Plasmonic Metal Nanoparticles Hybridized with 2D Nanomaterials for SERS Detection: A Review
Abstract
:1. Introduction
2. Physics and Working Principles
3. Hybrid Nanocomposites
4. Effect of Nanoparticle Shape
4.1. Au Nanorods
4.2. Au Nanotriangles
4.3. Au Nanostars
5. Effect of Plasmonic Metal Particle Morphology in Hybrid Compounds on SERS
6. Engineered 2D Nanomaterials
7. Three-Dimensional Structures
8. Nanospacers
9. Bidimensional Nanomaterials Used to Veil AuNP Arrays
10. Future Perspectives
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Yang, C.; Guo, X. Single-Molecule Electrical Detection: A Promising Route toward the Fundamental Limits of Chemistry and Life Science. Accounts Chem. Res. 2019, 53, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhou, C.; Guo, X. Ultrasensitive Detection and Binding Mechanism of Cocaine in an Aptamer-based Single-molecule Device. Chin. J. Chem. 2019, 37, 897–902. [Google Scholar] [CrossRef]
- Fang, S.; Hu, Y.H. Open the door to the atomic world by single-molecule atomic force microscopy. Matter 2021, 4, 1189–1223. [Google Scholar] [CrossRef]
- Akkilic, N.; Geschwindner, S.; Höök, F. Single-molecule biosensors: Recent advances and applications. Biosens. Bioelectron. 2020, 151, 111944. [Google Scholar] [CrossRef] [PubMed]
- Langer, J.; Aberasturi, D.J. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14, 28–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Huang, Y.; Li, X.; Zhang, Y.; Chen, Q.; Ye, Z.; Alqarni, Z.; Bell, S.E.J.; Xu, Y. Towards practical and sustainable SERS: A review of recent developments in the construction of multifunctional enhancing substrates. J. Mater. Chem. C 2021, 9, 11517–11552. [Google Scholar] [CrossRef]
- Xia, M. 2D Materials-Coated Plasmonic Structures for SERS Applications. Coatings 2018, 8, 137. [Google Scholar] [CrossRef] [Green Version]
- Fleischmann, M.; Hendra, P.J.; McQuillan, A.J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166. [Google Scholar] [CrossRef]
- D’Elia, V.; Rubio-Retama, J.; Ortega-Ojeda, F.E.; García-Ruiz, C.; Montalvo, G. Gold nanorods as SERS substrate for the ultra trace de-tection of cocaine in non-pretreated oral fluid samples. Colloids Surf. A Physicochem. Eng. Asp. 2018, 557, 43–50. [Google Scholar] [CrossRef]
- Qin, Y.; Wu, Y.; Wang, B.; Wang, J.; Yao, W. Facile synthesis of Ag@Au core-satellite nanowires for highly sensitive SERS detection for tropane alkaloids. J. Alloy. Compd. 2021, 884, 161053. [Google Scholar] [CrossRef]
- Wang, K.; Sun, D.-W.; Pu, H.; Wei, Q. Polymer multilayers enabled stable and flexible Au@Ag nanoparticle array for nondestructive SERS detection of pesticide residues. Talanta 2021, 223, 121782. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.C.; Meisel, D. Adsorption and sur-face-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 1982, 86, 3391–3395. [Google Scholar] [CrossRef]
- Eustis, S.; El-Sayed, M.A. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 2005, 35, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.K.; Lee, K.S.; El-Sayed, I.H.; El-Sayed, M.A. Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine. J. Phys. Chem. B 2006, 110, 7238–7248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, C.S. Raman Spectroscopy for Nanomaterials Characterization; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Anderson, D.J.; Moskovits, M. A SERS-Active System Based on Silver Nanoparticles Tethered to a Deposited Silver Film. J. Phys. Chem. B 2006, 110, 13722–13727. [Google Scholar] [CrossRef] [PubMed]
- Stiles, P.L.; Dieringer, J.A.; Shah, N.C.; Duyne, R.P.V. Surface-Enhanced Raman Spectroscopy. Annu. Rev. Anal. Chem. 2008, 1, 601–626. [Google Scholar] [CrossRef] [Green Version]
- Guillot, N.; de la Chapelle, M.L. The electromagnetic effect in surface enhanced Raman scattering: Enhancement optimization using precisely controlled nanostructures. J. Quant. Spectrosc. Radiat. Transf. 2012, 113, 2321–2333. [Google Scholar] [CrossRef]
- Pilot, R.; Signorini, R.; Durante, C.; Orian, L.; Bhamidipati, M.; Fabris, L. A Review on Surface-Enhanced Raman Scattering. Biosensors 2019, 9, 57. [Google Scholar] [CrossRef] [Green Version]
- Schlücker, S. Surface-Enhanced Raman Spectroscopy: Concepts and Chemical Applications. Angew. Chem. Int. Ed. 2014, 53, 4756–4795. [Google Scholar] [CrossRef]
- Li, W.; Camargo, P.; Lu, X.; Xia, Y. Dimers of Silver Nanospheres: Facile Synthesis and Their Use as Hot Spots for Surface-Enhanced Raman Scattering. Nano Lett. 2008, 9, 485–490. [Google Scholar] [CrossRef] [Green Version]
- Hao, E.; Schatz, G.C. Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 2004, 120, 357–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Álvarez-Puebla, R.A.; Contreras-Cáceres, R.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L.M. Au@pNIPAM Colloids as Molecular Traps for Surface-Enhanced, Spectroscopic, Ultra-Sensitive Analysis. Angew. Chem. 2008, 121, 144–149. [Google Scholar] [CrossRef]
- Guerrini, L.; Garcia-Ramos, J.V.; Domingo, C.; Sanchez-Cortes, S. Functionalization of Ag Nanoparticles with Dithiocarbamate Calix[4]arene As an Effective Supramolecular Host for the Surface-Enhanced Raman Scattering Detection of Polycyclic Aromatic Hydrocarbons. Langmuir 2006, 22, 10924–10926. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhu, J.; Wei, B. Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications. Chem. Soc. Rev. 2016, 45, 3145–3187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033. [Google Scholar] [CrossRef]
- Yu, X.; Cai, H.; Zhang, W.; Li, X.; Pan, N.; Luo, Y.; Wang, X.; Hou, J.G. Tuning Chemical Enhancement of SERS by Controlling the Chemical Reduction of Graphene Oxide Nanosheets. ACS Nano 2011, 5, 952–958. [Google Scholar] [CrossRef]
- Xu, H.; Xie, L.; Zhang, H.; Zhang, J. Effect of Graphene Fermi Level on the Raman Scattering Intensity of Molecules on Graphene. ACS Nano 2011, 5, 5338–5344. [Google Scholar] [CrossRef]
- Xie, L.; Ling, X.; Fang, Y.; Zhang, J.; Liu, Z. Graphene as a Substrate To Suppress Fluorescence in Resonance Raman Spectroscopy. J. Am. Chem. Soc. 2009, 131, 9890–9891. [Google Scholar] [CrossRef]
- Swathi, R.S.; Sebastian, K.L. Resonance energy transfer from a dye molecule to graphene. J. Chem. Phys. 2008, 129, 054703. [Google Scholar] [CrossRef]
- Ling, X.; Fang, W.; Lee, Y.H.; Araujo, P.T.; Zhang, X.; Rodriguez-Nieva, J.F.; Lin, Y.; Zhang, Y.; Kong, J.; Dresselhaus, M.S. Raman Enhancement Effect on Two-Dimensional Layered Materials: Graphene, h-BN and MoS2. Nano Lett. 2014, 14, 3033–3040. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Han, W.-Q.; Wu, L.; Zhu, Y.; Watanabe, K.; Taniguchi, T. Structure of chemically derived mono- and few-atomic-layer boron nitride sheets. Appl. Phys. Lett. 2008, 93, 223103. [Google Scholar] [CrossRef]
- Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10, 1271–1275. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Fang, Y.; Wang, E. A Binary Functional Substrate for Enrichment and Ultrasensitive SERS Spectroscopic Detection of Folic Acid Using Graphene Oxide/Ag Nanoparticle Hybrids. ACS Nano 2011, 5, 6425–6433. [Google Scholar] [CrossRef]
- Liu, M.; Chen, W. Graphene nanosheets-supported Ag nanoparticles for ultrasensitive detection of TNT by surface-enhanced Raman spectroscopy. Biosens. Bioelectron. 2013, 46, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Huang, Y.; Lu, X.; Zhang, S.; Li, J.; Wei, G.; Su, Z. One-Step Synthesis of Large-Scale Graphene Film Doped with Gold Nanoparticles at Liquid–Air Interface for Electrochemistry and Raman Detection Applications. Langmuir 2014, 30, 8980–8989. [Google Scholar] [CrossRef]
- Su, S.; Zhang, C.; Yuwen, L.; Chao, J.; Zuo, X.; Liu, X.; Song, C.; Fan, C.; Wang, L. Creating SERS Hot Spots on MoS2 Nanosheets with in Situ Grown Gold Nanoparticles. ACS Appl. Mater. Interfaces 2014, 6, 18735–18741. [Google Scholar] [CrossRef]
- Shorie, M.; Kumar, V.; Kaur, H.; Singh, K.; Tomer, V.K.; Sabherwal, P. Plasmonic DNA hotspots made from tungsten disulfide nanosheets and gold na-noparticles for ultrasensitive aptamer-based SERS detection of myoglobin. Microchim. Acta 2018, 185, 158. [Google Scholar] [CrossRef]
- Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003, 107, 668–677. [Google Scholar] [CrossRef]
- Link, S.; Mohamed, M.B.; El-Sayed, M.A. Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Me-dium Dielectric Constant. J. Phys. Chem. B 1999, 103, 3073–3077. [Google Scholar] [CrossRef] [Green Version]
- Ni, W.; Kou, X.; Yang, Z.; Wang, J. Tailoring Longitudinal Surface Plasmon Wavelengths, Scattering and Absorption Cross Sections of Gold Nanorods. ACS Nano 2008, 2, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Chu, M.-W.; Myroshnychenko, V.; Chen, C.H.; Deng, J.-P.; Mou, C.-Y.; de Abajo, F.J.G. Probing Bright and Dark Surface-Plasmon Modes in Individual and Coupled Noble Metal Nanoparticles Using an Electron Beam. Nano Lett. 2008, 9, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Guiton, B.S.; Iberi, V.; Li, S.; Leonard, D.N.; Parish, C.M.; Kotula, P.G.; Varela, M.; Schatz, G.C.; Pennycook, S.J.; Camden, J.P. Correlated Optical Measurements and Plasmon Mapping of Silver Nanorods. Nano Lett. 2011, 11, 3482–3488. [Google Scholar] [CrossRef] [PubMed]
- Smitha, S.; Gopchandran, K.; Smijesh, N.; Philip, R. Size-dependent optical properties of Au nanorods. Prog. Nat. Sci. 2013, 23, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Pardehkhorram, R.; Bonaccorsi, S.; Zhu, H.; Gonçales, V.; Wu, Y.; Liu, J.; Lee, N.A.; Tilley, R.D.; Gooding, J.J. Intrinsic and well-defined second generation hot spots in gold nanobipyramids versus gold nanorods. Chem. Commun. 2019, 55, 7707–7710. [Google Scholar] [CrossRef] [PubMed]
- Yougbaré, S.; Chou, H.-L.; Yang, C.-H.; Krisnawati, D.I. Facet-dependent gold nanocrystals for effective photothermal killing of bacteria. J. Hazard. Mater. 2021, 407, 124617. [Google Scholar] [CrossRef]
- LI, N.; HAN, S.; ZHANG, C.; LIN, S.; SHA, X.-Y.; HASI, W. Detection of Chlortetracycline Hydrochloride in Milk with a Solid SERS Substrate Based on Self-assembled Gold Nanobipyramids. Anal. Sci. 2020, 36, 935–940. [Google Scholar] [CrossRef] [Green Version]
- Nelayah, J.; Kociak, M.; Stéphan, O.; de Abajo, F.J.G.; Tencé, M.; Henrard, L.; Taverna, D.; Pastoriza-Santos, I.; Liz-Marzán, L.M.; Colliex, C. Mapping surface plasmons on a single metallic nanoparticle. Nat. Phys. 2007, 3, 348–353. [Google Scholar] [CrossRef]
- Brioude, A.; Pileni, M.P. Silver Nanodisks: Optical Properties Study Using the Discrete Dipole Approximation Method. J. Phys. Chem. B 2005, 109, 23371–23377. [Google Scholar] [CrossRef]
- Tan, T.; Tian, C.; Ren, Z.; Yang, J.; Chen, Y.; Sun, L.; Li, Z.; Wu, A.; Yin, J.; Fu, H. LSPR-dependent SERS performance of silver nanoplates with highly stable and broad tunable LSPRs prepared through an improved seed-mediated strategy. Phys. Chem. Chem. Phys. 2013, 15, 21034–21042. [Google Scholar] [CrossRef]
- Hao, F.; Nehl, C.L.; Hafner, J.H.; Nordlander, P. Plasmon Resonances of a Gold Nanostar. Nano Lett. 2007, 7, 729–732. [Google Scholar] [CrossRef] [PubMed]
- Nehl, C.L.; Liao, H.; Hafner, J.H. Optical Properties of Star-Shaped Gold Nanoparticles. Nano Lett. 2006, 6, 683–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, P.S.; Pastoriza-Santos, I.; Rodriguez-Gonzalez, B.; De Abajo, F.J.G.; Liz-Marzán, L.M. High-yield synthesis and optical response of gold nanostars. Nanotechnology 2007, 19, 015606. [Google Scholar] [CrossRef] [PubMed]
- Hao, E.; Bailey, R.C.; Schatz, G.C.; Hupp, J.T.; Li, S. Synthesis and Optical Properties of “Branched” Gold Nanocrystals. Nano Lett. 2004, 4, 327–330. [Google Scholar] [CrossRef]
- Alvarez-Puebla, R.A.; Liz-Marzán, L.M. SERS-Based Diagnosis and Biodetection. Small 2010, 6, 604–610. [Google Scholar] [CrossRef]
- Khoury, C.G.; Vo-Dinh, T. Gold Nanostars for Surface-Enhanced Raman Scattering: Synthesis, Characterization and Optimization. J. Phys. Chem. C 2008, 112, 18849–18859. [Google Scholar] [CrossRef] [Green Version]
- Mers, S.V.S.; Umadevi, S.; Ganesh, V. Controlled Growth of Gold Nanostars: Effect of Spike Length on SERS Signal Enhancement. ChemPhysChem 2017, 18, 1358–1369. [Google Scholar] [CrossRef]
- Hong, S.; Li, X. Optimal Size of Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy under Different Conditions. J. Nanomater. 2013, 2013, 790323. [Google Scholar] [CrossRef]
- Kundu, S. A new route for the formation of Au nanowires and application of shape-selective Au nanoparticles in SERS studies. J. Mater. Chem. C 2013, 1, 831–842. [Google Scholar] [CrossRef]
- Li, M.; Cushing, S.K.; Zhang, J.; Lankford, J.; Aguilar, Z.P.; Ma, D.; Wu, N. Shape-dependent surface-enhanced Raman scattering in gold–Raman-probe–silica sandwiched nanoparticles for biocompatible applications. Nanotechnology 2012, 23, 115501. [Google Scholar] [CrossRef]
- Shvalya, V.; Filipič, G.; Zavašnik, J.; Abdulhalim, I.; Cvelbar, U. Surface-enhanced Raman spectroscopy for chemical and biological sensing using nanoplas-monics: The relevance of interparticle spacing and surface morphology. Appl. Phys. Rev. 2020, 7, 031307. [Google Scholar] [CrossRef]
- Mejía-Salazar, J.R.; Oliveira, O.N., Jr. Plasmonic bio-sensing: Focus review. Chem. Rev. 2018, 118, 10617–10625. [Google Scholar] [CrossRef] [PubMed]
- Soler, M.; Lechuga, L.M. Principles, technologies, and applications of plasmonic biosensors. J. Appl. Phys. 2021, 129, 111102. [Google Scholar] [CrossRef]
- Abdulhalim, I. Coupling configurations between extended surface electromagnetic waves and localized surface plasmons for ultrahigh field enhancement. Nanophotonics 2018, 7, 1891–1916. [Google Scholar] [CrossRef]
- Hu, C.; Rong, J.; Cui, J.; Yang, Y.; Yang, L.; Wang, Y.; Liu, Y. Fabrication of a graphene oxide–gold nanorod hybrid material by electrostatic self-assembly for surface-enhanced Raman scattering. Carbon 2013, 51, 255–264. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, X.; Wen, G.; Luo, Y.; Liang, A.; Jiang, Z. A Sensitive Silver Nanorod/Reduced Graphene Oxide SERS Analytical Platform and Its Application to Quantitative Analysis of Iodide in Solution. Plasmonics 2014, 10, 285–295. [Google Scholar] [CrossRef]
- Yu, J.; Ma, Y.; Yang, C.; Zhang, H.; Liu, L.; Su, J.; Gao, Y. SERS-active composite based on rGO and Au/Ag core-shell nanorods for analytical applications. Sens. Actuators B Chem. 2018, 254, 182–188. [Google Scholar] [CrossRef]
- Luo, Y.; Ma, L.; Zhang, X.; Liang, A.; Jiang, Z. SERS Detection of Dopamine Using Label-Free Acridine Red as Molecular Probe in Reduced Graphene Oxide/Silver Nanotriangle Sol Substrate. Nanoscale Res. Lett. 2015, 10, 230. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhu, C.; Hu, X.; Xu, Q.; Zhao, H.; Meng, G.; Lei, Y. Highly sensitive surface-enhanced Raman scattering detection of organic pesticides based on Ag-nanoplate decorated graphene-sheets. Appl. Surf. Sci. 2019, 486, 405–410. [Google Scholar] [CrossRef]
- Krishnan, S.K.; Godoy, Y.C. Deep Eutectic Sol-vent-Assisted Synthesis of Au Nanostars Supported on Graphene Oxide as an Efficient Substrate for SERS-Based Molecular Sensing. ACS Omega 2020, 5, 1384–1393. [Google Scholar] [CrossRef]
- Fan, Z.; Kanchanapally, R.; Ray, P.C. Hybrid Graphene Oxide Based Ultrasensitive SERS Probe for Label-Free Biosensing. J. Phys. Chem. Lett. 2013, 4, 3813–3818. [Google Scholar] [CrossRef]
- Pan, X.; Li, L.; Lin, H.; Tan, J.; Wang, H.; Liao, M.; Chen, C.; Shan, B.; Chen, Y.; Li, M. A graphene oxide-gold nanostar hybrid based-paper bio-sensor for label-free SERS detection of serum bilirubin for diagnosis of jaundice. Biosens. Bioelectron. 2019, 145, 111713. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Shi, L.; Schmidt, M.S.; Boisen, A.; Hansen, O.; Zi, J.; Xiao, S.; Mortensen, N.A. Enhanced Light–Matter Interactions in Graphene-Covered Gold Nanovoid Arrays. Nano-Lett. 2013, 13, 4690–4696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Chu, B.; Zhang, L.; Zhao, F.; Yan, J.; Li, X.; Liu, Q.; Lu, Y. Constructing sensitive SERS substrate with a sandwich structure separated by single layer graphene. Sensors Actuators B Chem. 2018, 263, 634–642. [Google Scholar] [CrossRef]
- Tegegne, W.A.; Su, W.-N.; Tsai, M.-C.; Beyene, A.-B.; Hwang, B.-J. Ag nanocubes decorated 1T-MoS2 nanosheets SERS substrate for reliable and ultrasensitive detection of pesticides. Appl. Mater. Today 2020, 21, 100871. [Google Scholar] [CrossRef]
- Rani, R.; Yoshimura, A.; Das, S.; Sahoo, M.R.; Kundu, A.; Sahu, K.K.; Meunier, V.; Nayak, S.K.; Koratkar, N.; Hazra, K.S. Sculpting Artificial Edges in Monolayer MoS2 for Controlled Formation of Surface-Enhanced Raman Hotspots. ACS Nano 2020, 14, 6258–6268. [Google Scholar] [CrossRef]
- Cai, Q.; Li, L.H.; Yu, Y.; Liu, Y.; Huang, S.; Chen, Y.; Watanabe, K.; Taniguchi, T. Boron nitride nanosheets as improved and reusable sub-strates for gold nanoparticles enabled surface enhanced Raman spectroscopy. Phys. Chem. Chem. Phys. 2015, 17, 7761–7766. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Wang, X. Fabrication of Flexible Metal-Nanoparticle Films Using Graphene Oxide Sheets as Substrates. Small 2009, 5, 2212–2217. [Google Scholar] [CrossRef]
- Gorbachev, R.V.; Riaz, I.; Nair, R.R.; Jalil, R.; Britnell, L.; Belle, B.D.; Hill, E.W.; Novoselov, K.S.; Watanabe, K.; Taniguchi, T.; et al. Hunting for Monolayer Boron Nitride: Optical and Raman Signatures. Small 2011, 7, 465–468. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Zhang, X.-J.; You, T.-T.; Yang, N.; Wang, G.-S.; Yin, P.-G. Three-dimensional MoS2-NS@Au-NPs hybrids as SERS sensor for quantitative and ultra-sensitive detection of melamine in milk. J. Raman Spectrosc. 2018, 49, 245–255. [Google Scholar] [CrossRef]
- Qiu, H.; Wang, M.; Li, L.; Li, J.; Yang, Z.; Cao, M. Hierarchical MoS2-microspheres decorated with 3D AuNPs arrays for high-efficiency SERS sensing. Sensors Actuators B Chem. 2017, 255, 1407–1414. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, R.S.; Soni, R.K. Synthesis of 3D-MoS2 nanoflowers with tunable surface area for the application in photocatalysis and SERS based sensing. J. Alloy. Compd. 2020, 849, 156502. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, X.; Du, Y.; Chen, G.; Qu, Y.; Jiang, J.; Zhu, Y. Strong light–matter interactions in sub-nanometer gaps defined by monolayer graphene: Toward highly sensitive SERS substrates. Nanoscale 2014, 6, 11112–11120. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, C.; Yu, J.; Jiang, S.; Xu, S.; Yang, C.; Liu, Y.J.; Gao, X.; Liu, A.; Man, B. SERS activated platform with three-dimensional hot spots and tunable nanometer gap. Sensors Actuators B Chem. 2018, 258, 163–171. [Google Scholar] [CrossRef]
- Lu, Z.; Si, H.; Li, Z.; Yu, J.; Liu, Y.; Feng, D.; Zhang, C.; Yang, W.; Man, B.; Jiang, S. Sensitive, reproducible, and stable 3D plasmonic hybrids with bilayer WS2 as nanospacer for SERS analysis. Opt. Express 2018, 26, 21626–21641. [Google Scholar] [CrossRef]
- Xu, W.; Xiao, J.; Chen, Y.; Chen, Y.; Ling, X.; Zhang, J. Graphene-Veiled Gold Substrate for Surface-Enhanced Raman Spectroscopy. Adv. Mater. 2013, 25, 928–933. [Google Scholar] [CrossRef]
- Banchelli, M.; Tiribilli, B.; De Angelis, M.; Pini, R.; Caminati, G.; Matteini, P. Controlled Veiling of Silver Nanocubes with Graphene Oxide for Improved Surface-Enhanced Raman Scattering Detection. ACS Appl. Mater. Interfaces 2016, 8, 2628–2634. [Google Scholar] [CrossRef] [Green Version]
- Jalani, G.; Cerruti, M. Nano graphene oxide-wrapped gold nanostars as ultrasensitive and stable SERS nanoprobes. Nanoscale 2015, 7, 9990–9997. [Google Scholar] [CrossRef]
- Cai, Q.; Mateti, S.; Watanabe, K.; Taniguchi, T.; Huang, S.; Chen, Y.; Li, L.H. Boron Nitride Nanosheet-Veiled Gold Nanoparticles for Sur-face-Enhanced Raman Scattering. ACS Appl. Mater. Interfaces 2016, 8, 15630–15636. [Google Scholar] [CrossRef] [Green Version]
- Qiu, X.; You, X.; Chen, X.; Chen, H.; Dhinakar, A.; Liu, S.; Guo, Z.; Wu, J.; Liu, Z. Development of graphene oxide-wrapped gold nanorods as robust nanoplatform for ultrafast near-infrared SERS bioimaging. Int. J. Nanomed. 2017, 12, 4349–4360. [Google Scholar] [CrossRef] [Green Version]
- Karabeber, H.; Huang, R.; Iacono, P.; Samii, J.M.; Pitter, K.; Holland, E.C.; Kircher, M.F. Guiding Brain Tumor Resection Using Surface-Enhanced Raman Scattering Na-noparticles and a Hand-Held Raman Scanner. ACS Nano 2014, 8, 9755–9766. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.W.; Kang, S.; Khan, A.; Bao, P.Q.; Liu, J.T. In vivo multiplexed molecular imaging of esophageal cancer via spectral endoscopy of topically applied SERS nanoparticles. Biomed. Opt. Express 2015, 6, 3714–3723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Mi, X.; Tan, X.; Xiang, R. Recent Progress on Liquid Biopsy Analysis using Surface-Enhanced Raman Spectroscopy. Theranostics 2019, 9, 491–525. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Huang, Y.; Kannan, P.; Zhang, L.; Lin, Z.; Zhang, J.; Chen, T.; Guo, L. Flexible and Adhesive Surface Enhance Raman Scattering Active Tape for Rapid Detection of Pesticide Residues in Fruits and Vegetables. Anal. Chem. 2016, 88, 2149–2155. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wang, Y.; Luo, Y.; Duan, H.; Li, D.; Xu, H.; Fodjo, E.K. Rapid and sensitive on-site detection of pesticide residues in fruits and vegetables using screen-printed paper-based SERS swabs. Anal. Methods 2018, 10, 4655–4664. [Google Scholar] [CrossRef]
- Perumal, J.; Wang, Y.; Attia, A.B.E.; Dinish, U.S.; Olivo, M. Towards a point-of-care SERS sensor for biomedical and agri-food analysis applications: A review of recent advancements. Nanoscale 2021, 13, 553–580. [Google Scholar] [CrossRef] [PubMed]
NANOPARTICLES DEPOSITED ON GRAPHENE | ||||||
System | Molecule Used to Calculate LOD | Limit of Detection (LOD) | Enhancement Factor (EF) | Molecule Used to Calculate EF | Equation Used to Calculate EF | Reference |
Graphene oxide/Ag nanoparticle hybrids (GO/AgNPs) | Acid folic | 9 nM | Not calculated | [35] | ||
Graphene nanosheets/Ag nanoparticle hybrids (Ag/GNs) | 2,4,6-trinitrotoluene (TNT) | 5 × 10−16 M | Not calculated | [36] | ||
Reduced graphene oxide/Au nanoparticle hybrids (RGO/AuNPs) | 2-thiouracil (2-TU) | 1 μM | 5.6 × 105 | 4-aminothiophenol (4-ATP) | (ISERS/Ibulk) × (Mbulk/Mads) | [37] |
NANOPARTICLES GROWN ON DIFFERENT 2D NANOMATERIALS | ||||||
System | Molecule used to calculate LOD | Limit of Detection (LOD) | Enhancement Factor (EF) | Molecule used to calculate EF | Equation used to calculate EF | Reference |
AuNP-decorated MoS2 nanosheets (AuNPs@MoS2) | Rhodamine 6G (R6G) | 10−6 M | 8.2 × 105 | Rhodamine 6G (R6G) | (ISERS/Ibulk) × (Nbulk/NSERS) | [38] |
AuNP-decorated tungsten disulfide (WS2) nanosheets (Au/WS2) | Myoglobin (Mb) | 10−2 pg mL−1 | 6.78 × 106 | Rhodamine 6G (R6G) | (ISERS/Ibulk) (Cbulk/CSERS) (Pbulk/PSERS) | [39] |
NANORODS | ||||||
System | Molecule Used to Calculate LOD | Limit of Detection (LOD) | Enhancement Factor (EF) | Molecule Used to Calculate EF | Equation Used to Calculate EF | Reference |
Graphene oxide/Au nanorods hybrids (GO-AuNRs) | Crystal violet (CV), neutral red (NR), blue (TB), ponceau S (PS) | Not calculated | Not calculated | [66] | ||
Silver nanorods/reduced graphene oxide nanosheets hybrids (AgNR/rGO) | Rhodamine 6G (Rh6G) | 0.2 nmol/L–0.004 μmol/L | Not calculated | [67] | ||
Iodine ion | ||||||
Au/Ag core–shell nanorods and reduced graphene oxide hybrid structure (Au@AgNRs/rGO) | Thiram | 5.12 × 10−3 μM | (5.0 ± 0.2) × 108 | Rhodamine-6G (R6G)) | (ISERS/Ibulk) × (Nbulk/NSERS) | [68] |
Au NANOTRIANGLES | ||||||
System | Molecule used to calculate LOD | Limit of Detection (LOD) | Enhancement Factor (EF) | Molecule used to calculate EF | Equation used to calculate EF | Reference |
Reduced graphene oxide/silver nanotriangles hybrid structures (rGO/AgNT) | dopamine (DA) | 1.2 μmol/L | Not calculated | [65] | ||
Ag-nanoplates/graphene hybrids (Ag-NP@GH) | thiram | 40 Nm–600 nM | 4.7 × 108 | Rhodamine 6G (R6G) | (ISERS × C0)/(I0 × CSERS) | [66] |
Methyl parathion (MP) | ||||||
Au NANOSTARS | ||||||
System | Molecule Used to Calculate LOD | Limit of Detection (LOD) | Enhancement Factor (EF) | Molecule Used to Calculate EF | Equation Used to Calculate EF | Reference |
Graphene oxide/Au nanostars hybrid structure (GO/AuNSs) | Crystal violet (CV) | 10−11 M | 1.7 × 105 | Crystal violet (CV) | (ISERS/NSERS)/(INor/NNor) | [69] |
Popcorn-shaped gold nanoparticles and graphene oxide hybrid structures | Methicillin-resistant Staphylococcus aureus (MRSA) | 10 CFU/mL | 3.8 × 1011 | Rh6G | (ISERS/Ibulk) × (Mbulk/Mads) | [70] |
Graphene oxide/Au nanostars hybrid structure (GO/AuNSs) | Bilirubin | 0.436 μM | 2.43 × ISERS/Ibulk | 4-nitrothiophenol (4-NTP) | (ISERS/NSERS) × (Nbulk/Ibulk) | [71] |
ENGINEERED 2D NANOMATERIAL | ||||||
---|---|---|---|---|---|---|
System | Molecule used to calculate LOD | Limit of Detection (LOD) | Enhancement Factor (EF) | Molecule used to calculate EF | Equation used to calculate EF | Reference |
Ag nanocube-decorated 1T-MoS2 nanosheet composites (1T-MoS2/AgNCs) | Thiram (TRM) | 0.62 Nm–50 Nm | 1.78 × 107 | Rhodamine 6G (R6G) | (ISERS × CRaman)/(IRaman × CSERS) | [76] |
Thiabendazole (TBZ) | ||||||
Gold nanoparticle-decorated MoS2 nanosheets (n-MoS2@AuNP) | R = Rhodamine B (RhB) | 10−10 M | ∼104 | R = Rhodamine B (RhB) | Peak intensity ratio of the SERSactive regions and the flake surface | [77] |
Gold nanoparticles decorated boron nitride (BN) nanosheets (Au/BN) | Rhodamine 6G (R6G) | 5.12 × 10−3 μM | (5.0 ± 0.2) × 108 | Rhodamine 6G (R6G) | (ISERS/Ibulk) × (Nbulk/NSERS) | [78] |
THREE DIMENSIONAL STRUCTURES | ||||||
---|---|---|---|---|---|---|
System | Molecule Used to Calculate LOD | Limit of Detection (LOD) | Enhancement Factor (EF) | Molecule Used to Calculate EF | Equation Used to Calculate EF | Reference |
Gold nanoparticle-decorated three-dimensional (3D) MoS2 nanospheres ((3D MoS2-NS@Au-NPs) | Melamine | 1 ppb | 7.9 × 107 | 4-mercaptophenol (4-MPH) | (ISERS/Nads)/(Ibulk/Nbulk) | [81] |
Hierarchical MoS2-microspheres decorated with “cauliflower-like” AuNP arrays (CF-AuNPs@MoS2-MS) | Rhodamine 6G (R6G) | 10−14–10−15 | Not calculated | [82] | ||
Methylene blue (MB) | ||||||
Gold nanoparticle-decorated boron nitride (BN) nanosheets (Au/BN) | Rhodamine 6G (R6G) | 5.12 × 10−3 μM | (5.0 ± 0.2) × 108 | Rhodamine 6G (R6G) | (ISERS/Ibulk) × (Nbulk/NSERS) | [78] |
NANOSPACERS | ||||||
System | Molecule Used to Calculate LOD | Limit of Detection (LOD) | Enhancement Factor (EF) | Molecule Used to Calculate EF | Equation Used to Calculate EF | Reference |
---|---|---|---|---|---|---|
Graphene sandwiched between two layers of vertically stacked Au NPs (Au NP/graphene/Au NP) | Sudan III | 0.1 nM | 1.6 × 108–2.5 × 108 | Rhodamine B (RhB) | (ISERS/Ibulk)/(Nbulk/ NSERS) | [84] |
Methylene blue | Rhodamine 6G (R6G) | |||||
Graphene nanosheet sandwiched between a layer of AuNPs and AgNPs (AgNPs/graphene@AuNPs) | Malachite green (MG) in deionized (DI) water | 10−11 M–10−8 M | Not calculated | [85] | ||
Malachite green (MG) in sea water | ||||||
WS2 nanosheets sandwiched between two Au nanoparticle layers (AuNPs/WS2@AuNPs) | Rhodamine 6G (R6G) | 10−11 M | Not calculated | [86] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serafinelli, C.; Fantoni, A.; Alegria, E.C.B.A.; Vieira, M. Plasmonic Metal Nanoparticles Hybridized with 2D Nanomaterials for SERS Detection: A Review. Biosensors 2022, 12, 225. https://doi.org/10.3390/bios12040225
Serafinelli C, Fantoni A, Alegria ECBA, Vieira M. Plasmonic Metal Nanoparticles Hybridized with 2D Nanomaterials for SERS Detection: A Review. Biosensors. 2022; 12(4):225. https://doi.org/10.3390/bios12040225
Chicago/Turabian StyleSerafinelli, Caterina, Alessandro Fantoni, Elisabete C. B. A. Alegria, and Manuela Vieira. 2022. "Plasmonic Metal Nanoparticles Hybridized with 2D Nanomaterials for SERS Detection: A Review" Biosensors 12, no. 4: 225. https://doi.org/10.3390/bios12040225
APA StyleSerafinelli, C., Fantoni, A., Alegria, E. C. B. A., & Vieira, M. (2022). Plasmonic Metal Nanoparticles Hybridized with 2D Nanomaterials for SERS Detection: A Review. Biosensors, 12(4), 225. https://doi.org/10.3390/bios12040225