Solving a System of Sylvester-like Quaternion Matrix Equations
Abstract
:1. Introduction
2. Preliminaries
3. Solvability Conditions to the System (6)
4. The General Solution to the System (6)
Algorithm 1: Algorithm for solving Equation (6) |
(1) Feed the values of with conformable shapes over . |
(2) Compute the symbols in (9) to (21). |
(3) Check (22), (23) or rank equalities in (24) to (35) hold or not. If no, then return “inconsistent”. |
(4) Otherwise, compute . |
5. The General Solution to the System (7) with -Hermicity
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roth, W.E. The equations AX − YB = C and AX − XB = C in matrices. Proc. Am. Math. Soc. 1952, 3, 392–396. [Google Scholar] [CrossRef]
- Cvetković-Ilić, S.S.; Radenkovixcx, J.N.; Wang, Q.W. Algebraic conditions for the solvability to some systems of matrix equations. Linear Multilinear Algebra 2021, 69, 1579–1609. [Google Scholar] [CrossRef]
- Sasane, A. The Sylvester equation in Banach algebras. Linear Algebra Appl. 2021, 631, 1–9. [Google Scholar] [CrossRef]
- Wang, Q.W.; Rehman, A.; He, Z.H.; Zhang, Y. Constraint generalized Sylvester matrix equations. Automatica 2016, 69, 60–64. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Q.W.; He, Z.H. The common solution of some matrix equations. Algebra Colloq. 2016, 23, 71–81. [Google Scholar] [CrossRef]
- Castelan, E.B.; da Silva, V.G. On the solution of a Sylvester equation appearing in descriptor systems control theory. Syst. Control Lett. 2005, 54, 109–117. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Jiang, D.C.; Wang, J. A recurrent neural network for solving Sylvester equation with time-varying coefficients. IEEE Trans. Neural Netw. 2002, 13, 1053–1063. [Google Scholar] [CrossRef]
- Villareal, E.R.L.; Vargas, J.A.R.; Hemerly, E.M. Static output feedback stabilization using invariant subspaces and Sylvester equations. TEMA Tend. Mat. Apl. Comput. 2009, 10, 99–110. [Google Scholar] [CrossRef]
- Dmytryshyn, A.; Kågström, B. Coupled Sylvester-type matrix equations and block diagonalization. SIAM J. Matrix Anal. Appl. 2015, 36, 580–593. [Google Scholar] [CrossRef]
- Baksalary, J.K.; Kala, R. The matrix equation AX − YB = C. Linear Algebra Appl. 1979, 25, 41–43. [Google Scholar] [CrossRef] [Green Version]
- Baksalary, J.K.; Kala, R. The matrix equation AXB − CYD = E. Linear Algebra Appl. 1980, 30, 141–147. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.W. A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity. Linear Algebra Appl. 2004, 384, 43–54. [Google Scholar] [CrossRef]
- Kyrchei, I. Explicit representation formulas for the minimum norm least squares solutions of some quaternion matrix equations. Linear Algebra Appl. 2018, 438, 136–152. [Google Scholar] [CrossRef] [Green Version]
- Kyrchei, I. Determinantal representations of the Drazin inverse over the quaternion skew field with applications to some matrix equations. Appl. Math. Comput. 2014, 238, 193–207. [Google Scholar] [CrossRef]
- Liu, X. The η-anti-Hermitian solution to some classic matrix equations. Appl. Math. Comput. 2018, 320, 264–270. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y. Consistency of split quaternion matrix equations AX* − XB = CY + D and X − AX*B = CY + D. Adv. Appl. Clifford Algebr. 2019, 64, 1–20. [Google Scholar] [CrossRef]
- Assefa, D.; Mansinha, L.; Tiampo, K.F.; Rasmussen, H.; Abdella, K. Local quaternion Fourier transform and color image texture analysis. Signal Process. 2010, 90, 1825–1835. [Google Scholar] [CrossRef]
- Bihan, N.L.; Mars, J. Singular value decomposition of quaternion matrices: A new tool for vectorsensor signal processing. Signal Process. 2004, 84, 1177–1199. [Google Scholar] [CrossRef]
- He, Z.H.; Chen, C.; Wang, X.X. A simultaneous decomposition for three quaternion tensors with applications in color video signal processing. Anal. Appl. 2021, 19, 529–549. [Google Scholar] [CrossRef]
- Qi, L.; Luo, Z.Y.; Wang, Q.W.; Zhang, X.Z. Quaternion matrix optimization: Motivation and analysis. J. Optim. Theory Appl. 2021, 1–28. [Google Scholar] [CrossRef]
- Xu, Y.F.; Wang, Q.W.; Liu, L.S. A constrained system of matrix equations. Comput. Appl. Math. 2022, 41, 166. [Google Scholar] [CrossRef]
- Liu, L.S.; Wang, Q.W.; Cheng, J.F.; Xie, Y.Z. An exact solution to a quaternion matrix equation with an application. Symmetry 2022, 14, 375. [Google Scholar] [CrossRef]
- Liu, X.; Song, G.J.; Zhang, Y. Determinantal representations of the solutions to systems of generalized sylvester equations. Adv. Appl. Clifford Algebr. 2019, 30, 12. [Google Scholar] [CrossRef]
- Mehany, M.S.; Wang, Q.W. Three symmetrical systems of coupled Sylvester-like quaternion matrix equations. Symmetry 2022, 14, 550. [Google Scholar] [CrossRef]
- Rehman, A.; Wang, Q.W.; Ali, I.; Akram, M.; Ahmad, M.O. A constraint system of generalized Sylvester quaternion matrix equations. Adv. Appl. Clifford Algebr. 2017, 27, 3183–3196. [Google Scholar] [CrossRef]
- Wang, Q.W.; He, Z.H.; Zhang, Y. Constrained two-sided coupled Sylvester-type quaternion matrix equations. Automatica 2019, 101, 207–213. [Google Scholar] [CrossRef]
- Yu, S.W.; He, Z.H.; Qi, T.C.; Wang, X.X. The equivalence canonical form of five quaternion matrices with applications to imaging and Sylvester-type equations. J. Comput. Appl. Math. 2021, 393, 113494. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, R.H. The exact solution of a system of quaternion matrix equations involving η-Hermicity. Appl. Math. Comput. 2013, 222, 201–209. [Google Scholar] [CrossRef]
- Wang, Q.W.; He, Z.H. Some matrix equations with applications. Linear Multilinear Algebra 2012, 60, 1327–1353. [Google Scholar] [CrossRef]
- Zhang, X. Characterization for the general solution to a system of matrix equations with quadruple variables. Appl. Math. Comput. 2014, 226, 274–287. [Google Scholar] [CrossRef]
- Took, C.C.; Mandic, D.P.; Zhang, F.Z. On the unitary diagonalisation of a special class of quaternion matrices. Appl. Math. Lett. 2011, 24, 1806–1809. [Google Scholar] [CrossRef] [Green Version]
- Took, C.C.; Mandic, D.P. Augmented second-order statistics of quaternion random signals. Signal Process. 2011, 91, 214–224. [Google Scholar] [CrossRef] [Green Version]
- He, Z.H.; Wang, Q.W. The η-bihermitian solution to a system of real quaternion matrix equations. Linear Multilinear Algebra 2014, 62, 1509–1528. [Google Scholar] [CrossRef]
- He, Z.H.; Wang, Q.W.; Zhang, Y. Simultaneous decomposition of quaternion matrices involving η-Hermicity with applications. Appl. Math. Comput. 2017, 298, 13–35. [Google Scholar] [CrossRef]
- Marsaglia, G.; Styan, G.P. Equalities and inequalities for ranks of matrices. Linear Multilinear Algebra 1974, 2, 269–292. [Google Scholar] [CrossRef]
- Buxton, J.N.; Churchouse, R.F. Tayler, A.B. Matrices Methods and Applications; Clarendon Press: Oxford, UK, 1990. [Google Scholar]
- Li, F.L.; Hu, X.Y.; Zhang, L. The generalized reflexive solution for a class of matrix equations (AX = B, XC = D). Acta Math. Sci. 2008, 28, 185–193. [Google Scholar]
- Liu, L.S.; Wang, Q.W.; Mahmoud, S.M. A Sylvester-type Hamilton quaternion matrix equation with an application. arXiv 2021, arXiv:2109.10045v2. [Google Scholar]
- Li, T.; Wang, Q.W.; Zhang, X.F. A Modified Conjugate Residual Method and Nearest Kronecker Product Preconditioner for the Generalized Coupled Sylvester Tensor Equations. Mathematics 2022, 10, 1730. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.-N.; Wang, Q.-W.; Liu, L.-S. Solving a System of Sylvester-like Quaternion Matrix Equations. Symmetry 2022, 14, 1056. https://doi.org/10.3390/sym14051056
Wang R-N, Wang Q-W, Liu L-S. Solving a System of Sylvester-like Quaternion Matrix Equations. Symmetry. 2022; 14(5):1056. https://doi.org/10.3390/sym14051056
Chicago/Turabian StyleWang, Ruo-Nan, Qing-Wen Wang, and Long-Sheng Liu. 2022. "Solving a System of Sylvester-like Quaternion Matrix Equations" Symmetry 14, no. 5: 1056. https://doi.org/10.3390/sym14051056
APA StyleWang, R. -N., Wang, Q. -W., & Liu, L. -S. (2022). Solving a System of Sylvester-like Quaternion Matrix Equations. Symmetry, 14(5), 1056. https://doi.org/10.3390/sym14051056