-
Achievement of 15-Minute Adaptive PCR Benchmark with 1370 nm Laser Heating
-
Surface Modification for 3D-Printed ELISA Platforms
-
Innovative Molecular Imprinting Sensor for Quick, Non-Invasive Cortisol Monitoring in Fish Welfare
-
Recent Advances of Fluorescent Aptasensors for the Detection of Antibiotics in Food
Journal Description
Biosensors
Biosensors
is an international, peer-reviewed, open access journal on the technology and science of biosensors published monthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, MEDLINE, PMC, Embase, CAPlus / SciFinder, Inspec, and other databases.
- Journal Rank: JCR - Q1 (Chemistry, Analytical) / CiteScore - Q1 (Instrumentation)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 18.9 days after submission; acceptance to publication is undertaken in 2.6 days (median values for papers published in this journal in the second half of 2024).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
4.9 (2023);
5-Year Impact Factor:
5.2 (2023)
Latest Articles
A Multi-Domain Feature Fusion CNN for Myocardial Infarction Detection and Localization
Biosensors 2025, 15(6), 392; https://doi.org/10.3390/bios15060392 - 17 Jun 2025
Abstract
Myocardial infarction (MI) is a critical cardiovascular disease characterized by extensive myocardial necrosis occurring within a short timeframe. Traditional MI detection and localization techniques predominantly utilize single-domain features as input. However, relying solely on single-domain features of the electrocardiogram (ECG) proves challenging for
[...] Read more.
Myocardial infarction (MI) is a critical cardiovascular disease characterized by extensive myocardial necrosis occurring within a short timeframe. Traditional MI detection and localization techniques predominantly utilize single-domain features as input. However, relying solely on single-domain features of the electrocardiogram (ECG) proves challenging for accurate MI detection and localization due to the inability of these features to fully capture the complexity and variability in cardiac electrical activity. To address this, we propose a multi-domain feature fusion convolutional neural network (MFF–CNN) that integrates the time domain, frequency domain, and time-frequency domain features of ECG for automatic MI detection and localization. Initially, we generate 2D frequency domain and time-frequency domain images to combine with single-dimensional time domain features, forming multi-domain input features to overcome the limitations inherent in single-domain approaches. Subsequently, we introduce a novel MFF–CNN comprising a 1D CNN and two 2D CNNs for multi-domain feature learning and MI detection and localization. The experimental results demonstrate that in rigorous inter-patient validation, our method achieves 99.98% detection accuracy and 84.86% localization accuracy. This represents a 3.43% absolute improvement in detection and a 16.97% enhancement in localization over state-of-the-art methods. We believe that our approach will greatly benefit future research on cardiovascular disease.
Full article
(This article belongs to the Special Issue Portable Bioelectronic Devices for Telemedicine, Healthcare and Sports Applications)
►
Show Figures
Open AccessArticle
MyμAlbumin: A Cutting-Edge Immunoturbidity-Based Device with Real-time and Seamless Data Transmission for Early Detection of Chronic Kidney Disease at the Point of Care
by
Wanna Chaijaroenkul, Napaporn Youngvises, Artitaya Thiengsusuk, Tullayakorn Plengsuriyakarn, Jakkrapong Suwanboriboon, Kridsada Sirisabhabhorn, Wanchai Meesiri and Kesara Na-Bangchang
Biosensors 2025, 15(6), 391; https://doi.org/10.3390/bios15060391 - 17 Jun 2025
Abstract
Microalbuminemia, characterized by a urinary albumin concentration between 20 and 200 mg/L, is a critical marker in assessing the risk of chronic kidney disease (CKD), diabetic nephropathy, and various other chronic conditions. Previously, we developed and validated the MyACR point-of-care (PoC) device, which
[...] Read more.
Microalbuminemia, characterized by a urinary albumin concentration between 20 and 200 mg/L, is a critical marker in assessing the risk of chronic kidney disease (CKD), diabetic nephropathy, and various other chronic conditions. Previously, we developed and validated the MyACR point-of-care (PoC) device, which facilitates the monitoring of CKD progression through real-time data transmission, thus enhancing patient management. This device utilizes a spectrophotometric dye-binding assay to measure albumin and creatinine concentrations in urine samples, providing an albumin-to-creatinine ratio (ACR) result. In the present study, we introduced a refined version of the PoC device, MyμAlbumin, designed to offer a simple, accurate, specific, sensitive, and rapid method for detecting microalbumin in urine as an early indicator of CKD and related diseases. The measurement is based on a specific immunoturbidimetric assay in a microcuvette, using a total solution volume of 125 µL (n = 5 for each validation test). The MyμAlbumin device demonstrated excellent performance, achieving high accuracy (%DMV < 4.67) and precision (%CV < 5) and a strong correlation (R2 > 0.995) with laboratory spectrophotometry (dye-binding assay) and reference hospital-based immunoturbidimetric assay. Its high sensitivity (LOQ = 5 mg/L) positions MyμAlbumin as a highly viable and cost-effective tool for clinical use. Additionally, the device supports real-time, seamless data transmission, making it ideal for integration into remote healthcare settings.
Full article
(This article belongs to the Section Biosensors and Healthcare)
Open AccessArticle
Cellulose-Based Colorimetric Test Strips for SARS-CoV-2 Antibody Detection
by
Mariana P. Sousa, Ana Cláudia Pereira, Bárbara Correia, Anália do Carmo, Ana Miguel Matos, Maria Teresa Cruz and Felismina T. C. Moreira
Biosensors 2025, 15(6), 390; https://doi.org/10.3390/bios15060390 - 17 Jun 2025
Abstract
The COVID-19 pandemic highlighted the need for rapid, cost-effective tools to monitor transmission and immune response. We developed two novel paper-based colorimetric biosensors using glutaraldehyde as a protein dye—its first use in this context. Glutaraldehyde reacts with amino groups to generate a brown
[...] Read more.
The COVID-19 pandemic highlighted the need for rapid, cost-effective tools to monitor transmission and immune response. We developed two novel paper-based colorimetric biosensors using glutaraldehyde as a protein dye—its first use in this context. Glutaraldehyde reacts with amino groups to generate a brown color, enabling detection of SARS-CoV-2 antibodies. Wathman filter paper was functionalized with (3-aminopropyl)triethoxysilane (APTES) to immobilize virus-like particles (VLPs) and nucleocapsid protein (N-protein) as biorecognition elements. Upon incubation with antibody-containing samples, glutaraldehyde enabled colorimetric detection using RGB analysis in ImageJ software. Both sensors showed a linear correlation between antibody concentration and RGB values in buffer and serum. The VLP sensor responded linearly within the range of 1.0–20 µg/mL (green coordinate) in 500-fold diluted serum and the N-protein sensor from 1.0–40 µg/mL (blue coordinate) in 250-fold diluted serum. Both sensors demonstrated good selectivity, with glucose causing up to 18% interference. These biosensors represent a paradigm shift, as they provide a sensitive, user-friendly, and cost-effective option for semi-quantitative serological analysis. Furthermore, their versatility goes beyond the detection of SARS-CoV-2 antibodies and suggests broader applicability for various molecular targets.
Full article
(This article belongs to the Special Issue Material-Based Biosensors and Biosensing Strategies)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Comprehensive Analysis of Shear Deformation Cytometry Based on Numerical Simulation Method
by
Jun Wang, Jiahe Chen, Wenlai Tang and Shu Zhu
Biosensors 2025, 15(6), 389; https://doi.org/10.3390/bios15060389 - 17 Jun 2025
Abstract
The deformability of cells reflects their capacity for shape changes under external forces; however, the systematic investigation of deformation-influencing factors remains conspicuously underdeveloped. In this work, by using an incompressible neo-Hookean viscoelastic solid model, coupled with the Kelvin–Voigt model, the effects of flow
[...] Read more.
The deformability of cells reflects their capacity for shape changes under external forces; however, the systematic investigation of deformation-influencing factors remains conspicuously underdeveloped. In this work, by using an incompressible neo-Hookean viscoelastic solid model, coupled with the Kelvin–Voigt model, the effects of flow rate, fluid viscosity, cell diameter, and shear modulus on cell deformability were systematically calculated and simulated. Additionally, the relationship between cell deformability and relaxation time within a dissipative process was also simulated. The results indicate that cell deformation is positively correlated with flow rate, with an approximate linear relationship between the deformation index and flow velocity. Fluid viscosity also significantly affects cell deformation, as an approximate linear relationship with the deformation index is observed. Cell diameter has a more prominent impact on cell deformability than do flow rate or fluid viscosity, with the deformation index increasing more rapidly than the cell diameter. As the Young’s modulus increases, cell deformation decreases non-linearly. Cell deformation in the channel also gradually decreases with the increase in relaxation time. These findings enhance the understanding of cell biophysical characteristics and provide a basis for the precise control of cell deformation in deformability cytometry. This research holds significant implications for cell analysis-based animal health monitoring in the field of agriculture, as well as for other related areas.
Full article
(This article belongs to the Section Nano- and Micro-Technologies in Biosensors)
►▼
Show Figures

Figure 1
Open AccessCommunication
Parylene-C Modified OSTE Molds for PDMS Microfluidic Chip Fabrication and Applications in Plasma Separation and Polymorphic Crystallization
by
Muyang Zhang, Haonan Li, Xionghui Li, Zitong Ye, Qinghao He, Jie Zhou, Jiahua Zhong, Hao Chen, Xinyi Chen, Yixi Shi, Huiru Zhang, Lok Ting Chu and Weijin Guo
Biosensors 2025, 15(6), 388; https://doi.org/10.3390/bios15060388 - 16 Jun 2025
Abstract
This work presents a novel microfabrication process that addresses the interference of thiol groups on off-stoichiometry thiolene (OSTE) surfaces with the curing of polydimethylsiloxane (PDMS) by integrating the high-performance polymer Parylene-C. The process utilizes a Parylene-C coating to encapsulate the active thiol groups
[...] Read more.
This work presents a novel microfabrication process that addresses the interference of thiol groups on off-stoichiometry thiolene (OSTE) surfaces with the curing of polydimethylsiloxane (PDMS) by integrating the high-performance polymer Parylene-C. The process utilizes a Parylene-C coating to encapsulate the active thiol groups on the OSTE surface, enabling precise replication of PDMS microstructures. Based on this method, PDMS micropillar arrays and microwell arrays were successfully fabricated and applied in passive plasma separation and polymorphic crystal formation, respectively. The experimental results demonstrate that the plasma-separation chip efficiently isolates plasma from whole-blood samples with varying hematocrit (HCT) levels, achieving a separation efficiency of up to 57.5%. Additionally, the microwell array chip exhibits excellent stability and controllability in the growth of salt and protein crystals. This study not only provides a new approach for microfabricating microfluidic chips, but also highlights its potential applications in biomedical diagnostics and materials science.
Full article
(This article belongs to the Special Issue Microfluidics and MEMS for Diagnostics and Biomedical Applications—2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Aptamer-Functionalized Gold Nanoparticle Assay for Rapid Visual Detection of Norovirus in Stool Samples
by
Maytawan Thanunchai, Sirikwan Sangboonruang, Natthawat Semakul, Kattareeya Kumthip, Niwat Maneekarn and Khajornsak Tragoolpua
Biosensors 2025, 15(6), 387; https://doi.org/10.3390/bios15060387 - 16 Jun 2025
Abstract
Norovirus (NoV), a leading cause of acute gastroenteritis worldwide, imposes significant morbidity and economic burdens across all age groups. Timely and accurate laboratory diagnosis is crucial for effective outbreak control and patient management. However, current diagnostic methods often require specialized equipment, technical expertise,
[...] Read more.
Norovirus (NoV), a leading cause of acute gastroenteritis worldwide, imposes significant morbidity and economic burdens across all age groups. Timely and accurate laboratory diagnosis is crucial for effective outbreak control and patient management. However, current diagnostic methods often require specialized equipment, technical expertise, and considerable time. To address these challenges, we developed a visual detection method utilizing gold nanoparticles (AuNPs) functionalized with the SMV25 aptamer specific to the NoV capsid protein. Detection relies on MgCl2-induced changes in the color and absorbance of these aptamer-functionalized AuNPs. The assay exhibited a good linear relationship between the A630/A520 absorbance ratio and NoV capsid protein concentration. Specifically, in a buffer system, this linearity (R2 = 0.9026) was observed over a 0–32 ng/µL range with a limit of detection (LOD) of 9.65 ng/µL. Similarly, for NoV spiked into stool suspensions, a strong linear correlation (R2 = 0.9170) was found across a 0–100 ng/µL range, with an LOD of 37.11 ng/µL. Evaluation with real stool samples yielded 77% sensitivity and 65% specificity. Notably, the assay demonstrated the highest sensitivity towards NoV GII.2 (100%), followed by GII.4 (78%). Scanning transmission electron microscopy confirmed the underlying aggregation and dispersion patterns of the aptamer-functionalized AuNPs. This colorimetric assay provides a simple, rapid, and visual method for NoV detection. Nevertheless, further enhancements are necessary to improve its performance in the direct testing of complex specimens, paving the way for future on-site detection applications, especially in resource-limited settings.
Full article
(This article belongs to the Section Biosensors and Healthcare)
►▼
Show Figures

Figure 1
Open AccessArticle
A High-Sensitivity, Bluetooth-Enabled PCB Biosensor for HER2 and CA15-3 Protein Detection in Saliva: A Rapid, Non-Invasive Approach to Breast Cancer Screening
by
Hsiao-Hsuan Wan, Chao-Ching Chiang, Fan Ren, Cheng-Tse Tsai, Yu-Siang Chou, Chun-Wei Chiu, Yu-Te Liao, Dan Neal, Coy D. Heldermon, Mateus G. Rocha and Josephine F. Esquivel-Upshaw
Biosensors 2025, 15(6), 386; https://doi.org/10.3390/bios15060386 - 15 Jun 2025
Abstract
Breast cancer is a leading cause of cancer-related mortality worldwide, requiring efficient diagnostic tools for early detection and monitoring. Human epidermal growth factor receptor 2 (HER2) is a key biomarker for breast cancer classification, typically assessed using immunohistochemistry (IHC). However, IHC requires invasive
[...] Read more.
Breast cancer is a leading cause of cancer-related mortality worldwide, requiring efficient diagnostic tools for early detection and monitoring. Human epidermal growth factor receptor 2 (HER2) is a key biomarker for breast cancer classification, typically assessed using immunohistochemistry (IHC). However, IHC requires invasive biopsies and time-intensive laboratory procedures. In this study, we present a biosensor integrated with a reusable printed circuit board (PCB) and functionalized glucose test strips designed for rapid and non-invasive HER2 detection in saliva. The biosensor achieved a limit of detection of 10−15 g/mL, 4 to 5 orders of magnitude more sensitive than the enzyme-linked immunosorbent assay (ELISA), with a sensitivity of 95/dec and a response time of 1 s. In addition to HER2, the biosensor also detects cancer antigen 15-3 (CA15-3), another clinically relevant breast cancer biomarker. The CA15-3 test demonstrated an equally low limit of detection, 10−15 g/mL, and a higher sensitivity, 190/dec, further validated using human saliva samples. Clinical validation using 29 saliva samples confirmed our biosensor’s ability to distinguish between healthy, in situ breast cancer, and invasive breast cancer patients. The system, which integrates a Bluetooth Low-Energy (BLE) module, enables remote monitoring, reduces hospital visits, and enhances accessibility for point-of-care and mobile screening applications. This ultra-sensitive, rapid, and portable biosensor can serve as a promising alternative for breast cancer detection and monitoring, particularly in rural and underserved communities.
Full article
(This article belongs to the Special Issue Aptamer-Based Biosensors for Point-of-Care Diagnostics)
►▼
Show Figures

Figure 1
Open AccessArticle
Impedimetric DNA Sensor Based on a Composite of Electrochemically Reduced Graphene Oxide and Polyproflavine Electropolymerized from Natural Deep Eutectic Solvent for Anthracycline Medications Determination
by
Anastasia Goida, Tatiana Krasnova, Rezeda Shamagsumova, Vladimir Evtugyn, Anatoly Saveliev and Anna Porfireva
Biosensors 2025, 15(6), 385; https://doi.org/10.3390/bios15060385 - 14 Jun 2025
Abstract
A novel nanocomposite based on electrochemically reduced graphene oxide (ERGO) and electropolymerized polyproflavine (PPFL) was obtained within a “one-pot” synthesis from natural deep eutectic solvent (NADES). NADES consisted of citric acid, glucose, and water in a molar ratio of 1:1:6. The synthesis was
[...] Read more.
A novel nanocomposite based on electrochemically reduced graphene oxide (ERGO) and electropolymerized polyproflavine (PPFL) was obtained within a “one-pot” synthesis from natural deep eutectic solvent (NADES). NADES consisted of citric acid, glucose, and water in a molar ratio of 1:1:6. The synthesis was carried out in potentiostatic mode by consequent potential application in cathodic and anodic areas. The composite was applied to develop the impedimetric DNA sensor for anthracycline determination. The sensor has provided linear range from 10 nM to 0.1 mM for doxorubicin, from 1 pM to 10 nM for epirubicin, and from 10 pM to 10 nM for idarubicin, with the limit of detection 3 nM, 1 pM, and 5 pM, respectively. The concentrations of doxorubicin below 10 nM did not have any other influence on epirubicin and idarubicin determination despite their molecular structure similarity. The sensor developed was used for the determination of anticancer medications, such as doxorubicin, epirubicin, and idarubicin, in their standard solutions, pharmaceuticals, artificial, and human urine samples. It is worth noting that the additions of mannitol and lactose, which are the stabilizers of the pharmaceuticals, exhibited an interfering effect on the sensor response.
Full article
(This article belongs to the Special Issue Application of Nanocomposites for Biosensors)
►▼
Show Figures

Figure 1
Open AccessArticle
Gold Nanoparticle-Enhanced Molecularly Imprinted Polymer Electrode for Non-Enzymatic Lactate Sensing
by
Christopher Animashaun, Abdellatif Ait Lahcen and Gymama Slaughter
Biosensors 2025, 15(6), 384; https://doi.org/10.3390/bios15060384 - 13 Jun 2025
Abstract
We are reporting the development of a high-performance, non-enzymatic electrochemical biosensor for selective lactate detection, integrating laser-induced graphene (LIG), gold nanoparticles (AuNPs), and a molecularly imprinted polymer (MIP) synthesized from poly(3,4-ethylenedioxythiophene) (PEDOT). The LIG electrode offers a highly porous, conductive scaffold, while electrodeposited
[...] Read more.
We are reporting the development of a high-performance, non-enzymatic electrochemical biosensor for selective lactate detection, integrating laser-induced graphene (LIG), gold nanoparticles (AuNPs), and a molecularly imprinted polymer (MIP) synthesized from poly(3,4-ethylenedioxythiophene) (PEDOT). The LIG electrode offers a highly porous, conductive scaffold, while electrodeposited AuNPs enhance catalytic activity and signal amplification. The PEDOT-based MIP layer, electropolymerized via cyclic voltammetry, imparts molecular specificity by creating lactate-specific binding sites. Cyclic voltammetry confirmed successful molecular imprinting and enhanced interfacial electron transfer. The resulting LIG/AuNPs/MIP biosensor demonstrated a wide linear detection range from 0.1 µM to 2500 µM, with a sensitivity of 22.42 µA/log(µM) and a low limit of detection (0.035 µM). The sensor showed excellent selectivity against common electroactive interferents such as glucose and uric acid, long-term stability, and accurate recovery in artificial saliva (>95.7%), indicating strong potential for practical application. This enzyme-free platform offers a robust and scalable strategy for continuous lactate monitoring, particularly suited for wearable devices in sports performance monitoring and critical care diagnostics.
Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Electrochemical Biosensing Application)
►▼
Show Figures

Figure 1
Open AccessArticle
A Smart Nanoprobe for Visually Investigating the Activation Effect of Cyclical DOX Release on the p53 Pathway and Pathway-Related Molecules
by
Ping Sun, Chunlei Gao, Zhe Chen, Siyu Wang, Gang Li, Mingming Luan and Yaoguang Wang
Biosensors 2025, 15(6), 383; https://doi.org/10.3390/bios15060383 - 13 Jun 2025
Abstract
Developing appropriate methods for real-time in situ investigation of how drugs influence signaling pathways and related biomolecules holds enormous potential for helping to provide an understanding of how anticancer drugs exert their effects. Herein, we report a smart nanoprobe, PDA-MB (DOX)-Pep, constructed on
[...] Read more.
Developing appropriate methods for real-time in situ investigation of how drugs influence signaling pathways and related biomolecules holds enormous potential for helping to provide an understanding of how anticancer drugs exert their effects. Herein, we report a smart nanoprobe, PDA-MB (DOX)-Pep, constructed on the basis of polydopamine nanoparticles (PDA NPs) modified with a dense shell of molecular beacon (MB) with embedded doxorubicin (DOX) and peptide, which can respond specifically to miRNA-34a and Caspase-3 targets. Intracellular experiments demonstrated that, in comparison to the control nanoprobe PDA-MB-Pep, the smart nanoprobe could selectively respond to miRNA-34a, facilitating the release of the embedded DOX. The released DOX subsequently activated the p53 pathway, which further upregulated miRNA-34a expression, leading to additional DOX release. This initiated a cyclical process involving the probe’s response to miRNA-34a, DOX release, p53 activation, and miRNA-34a upregulation, ultimately enhancing cell apoptosis and increasing Caspase-3 expression. The designed smart nanoprobe offers a visual approach to explore how anticancer drugs influence signaling pathways and related molecules at the cellular level.
Full article
(This article belongs to the Special Issue Application of Functional Nanomaterials in Photo/Electrical Biosensing)
►▼
Show Figures

Figure 1
Open AccessArticle
Sensing Protein Structural Transitions with Microfluidic Modulation Infrared Spectroscopy
by
Lathan Lucas, Phoebe S. Tsoi, Ananya Nair, Allan Chris M. Ferreon and Josephine C. Ferreon
Biosensors 2025, 15(6), 382; https://doi.org/10.3390/bios15060382 - 13 Jun 2025
Abstract
Microfluidic modulation spectroscopy-infrared (MMS) offers a label-free, high-sensitivity approach for quantifying changes in protein secondary structures under native solution conditions. MMS subtracts the solvent backgrounds from sample signals by alternately flowing proteins and matched buffers through a microfluidic chamber, yielding clear amide I
[...] Read more.
Microfluidic modulation spectroscopy-infrared (MMS) offers a label-free, high-sensitivity approach for quantifying changes in protein secondary structures under native solution conditions. MMS subtracts the solvent backgrounds from sample signals by alternately flowing proteins and matched buffers through a microfluidic chamber, yielding clear amide I spectra from microliter volumes. In this study, we validated MMS on canonical globular proteins, bovine serum albumin, mCherry, and lysozyme, demonstrating accurate detection and resolution of α-helix, β-sheet, and mixed-fold structures. Applying MMS to the intrinsically disordered protein Tau, we detected environment-driven shifts in transient conformers: both the acidic (pH 2.5) and alkaline (pH 10) conditions increased the turn/unordered structures and decreased the α-helix content relative to the neutral pH, highlighting the charge-mediated destabilization of the labile motifs. Hyperphosphorylation of Tau yielded a modest decrease in the α-helical fraction and an increase in the turn/unordered structures. Comparison of monomeric and aggregated hyperphosphorylated Tau revealed a dramatic gain in β-sheet and a loss in turn/unordered structures upon amyloid fibril formation, confirming MMS’s ability to distinguish disordered monomers from amyloids. These findings establish MMS as a robust platform for detecting protein secondary structures and monitoring aggregation pathways in both folded and disordered systems. The sensitive detection of structural transitions offers opportunities for probing misfolding mechanisms and advancing our understanding of aggregation-related diseases.
Full article
(This article belongs to the Special Issue Design and Application of Microfluidic Biosensors in Biomedicine)
►▼
Show Figures

Figure 1
Open AccessArticle
Evaluation of Smartphones Equipped with Light Detection and Ranging Technology for Circumferential and Volumetric Measurements in Lower Extremity Lymphedema
by
Masato Tsuchiya, Kanako Abe, Satoshi Kubo and Ryuichi Azuma
Biosensors 2025, 15(6), 381; https://doi.org/10.3390/bios15060381 - 12 Jun 2025
Abstract
Lower extremity lymphedema (LEL) requires precise limb measurements for treatment evaluation and compression garment design. Tape measurement (TM) is the standard method but is time-consuming. Smartphones with light detection and ranging (LiDAR) technology may offer fast and efficient alternatives for three-dimensional imaging and
[...] Read more.
Lower extremity lymphedema (LEL) requires precise limb measurements for treatment evaluation and compression garment design. Tape measurement (TM) is the standard method but is time-consuming. Smartphones with light detection and ranging (LiDAR) technology may offer fast and efficient alternatives for three-dimensional imaging and measurement. This study evaluated the accuracy, reliability, and time efficiency of LiDAR measurements compared with those of TM in patients with LEL. A healthy volunteer and 55 patients were included. Circumferences of the foot, ankle, calf, knee, and thigh and the volume were measured using TM and smartphones with LiDAR. The water displacement method was used to validate volume measurements. The measurement time, reliability, correlation, agreement, and systematic differences between the methods were assessed. LiDAR showed excellent reliability in the healthy volunteer (inter-rater intraclass correlation coefficients: 0.960–0.988) and significantly reduced the measurement time compared with TM (64.0 ± 15.1 vs. 115.3 ± 30.6 s). In patients with LEL, strong correlations and agreements were observed for ankle, calf, and knee measurements. However, foot and thigh measurements showed lower correlations and larger discrepancies. LiDAR has excellent accuracy and reliability in measuring the circumference and volume of the lower leg and has the potential to reduce the time required to acquire data. Limitations include lower accuracy for foot and thigh measurements and the current workflow complexity, which requires the use of multiple software tools.
Full article
(This article belongs to the Special Issue Smart, Connected, and Portable Biosensors and Bioelectronics for Advancing Human Healthcare, Disease Diagnosis, and Therapeutics (2nd Edition))
►▼
Show Figures

Figure 1
Open AccessReview
Electrochemical Microneedles for Real-Time Monitoring in Interstitial Fluid: Emerging Technologies and Future Directions
by
Suhyeon Cha, Min Yu Choi, Min Jung Kim, Sang Baek Sim, Izzati Haizan and Jin-Ha Choi
Biosensors 2025, 15(6), 380; https://doi.org/10.3390/bios15060380 - 12 Jun 2025
Abstract
Conventional blood-based detection methods for biomarkers and analytes face significant limitations, including complex processing, variability in blood components, and the inability to provide continuous monitoring. These challenges hinder the early diagnosis and effective management of various health conditions. Electrochemical microneedles (MNs) have emerged
[...] Read more.
Conventional blood-based detection methods for biomarkers and analytes face significant limitations, including complex processing, variability in blood components, and the inability to provide continuous monitoring. These challenges hinder the early diagnosis and effective management of various health conditions. Electrochemical microneedles (MNs) have emerged as a minimally invasive and highly efficient platform to overcome these barriers, enabling continuous molecular monitoring by directly accessing the interstitial fluid. Electrochemical MNs offer several advantages, including reduced patient discomfort, real-time data acquisition, enhanced specificity, and potential applications in wearable, long-term monitoring. In this review, we first analyze material selection and fabrication techniques to optimize sensor performance, stability, and biocompatibility. We then examine diverse detection strategies utilized in electrochemical MNs, including enzyme-based, aptamer-based, and antibody-based sensing mechanisms, each offering unique benefits in sensitivity and selectivity. Finally, we highlight the integration of electrochemical MN technology with multi-target detection, AI-driven analytics, and theragnostic capabilities. This convergence offers strong potential for smart healthcare and precision medicine. Through these technological innovations, electrochemical MNs are expected to play an important role in advancing continuous, noninvasive health monitoring and personalized medical care.
Full article
(This article belongs to the Special Issue Recent Advancements in Nanomaterials for Biomolecular Monitoring in Miniaturized Sensing Platforms)
►▼
Show Figures

Figure 1
Open AccessSystematic Review
The Use of CRISPR-Cas Systems for Viral Detection: A Bibliometric Analysis and Systematic Review
by
Othmane Jeddoub, Nadia Touil, Omar Nyabi, Elmostafa El Fahime, Khalid Ennibi, Jean-Luc Gala, Abdelaziz Benjouad and Lamiae Belayachi
Biosensors 2025, 15(6), 379; https://doi.org/10.3390/bios15060379 - 12 Jun 2025
Abstract
Viral infections impose a significant burden on global public health and the economy. This study examines the current state of CRISPR-Cas system research, focusing on their applications in viral detection and their evolution over recent years. A bibliometric analysis and systematic review were
[...] Read more.
Viral infections impose a significant burden on global public health and the economy. This study examines the current state of CRISPR-Cas system research, focusing on their applications in viral detection and their evolution over recent years. A bibliometric analysis and systematic review were conducted using articles published between 2019 and 2024, retrieved from Web of Science, Scopus, and PubMed databases. Out of 2713 identified articles, 194 were included in the analysis. The findings reveal substantial growth in scientific output related to CRISPR-Cas systems, with the United States leading in research and development in this field. The rapid increase in CRISPR-Cas research during this period underscores its immense potential to transform viral diagnostics. With advantages such as speed, precision, and suitability for deployment in resource-limited settings, CRISPR-Cas systems outperform many traditional diagnostic methods. The concerted efforts of scientists worldwide further highlight the promising future of this technology. CRISPR-Cas systems are emerging as a powerful alternative, offering the possibility of expedited and accessible point-of-care testing and paving the way for more equitable and effective diagnostics on a global scale.
Full article
(This article belongs to the Section Biosensor Materials)
►▼
Show Figures

Figure 1
Open AccessReview
Research Progress on Multiplexed Pathogen Detection Using Optical Biosensors
by
Yue Wu, Xing Xu, Yinchu Zhu, Jiaxin Wan, Xingbo Wang, Xin Zhou, Xiangjun Li and Weidong Zhou
Biosensors 2025, 15(6), 378; https://doi.org/10.3390/bios15060378 - 12 Jun 2025
Abstract
The rapid and precise identification of multiple pathogens is critical for ensuring food safety, controlling epidemics, diagnosing diseases, and monitoring the environment. However, traditional detection methods are hindered by complex workflows, the need for skilled operators, and reliance on sophisticated equipment, making them
[...] Read more.
The rapid and precise identification of multiple pathogens is critical for ensuring food safety, controlling epidemics, diagnosing diseases, and monitoring the environment. However, traditional detection methods are hindered by complex workflows, the need for skilled operators, and reliance on sophisticated equipment, making them unsuitable for rapid, on-site testing. Optical biosensors, known for their rapid analysis, portability, high sensitivity, and multiplexing capabilities, offer a promising solution for simultaneous multi-pathogenic identification. This paper explores recent advancements in the utilization of optical biosensors for multiple pathogenic detection. First, it provides an overview of key sensing principles, focusing on colorimetric, fluorescence-based, surface-enhanced Raman scattering (SERS), and surface plasmon resonance (SPR) techniques, as well as their applications in pathogenic detection. Then, the research progress and practical applications of optical biosensors for multiplex pathogenic detection are discussed in detail from three perspectives: microfluidic devices, nucleic acid amplification technology (NAAT), and nanomaterials. Finally, the challenges presented by optical biosensing technologies in multi-pathogen detection are discussed, along with future prospects and potential innovations in the field.
Full article
(This article belongs to the Section Optical and Photonic Biosensors)
►▼
Show Figures

Figure 1
Open AccessArticle
Simple Nanochannel-Modified Electrode for Sensitive Detection of Alkaline Phosphatase Through Electrochemiluminescence Signal Quenching by Enzymatic Reaction
by
Tianjun Ma, Xuan Luo, Fengna Xi and Nuo Yang
Biosensors 2025, 15(6), 377; https://doi.org/10.3390/bios15060377 - 11 Jun 2025
Abstract
Development of sensitive and convenient alkaline phosphatase (ALP) detection methods is of great significance for food analysis, biomedical applications, and clinical tests. In this work, a sensitive detection method for ALP was established based on nanochannel-modified electrodes, where the electrochemical luminescence (ECL) signal
[...] Read more.
Development of sensitive and convenient alkaline phosphatase (ALP) detection methods is of great significance for food analysis, biomedical applications, and clinical tests. In this work, a sensitive detection method for ALP was established based on nanochannel-modified electrodes, where the electrochemical luminescence (ECL) signal was quenched by the enzymatic reaction product. Vertically ordered mesoporous silica film (VMSF) was rapidly grown on low-cost ITO via the electrochemically assisted self-assembly (EASA) method. The resulting modified electrode (VMSF/ITO) exhibited a uniform and ordered nanochannel structure with nanochannel diameter of 2–3 nm and charge-selective permeability, enabling the enrichment of cationic ECL emitter tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+). Compared to the ITO electrode, VMSF/ITO increased the ECL signal by 60 times. In the presence of ALP, it catalyzes the hydrolysis of its substrate, disodium phenyl phosphate hydrate (DPP), generating phenol (Phe), which quenched the ECL signal of Ru(bpy)32+ and the co-reactant N,N-Dipropyl-1-propanamine (TPA). Based on this principle, ECL detection of ALP can be achieved. The linear detection range for ALP was 0.01 U/L to 30 U/L, with a limit of detection (LOD) of 0.008 U/L. The sensor exhibited high selectivity. Combined with the anti-contamination and anti-interference capabilities of VMSF, the constructed sensor enabled the detection of ALP levels in milk samples.
Full article
(This article belongs to the Special Issue Biosensing and Diagnosis—2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Fluorescent–Electrochemical–Colorimetric Triple-Model Immunoassays with Multifunctional Metal–Organic Frameworks for Signal Amplification
by
Ning Xia, Chuye Zheng and Gang Liu
Biosensors 2025, 15(6), 376; https://doi.org/10.3390/bios15060376 - 11 Jun 2025
Abstract
Multimode immunoassays based on multiple response mechanisms have received great attention due to their capacity to effectively improve the accuracy and reliability of biosensing platforms. However, few strategies have been reported for triple-mode immunoassays due to the shortage of multifunctional sensing materials and
[...] Read more.
Multimode immunoassays based on multiple response mechanisms have received great attention due to their capacity to effectively improve the accuracy and reliability of biosensing platforms. However, few strategies have been reported for triple-mode immunoassays due to the shortage of multifunctional sensing materials and the incompatibility of signal transduction methods in different detection modes. In this work, a fluorescent–electrochemical–colorimetric triple-mode immunoassay platform was proposed with Cu-based metal–organic frameworks (MOFs) as the signal labels. The captured Cu-MOFs were successfully decomposed under an acidic condition, leading to the release of numerous Cu2+ ions and 2-aminobenzene-1,4-dicarboxylic acid (NH2-BDC) ligands. The released NH2-BDC were determined by fluorescence titration. Meanwhile, the released Cu2+ were readily quantified by differential pulse voltammetry (DPV) and simply detected through the catalytic oxidation of chromogenic substrate 3,3′,5,5′-tetramethylbenzidine (TMB). Taking alpha-fetoprotein (AFP) as a model analyte, the designed triple-mode immunoassays showed good performances with the linear range of 10–200 pg/mL, 10–200 pg/mL, and 1–100 pg/mL for the fluorescent, electrochemical, and colorimetric modes, respectively. The proposed triple-mode biosensing platforms show great potential for the applications in disease diagnosis, since they can be easily extended to other bioassays by changing the targets and recognition elements.
Full article
(This article belongs to the Special Issue Signal Amplification in Biosensing)
►▼
Show Figures

Figure 1
Open AccessReview
Advances of Nanozyme-Driven Multimodal Sensing Strategies in Point-of-Care Testing
by
Ziyi Chang, Qingjie Fu, Mengke Wang and Demin Duan
Biosensors 2025, 15(6), 375; https://doi.org/10.3390/bios15060375 - 10 Jun 2025
Abstract
Point-of-care testing (POCT) has garnered widespread attention due to its rapid, convenient, and efficient detection capabilities, particularly playing an increasingly pivotal role in medical diagnostics and significantly improving the efficiency and quality of healthcare services. Nanozymes, as novel enzyme-mimicking materials, have emerged as
[...] Read more.
Point-of-care testing (POCT) has garnered widespread attention due to its rapid, convenient, and efficient detection capabilities, particularly playing an increasingly pivotal role in medical diagnostics and significantly improving the efficiency and quality of healthcare services. Nanozymes, as novel enzyme-mimicking materials, have emerged as a research hotspot owing to their superior catalytic performance, low cost, and robust stability. This review provides a systematic overview of the fundamental characteristics and classifications of nanozymes, along with various sensing strategies employed in POCT applications, colorimetric, electrochemical, fluorescent, chemiluminescent, and surface-enhanced Raman scattering (SERS)-based approaches. Furthermore, this review highlights innovative designs that enhance the sensitivity and accuracy of POCT across multiple domains, such as biomarker detection, environmental monitoring, and food safety analysis, thereby offering novel perspectives for the practical implementation of nanozymes in point-of-care diagnostics. Finally, this review analyzes current challenges in nanozyme-based POCT systems, including limitations in optimizing catalytic activity, ensuring nanozyme homogeneity, and achieving large-scale production, while proposing future development trajectories.
Full article
(This article belongs to the Special Issue Advances in Nanozyme-Based Biosensors)
►▼
Show Figures

Figure 1
Open AccessArticle
Assessing the Role of EEG Biosignal Preprocessing to Enhance Multiscale Fuzzy Entropy in Alzheimer’s Disease Detection
by
Pasquale Arpaia, Maria Cacciapuoti, Andrea Cataldo, Sabatina Criscuolo, Egidio De Benedetto, Antonio Masciullo, Marisa Pesola and Raissa Schiavoni
Biosensors 2025, 15(6), 374; https://doi.org/10.3390/bios15060374 - 10 Jun 2025
Abstract
Quantitative electroencephalography (QEEG) has emerged as a promising tool for detecting Alzheimer’s disease (AD). Among QEEG measures, Multiscale Fuzzy Entropy (MFE) shows great potential in identifying AD-related changes in EEG complexity. However, MFE is intrinsically linked to signal amplitude, which can vary substantially
[...] Read more.
Quantitative electroencephalography (QEEG) has emerged as a promising tool for detecting Alzheimer’s disease (AD). Among QEEG measures, Multiscale Fuzzy Entropy (MFE) shows great potential in identifying AD-related changes in EEG complexity. However, MFE is intrinsically linked to signal amplitude, which can vary substantially among EEG systems, and this hinders the adoption of this metric for AD detection. To overcome this issue, this study investigates different preprocessing strategies to make the calculation of MFE less dependent on the specific amplitude characteristics of the EEG signals at hand. This contributes to generalizing and making more robust the adoption of MFE for AD detection. To demonstrate the robustness of the proposed preprocessing methods, binary classification tasks with Support Vector Machines (SVMs), Random Forest (RF), and K-Nearest Neighbor (KNN) classifiers are used. Performance metrics, such as classification accuracy and Matthews Correlation Coefficient (MCC), are employed to assess the results. The methodology is validated on two public EEG datasets. Results show that amplitude transformation, particularly normalization, significantly enhances AD detection, achieving mean classification accuracy values exceeding 80% with an uncertainty of 10% across all classifiers. These results highlight the importance of preprocessing in improving the accuracy and the reliability of EEG-based AD diagnostic tools, offering potential advancements in patient management and treatment planning.
Full article
(This article belongs to the Section Biosensors and Healthcare)
►▼
Show Figures

Figure 1
Open AccessArticle
Biological Sensing Using Vertical MoS2-Graphene Heterostructure-Based Field-Effect Transistor Biosensors
by
Ying Chen, Nataly Vicente, Tung Pham and Ashok Mulchandani
Biosensors 2025, 15(6), 373; https://doi.org/10.3390/bios15060373 - 10 Jun 2025
Abstract
Our study develops two configurations of MoS2 and graphene heterostructures—MoS2 on graphene (MG) and graphene on MoS2 (GM)—to investigate biomolecule sensing in field-effect transistor (FET) biosensors. Leveraging MoS2 and graphene’s distinctive properties, we employ specialized functionalization techniques for each
[...] Read more.
Our study develops two configurations of MoS2 and graphene heterostructures—MoS2 on graphene (MG) and graphene on MoS2 (GM)—to investigate biomolecule sensing in field-effect transistor (FET) biosensors. Leveraging MoS2 and graphene’s distinctive properties, we employ specialized functionalization techniques for each configuration: graphene with MoS2 on top uses a silane-based method with triethoxysilylbutyraldehyde (TESBA), and MoS2 with graphene on top utilizes 1-pyrenebutyric acid N-hydroxysuccinimide ester (PBASE). Our research explores the application of MoS2–Graphene heterostructures in biosensors, emphasizing the roles of synthesis, fabrication, and material functionalization in optimizing sensor performance. Through our experimental investigations, we have observed that doping MoS2 and graphene leads to noticeable changes in the Raman spectrum and shifts in transfer curves. Techniques such as XPS, Raman, and AFM have successfully confirmed the biofunctionalization. Transfer curves were instrumental in characterizing the biosensing performance, revealing that GM configurations exhibit higher sensitivity and a lower limit of detection (LOD) compared to MG configurations. We demonstrate that GM heterostructures offer superior sensitivity and specificity in biosensing, highlighting their significant potential to advance biosensor technologies. This research contributes to the field by detailing the creation process of vertical MoS2–graphene heterostructures and evaluating their effectiveness in accurate biomolecule detection, advancing biosensing technology.
Full article
(This article belongs to the Special Issue Application of Functional Nanomaterials in Photo/Electrical Biosensing)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Biosensors Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Applied Sciences, Biosensors, Chips, Micromachines, Molecules
Advances in Microfluidics and Lab on a Chip Technology, 2nd Edition
Topic Editors: Roman Grzegorz Szafran, Yi YangDeadline: 31 August 2025
Topic in
Applied Sciences, Biosensors, Designs, Electronics, Materials, Micromachines, Applied Biosciences
Wearable Bioelectronics: The Next Generation of Health Insights
Topic Editors: Shuo Gao, Yu Wu, Wenyu WangDeadline: 31 March 2026
Topic in
Applied Nano, Biosensors, Materials, Nanomaterials, Chemosensors, Applied Biosciences, Laboratories
Applications of Nanomaterials in Biosensing: Current Trends and Future Prospects
Topic Editors: Kundan Sivashanmugan, Xianming KongDeadline: 30 April 2026

Conferences
Special Issues
Special Issue in
Biosensors
Biochips for Biosensing of Microphysiological Events
Guest Editors: Sung-Min Kang, Seungjin LeeDeadline: 25 June 2025
Special Issue in
Biosensors
Fluorescent Materials with Excellent Biocompatibility and Their Application in Bio-Sensing, Bio-Imaging (Volume II)
Guest Editors: Yalong Wang, Mingqiang Zhu, Deteng Zhang, Meng ZhengDeadline: 30 June 2025
Special Issue in
Biosensors
Recent Advancements in Nanomaterials for Biomolecular Monitoring in Miniaturized Sensing Platforms
Guest Editors: Tamoghna Saha, Nandhakumar Ponnusamy, Rafael Del Caño OchoaDeadline: 30 June 2025
Special Issue in
Biosensors
New Advances in Bioimaging and Biosensing Based on Nanomaterials
Guest Editor: Steven WuDeadline: 30 June 2025
Topical Collections
Topical Collection in
Biosensors
Novel Sensing System for Biomedical Applications
Collection Editors: Chia-Ching Chang, Chiun-Jye Yuan, Chih-Chia Huang
Topical Collection in
Biosensors
Microsystems for Cell Cultures
Collection Editors: Iordania Constantinou, Thomas E. Winkler