRef]
- Wang, X.; Ren, Y.; Shuai, M.B.; Wong, N.B.; Li, W.K.; Tian, A.M. Structure and stability of new N7 isomers. J. Mol. Struct. Theochem. 2001, 538, 145–156. [Google Scholar] [CrossRef]
- Wang, X.; Tian, A.M.; Wong, N.B.; Law, C.K.; Li, W.K. A Gaussian-3 investigation of N7 isomers. Chem. Phys. Lett. 2001, 338, 367–374. [Google Scholar] [CrossRef]
- Li, Q.S.; Wang, L.J.; Xu, W.G. Structures and stability of N9, N9− and N9+ clusters. Theor. Chem. Acc. 2000, 104, 67–77. [Google Scholar] [CrossRef]
- Li, Q.S.; Wang, L.J. A Quantum Chemical Theoretical Study of Decomposition Pathways of N9 (C2v) and N9+ (C2v) Clusters. J. Phys. Chem. A 2001, 105, 1203–1207. [Google Scholar] [CrossRef]
- Thompson, M.D.; Bledson, T.M.; Strout, D.L. Dissociation barriers for odd-numbered acyclic nitrogen molecules N9 and N11. J. Phys. Chem. A 2002, 106, 6880–6882. [Google Scholar] [CrossRef]
- Liu, Y.D.; Yiu, P.G.; Guan, J.; Li, Q.S. Structures and stability of N11+ and N11− clusters. J. Mol. Struct. Theochem. 2002, 588, 37–43. [Google Scholar] [CrossRef]
- Li, Q.S.; Liu, Y.D. The dissociation and isomerization reactions of N11 isomers. J. Theor. Comput. Chem. 2003, 2, 15–22. [Google Scholar] [CrossRef]
- Li, Q.S.; Liu, Y.D. Structures and stability of N11 cluster. Chem. Phys. Lett. 2002, 353, 204–212. [Google Scholar]
- Li, Q.S.; Yin, P.G. Structures and stability of N13 cluster. Mol. Phys. 2003, 101, 2481–2487. [Google Scholar] [CrossRef]
- Cheng, L.P.; Li, S.; Li, Q.S. Polynitrogen clusters containing five-membered rings. Int. J. Quantum Chem. 2004, 97, 933–943. [Google Scholar] [CrossRef]
- Eremets, M.I.; Gavriliuk, A.G.; Trojan, I.A.; Dzivenko, D.A.; Boehler, R. Single-bonded cubic form of nitrogen. Nat. Mater. 2004, 3, 558–563. [Google Scholar] [CrossRef]
- Benchafia, E.M.; Yao, Z.; Yuan, G.; Chou, T.; Piao, H.; Wang, X.; Iqbal, Z. Cubic Gauche Polymeric Nitrogen under Ambient Conditions. Nat. Commun. 2017, 8, 930–931. [Google Scholar] [CrossRef] [Green Version]
- Uddin, J.; Barone, V.; Scuseria, G.E. Energy storage capacity of polymeric nitrogen. Mol. Phys. 2006, 104, 745–749. [Google Scholar] [CrossRef]
- Wang, X.; Tian, F.; Wang, L.; Cui, T.; Liu, B.; Zou, G. Structural stability of polymeric nitrogen: A first-principles investigation. J. Chem. Phys. 2010, 132, 024502. [Google Scholar] [CrossRef]
- Ma, Y.; Oganov, A.R.; Li, Z.W.; Xie, Y.; Kotakoski, J. Novel High Pressure Structures of Polymeric Nitrogen. Phys. Rev. Lett. 2009, 102, 065501. [Google Scholar] [CrossRef] [Green Version]
- Cheng, P.; Yang, X.; Zhang, X.; Wang, Y.; Jiang, S.; Goncharov, A.F. Polymorphism of polymeric nitrogen at high pressures. J. Chem. Phys. 2020, 152, 244502. [Google Scholar] [CrossRef]
- Hu, A.; Zhang, F.; Woo, T. Metastable polymeric nitrogen nanotube from a zigzag sheet phase and first-principles calculations. Phys. Rev. B 2010, 82, 125410. [Google Scholar] [CrossRef]
- Bondarchuk, S.V.; Minaev, B.F. Two-dimensional honeycomb (A7) and zigzag sheet (ZS) type nitrogen monolayers. A first principles study of structural, electronic, spectral, and mechanical properties. Comput. Mater. Sci. 2017, 133, 122–129. [Google Scholar] [CrossRef]
- Bondarchuk, S.V.; Minaev, B.F. Super high-energy density single-bonded trigonal nitrogen allotrope—A chemical twin of the cubic gauche form of nitrogen. Phys. Chem. Chem. Phys. 2017, 19, 6698–6706. [Google Scholar] [CrossRef]
- Mattson, W.D.; Sanchez-Portal, D.; Chiesa, S.; Martin, R.M. Prediction of New Phases of Nitrogen at High Pressure from First-Principles Simulations. Phys. Rev. Lett. 2004, 93, 125501. [Google Scholar] [CrossRef]
- Owens, F.J. Prediction of unusual curled nitrogen oligomers. Chem. Phys. Lett. 2014, 593, 20–23. [Google Scholar] [CrossRef]
- Yakub, L.N. Polymerization in highly compressed nitrogen (Review Article). Low Temp. Phys. 2016, 42, 1. [Google Scholar] [CrossRef]
- Laniel, D.; Winkler, B.; Fedotenko, T.; Pakhomova, A.; Chariton, S.; Milman, V.; Prakapenka, V.; Dubrovinsky, L.; Dubrovinskaia, N. High-pressure polymeric nitrogen allotrope with the black phosphorus structure. Phys. Rev. Lett. 2020, 124, 216001. [Google Scholar] [CrossRef] [PubMed]
- Grishakov, K.; Katin, K.; Gimaldinova, M.; Maslov, M. Stability and energy characteristics of extended nitrogen nanotubes: Density functional theory study. Lett. Mater. 2019, 9, 366–369. [Google Scholar] [CrossRef]
- Merinov, V.B. Nitrogen astralens: Theoretical investigation of the structure of novel high-energy nitrogen allotropes. J. Struct. Chem. 2021, 62, 661–670. [Google Scholar] [CrossRef]
- Lewars, E.G. Nitrogen Oligomers and Polymers: Superfuels or Chimeras? In Modeling Marvels; Springer: Berlin/Heidelberg, Germany, 2008; pp. 141–163. [Google Scholar]
- Kwon, O.; McKee, M.L. Chapter 14—Polynitrogens as promising high-energy density materials: Computational design. Theor. Comput. Chem. 2003, 12, 405–420. [Google Scholar]
- Talawar, M.B.; Sivabalan, R.; Aasthana, S.N.; Singh, H. Novel ultrahigh energy materials. Combust. Explos. Shock. Waves 2005, 41, 264–277. [Google Scholar] [CrossRef]
- Badders, N.R.; Wei, C.; Aldeep, A.A.; Rogers, W.J.; Mannan, M.S. Predicting the impact sensitivity of polynitro compounds using quantum chemical descriptors. J. Energy Mater. 2006, 24, 17–33. [Google Scholar] [CrossRef]
- Rice, B.M.; Byrd, E.F.C.; Mattson, W.D. Computational aspects of nitrogen-rich HEDMs. In High Energy Density Materials; Series 125: Structure and Bonding; Springer: Berlin/Heidelberg, Germany, 2007; pp. 153–194. [Google Scholar]
- Zarko, V.E. Searching for ways to create energetic materials based on polynitrogen compounds (review). Combust. Explos. Shock. Waves 2010, 46, 121–131. [Google Scholar] [CrossRef]
- Smirnov, A.; Lempert, D.; Pivina, T.; Khakimov, D. Basic characteristics for estimation polynitrogen compounds efficiency. Cent. Eur. J. Energetic Mater. 2011, 8, 233–247. [Google Scholar]
- Greschner, M.J.; Zhang, M.; Majumdar, A.; Liu, H.; Peng, F.; Tse, J.S.; Yao, Y. A new allotrope of nitrogen as highenergy density material. J. Phys. Chem. A 2016, 120, 2920–2925. [Google Scholar] [CrossRef]
- Lee, J. Polynigrogen Energetic Materials. J. Korea Inst. Mil. Sci. Technol. 2016, 19, 319–329. [Google Scholar] [CrossRef]
- Badgujar, B.; Talawar, M.; Zarko, V.E.; Mahulikar, P. New directions in the area of modern energetic polymers: An overview. Combust. Explos. Shock. Waves 2017, 53, 371–387. [Google Scholar] [CrossRef]
- Türker, L. A density functional study on some cyclic N10 isomers. Def. Technol. 2019, 15, 154–161. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikhailov, O.V. Molecular and Electronic Structures of Neutral Polynitrogens: Review on the Theory and Experiment in 21st Century. Int. J. Mol. Sci. 2022, 23, 2841. https://doi.org/10.3390/ijms23052841
Mikhailov OV. Molecular and Electronic Structures of Neutral Polynitrogens: Review on the Theory and Experiment in 21st Century. International Journal of Molecular Sciences. 2022; 23(5):2841. https://doi.org/10.3390/ijms23052841
Chicago/Turabian StyleMikhailov, Oleg V. 2022. "Molecular and Electronic Structures of Neutral Polynitrogens: Review on the Theory and Experiment in 21st Century" International Journal of Molecular Sciences 23, no. 5: 2841. https://doi.org/10.3390/ijms23052841
APA StyleMikhailov, O. V. (2022). Molecular and Electronic Structures of Neutral Polynitrogens: Review on the Theory and Experiment in 21st Century. International Journal of Molecular Sciences, 23(5), 2841. https://doi.org/10.3390/ijms23052841