Fast, Direct Dihydrouracil Quantitation in Human Saliva: Method Development, Validation, and Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents, Materials, and Reference Standard Samples
2.2. Preparation of Solutions and Standards
2.3. Saliva Sample Preparation
2.4. HPLC Analytical Conditions
3. Results and Discussion
3.1. Method Validation
3.2. Application
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsuchiya, H.; Akiyama, T.; Kuhara, T.; Nakajima, Y.; Ohse, M.; Kurahashi, H.; Kato, T.; Maeda, Y.; Yoshinaga, H.; Kobayashi, K. A case of dihydropyrimidinase deficiency incidentally detected by urine metabolome analysis. Brain Dev. 2019, 41, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q. Urine Pyrimidine Metabolite Determination by HPLC Tandem Mass Spectrometry. In Clinical Applications of Mass Spectrometry in Biomolecular Analysis: Methods and Protocols; Garg, U., Ed.; Methods in Molecular Biology; Humana Press Inc.: Totowa, NJ, USA, 2016; Volume 1378, pp. 237–242. ISBN1 978-1-4939-3182-8. ISBN2 978-1-4939-3181-1. [Google Scholar]
- Al-Shehri, S.; Henman, M.; Charles, B.G.; Cowley, D.; Shaw, P.N.; Liley, H.; Tomarchio, A.; Punyadeera, C.; Duley, J.A. Collection and determination of nucleotide metabolites in neonatal and adult saliva by high performance liquid chromatography with tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2013, 931, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Chionh, F.; Lau, D.; Yeung, Y.; Price, T.; Tebbutt, N. Oral versus intravenous fluoropyrimidines for colorectal cancer. Cochrane Database Syst. Rev. 2017, 7, CD008398. [Google Scholar] [CrossRef] [PubMed]
- Robin, T.; Saint-Marcoux, F.; Toinon, D.; Tafzi, N.; Marquet, P.; El Balkhi, S. Automatic quantification of uracil and dihydrouracil in plasma. J. Chromatogr. B 2020, 1142, 122038. [Google Scholar] [CrossRef] [PubMed]
- Tafzi, N.; Woillard, J.-B.; Fleytoux, A.; Picard, N.; Marquet, P. Phenotyping of uracil and 5-fluorouracil metabolism using LC-MS/MS for prevention of toxicity and dose adjustment of fluoropyrimidines. Ther. Drug Monit. 2020, 42, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Chamorey, E.; Francois, E.; Etienne, M.-C.; Ferrero, J.-M.; Peyrade, F.; Barranger, E.; Bozec, A.; Largillier, R.; Cassuto, O.; Viotti, J.; et al. DPD status and fluoropyrimidines-based treatment: High activity matters too. BMC Cancer 2020, 20, 436. [Google Scholar] [CrossRef]
- Martens, F.K.; Huntjens, D.W.; Rigter, T.; Bartels, M.; Bet, P.M.; Cornel, M.C. DPD Testing Before Treatment With Fluoropyrimidines in the Amsterdam UMCs: An Evaluation of Current Pharmacogenetic Practice. Front. Pharmacol. 2020, 10, 1069. [Google Scholar] [CrossRef] [Green Version]
- Pan, W.; Li, Y.; Feng, Y.; Yang, F.; Liu, H. A new sample preparation and separation combination for the precise, accurate, and simultaneous determination of uracil and dihydrouracil in human plasma by reversed-phase HPLC. J. Sep. Sci. 2017, 40, 3763–3770. [Google Scholar] [CrossRef]
- Déporte, R.; Amiand, M.; Moreau, A.; Charbonnel, C.; Campion, L. High-performance liquid chromatographic assay with UV detection for measurement of dihydrouracil/uracil ratio in plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2006, 834, 170–177. [Google Scholar] [CrossRef]
- Garg, M.B.; Sevester, J.C.; Sakoff, J.A.; Ackland, S.P. Simple liquid chromatographic method for the determination of uracil and dihydrouracil plasma levels: A potential pretreatment predictor of 5-fluorouracil toxicity. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2002, 774, 223–230. [Google Scholar] [CrossRef]
- Remaud, G.; Boisdron-Celle, M.; Hameline, C.; Morel, A.; Gamelin, E. An accurate dihydrouracil/uracil determination using improved high performance liquid chromatography method for preventing fluoropyrimidines- related toxicity in clinical practice. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2005, 823, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Svobaite, R.; Solassol, I.; Pinguet, F.; Ivanauskas, L.; Brès, J.; Bressolle, F.M.M. HPLC with UV or mass spectrometric detection for quantifying endogenous uracil and dihydrouracil in human plasma. Clin. Chem. 2008, 54, 1463–1472. [Google Scholar] [CrossRef] [PubMed]
- van Kuilenburg, A.B.P.; Dobritzsch, D.; Meijer, J.; Meinsma, R.; Benoist, J.-F.; Assmann, B.; Schubert, S.; Hoffmann, G.F.; Duran, M.; de Vries, M.C.; et al. Dihydropyrimidinase deficiency: Phenotype, genotype and structural consequences in 17 patients. Biochim. Biophys. Acta Mol. Basis Dis. 2010, 1802, 639–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sparidans, R.W.; Bosch, T.M.; Jorger, M.; Schellens, J.H.M.; Beijnen, J.H. Liquid chromatography-tandem mass spectrometric assay for the analysis of uracil breakdown in urine for the measurement of the activities and phenotyping of the corresponding pyrimidine catabolic enzymes. J. Chromatogr. B 2006, 839, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Garg, U. Clinical Applications of Mass Spectrometry in Drug Analysis: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 1493932519. [Google Scholar]
- Antunes, M.V.; Raymundo, S.; Cezimbra da Silva, A.C.; Muller, V.V.; Vicente Neto, O.J.; Schwartsmann, G.; Linden, R. Determination of Endogenous Concentrations of Uracil and Dihydrouracil in Dried Saliva Spots by LC-MS/MS. Ther. Drug Monit. 2019, 41, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Neto, O.V.; Raymundo, S.; Franzoi, M.A.; do Carmo Artmann, A.; Tegner, M.; Müller, V.V.; Hahn, R.Z.; Alves, G.V.; Schwartsmann, G.; Linden, R.; et al. DPD functional tests in plasma, fresh saliva and dried saliva samples as predictors of 5-fluorouracil exposure and occurrence of drug-related severe toxicity. Clin. Biochem. 2018, 56, 18–25. [Google Scholar] [CrossRef]
- Andrade Galarza, A.F.; Linden, R.; Antunes, M.V.; Hahn, R.Z.; Raymundo, S.; da Silva, A.C.; Staggemeier, R.; Spilki, F.R.; Schwartsmann, G. Endogenous plasma and salivary uracil to dihydrouracil ratios and DPYD genotyping as predictors of severe fluoropyrimidine toxicity in patients with gastrointestinal malignancies. Clin. Biochem. 2016, 49, 1221–1226. [Google Scholar] [CrossRef]
- Carlsson, G.; Odin, E.; Gustavsson, B.; Wettergren, Y. Pretherapeutic uracil and dihydrouracil levels in saliva of colorectal cancer patients are associated with toxicity during adjuvant 5-fluorouracil-based chemotherapy. CANCER Chemother. Pharmacol. 2014, 74, 757–763. [Google Scholar] [CrossRef]
- Sugimoto, M.; Saruta, J.; Matsuki, C.; To, M.; Onuma, H.; Kaneko, M.; Soga, T.; Tomita, M.; Tsukinoki, K. Physiological and environmental parameters associated with mass spectrometry-based salivary metabolomic profiles. Metabolomics 2013, 9, 454–463. [Google Scholar] [CrossRef]
- Dame, Z.T.; Aziat, F.; Mandal, R.; Krishnamurthy, R.; Bouatra, S.; Borzouie, S.; Guo, A.C.; Sajed, T.; Deng, L.; Lin, H. The human saliva metabolome. Metabolomics 2015, 11, 1864–1883. [Google Scholar] [CrossRef]
- Biagini, D.; Lomonaco, T.; Ghimenti, S.; Fusi, J.; Cerri, E.; De Angelis, F.; Bellagambi, F.G.; Oger, C.; Galano, J.M.; Bramanti, E.; et al. Saliva as a non-invasive tool for monitoring oxidative stress in swimmers athletes performing a VO2max cycle ergometer test. Talanta 2020, 216, 120979. [Google Scholar] [CrossRef] [PubMed]
- Campanella, B.; Onor, M.; Lomonaco, T.; Benedetti, E.; Bramanti, E. HS-SPME-GC-MS approach for the analysis of volatile salivary metabolites and application in a case study for the indirect assessment of gut microbiota. Anal. Bioanal. Chem. 2019, 411, 7551–7562. [Google Scholar] [CrossRef] [PubMed]
- Lomonaco, T.; Ghimenti, S.; Biagini, D.; Bramanti, E.; Onor, M.; Bellagambi, F.G.; Fuoco, R.; Di Francesco, F. The effect of sampling procedures on the urate and lactate concentration in oral fluid. Microchem. J. 2018, 136, 255–262. [Google Scholar] [CrossRef]
- Campanella, B.; Lomonaco, T.; Benedetti, E.; Onor, M.; Nieri, R.; Bramanti, E. Validation and Application of a Derivatization-Free RP-HPLC-DAD Method for the Determination of Low Molecular Weight Salivary Metabolites. Int. J. Environ. Res. Public Health 2020, 17, 6158. [Google Scholar] [CrossRef] [PubMed]
- Bhavyasri, K.; Vishnumurthy, K.M.; Rambabu, D.; Sumakanth, M. ICH guidelines—Q series (quality guidelines). A review. GSC Biol. Pharm. Sci. 2019, 6, 89–106. [Google Scholar]
- Sumi, S.; Kidouchi, K.; Ohba, S.; Wada, Y. Automated screening system for purine and pyrimidine metabolism disorders using high-performance liquid chromatography. J. Chromatogr. B Biomed. Sci. Appl. 1995, 672, 233–239. [Google Scholar] [CrossRef]
- Hubert, L.; Sutton, V.R. Chapter 12—Disorders of Purine and Pyrimidine Metabolism. In Clinical Aspects and Laboratory Determination; Garg, U., Smith, L., Eds.; Elsevier: San Diego, CA, USA, 2017; pp. 283–299. ISBN 978-0-12-802896-4. [Google Scholar]
- Schmidt, C.; Hofmann, U.; Kohlmuller, D.; Murdter, T.; Zanger, U.M.; Schwab, M.; Hoffmann, G.F. Comprehensive analysis of pyrimidine metabolism in 450 children with unspecific neurological symptoms using high-pressure liquid chromatography-electrospray ionization tandem mass spectrometry. J. Inherit. Metab. Dis. 2005, 28, 1109–1122. [Google Scholar] [CrossRef]
- Xia, J.-F.; Liang, Q.-L.; Liang, X.-P.; Wang, Y.-M.; Hu, P.; Li, P.; Luo, G.-A. Ultraviolet and tandem mass spectrometry for simultaneous quantification of 21 pivotal metabolites in plasma from patients with diabetic nephropathy. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009, 877, 1930–1936. [Google Scholar] [CrossRef]
- Marin, C.; Krache, A.; Palmaro, C.; Lucas, M.; Hilaire, V.; Ugdonne, R.; De Victor, B.; Quaranta, S.; Solas, C.; Lacarelle, B.; et al. A Simple and Rapid UPLC-UV Method for Detecting DPD Deficiency in Patients with Cancer. CTS Clin. Transl. Sci. 2020, 13, 761–768. [Google Scholar] [CrossRef] [Green Version]
- Guimbaud, R.; Guichard, S.; Dusseau, C.; Bertrand, V.; Aparicio, T.; Lochon, I.; Chatelut, E.; Couturier, D.; Bugat, R.; Chaussade, S.; et al. Dihydropyrimidine dehydrogenase activity in normal, inflammatory and tumour tissues of colon and liver in humans. Cancer Chemother. Pharmacol. 2000, 45, 477–482. [Google Scholar] [CrossRef]
- Wikoff, W.R.; Grapov, D.; Fahrmann, J.F.; DeFelice, B.; Rom, W.N.; Pass, H.I.; Kim, K.; Nguyen, U.; Taylor, S.L.; Gandara, D.R.; et al. Metabolomic Markers of Altered Nucleotide Metabolism in Early Stage Adenocarcinoma. Cancer Prev. Res. 2015, 8, 410–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
External Calibration Curve | Analytical Standard Addition to Saliva | |
---|---|---|
Slope (μmol−1 L) | 4.443 ± 0.053 | 4.450 ± 0.044 |
Intercept | 60.8 ± 26.18 | −4.238 ± 50.9 |
R2 | 0.9981 | 0.9990 |
LOQ (μmol L−1) | 0.103 | 0.103–3.0 |
Data Set | Method | Concentration (μmol L−1) | Ref. |
---|---|---|---|
73 colorectal cancer patients treated with 5-fluorouracil-based chemotherapy | HPLC method (Reversed Phase and cation exchange) | 0.043 ± 0.035 (after chemotherapy) | [20] |
10 healthy adults 10 neonates | <3 in adults 8.6 in neonates | [3] | |
38 healthy volunteers 39 patients (gastrointestinal cancer treated with 5-fluorouracil chemotherapy) | LC-MS/MS (dried spot saliva) | 0.926 (median) (range 0.673–1.798) | [17,18] |
60 patients with gastrointestinal malignancies | LC–MS/MS | 2.168 (median) (range 1.139–5.013) | [19] |
155 healthy adult volunteers | Capillary electrophoresis-MS | 2210 ± 353 | [21] |
16 healthy adult volunteers | HPLC–UV | 2168 ± 128 | [22] |
21 healthy volunteers + 4 colorectal cancer patients treated with 5-fluorouracil-based chemotherapy (176 saliva samples collected in different days) | RP-HPLC-UV | N = 18 + 4 subjects < LOQ 1 N = 3 healthy subjects 0.19–4.01 (range) | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campanella, B.; Lomonaco, T.; Benedetti, E.; Onor, M.; Nieri, R.; Marmorino, F.; Cremolini, C.; Bramanti, E. Fast, Direct Dihydrouracil Quantitation in Human Saliva: Method Development, Validation, and Application. Int. J. Environ. Res. Public Health 2022, 19, 6033. https://doi.org/10.3390/ijerph19106033
Campanella B, Lomonaco T, Benedetti E, Onor M, Nieri R, Marmorino F, Cremolini C, Bramanti E. Fast, Direct Dihydrouracil Quantitation in Human Saliva: Method Development, Validation, and Application. International Journal of Environmental Research and Public Health. 2022; 19(10):6033. https://doi.org/10.3390/ijerph19106033
Chicago/Turabian StyleCampanella, Beatrice, Tommaso Lomonaco, Edoardo Benedetti, Massimo Onor, Riccardo Nieri, Federica Marmorino, Chiara Cremolini, and Emilia Bramanti. 2022. "Fast, Direct Dihydrouracil Quantitation in Human Saliva: Method Development, Validation, and Application" International Journal of Environmental Research and Public Health 19, no. 10: 6033. https://doi.org/10.3390/ijerph19106033
APA StyleCampanella, B., Lomonaco, T., Benedetti, E., Onor, M., Nieri, R., Marmorino, F., Cremolini, C., & Bramanti, E. (2022). Fast, Direct Dihydrouracil Quantitation in Human Saliva: Method Development, Validation, and Application. International Journal of Environmental Research and Public Health, 19(10), 6033. https://doi.org/10.3390/ijerph19106033