Body asymmetry is often analysed in the context of low back pain (LBP). To date, research has mainly focused on the general relationships between asymmetry and pain, with less attention paid to issues related to pressure distribution and its potential impact on the occurrence of LBP. The aim of this study was to compare biomechanical parameters in people with anatomical leg length discrepancy with and without LBP to identify overloads that may lead to pain. Early detection of common abnormalities in these parameters in both groups may influence the early prevention of 0LBP in the course of LLD. Materials and methods: This study included 60 patients with diagnosed LLD, of whom 30 had LBP (group 1, NP) and 30 were pain-free (group 2, NwP). Body weight distribution during standing and walking was analysed using pedobarography. The analysis was carried out in two stages, the first being the analysis of the biomechanical parameters for the whole study population, for group 1 with LBP and group 2 without LBP, while the second stage focused on the main issue, i.e., the comparison of the group with LBP with the group without LBP. The study included standing and walking tests. Left–right pressure distribution and ground contact time were analysed. In addition, the angle of foot abduction was analysed to indirectly assess compensatory mechanisms resulting from the asymmetry. Results: The standing test showed significantly greater pressure on the longer limb (
p = 0.022) in the whole study population (N = 60). When divided into groups, it was found that in those with LBP (NP = 30), the difference was not statistically significant (
p = 0.359), whereas in those without pain (NwP = 30), the pressure on the longer limb was significantly greater (
p = 0.002). No differences were found between the groups in the comparative analysis. The angle of foot abduction was greater than normal across the study population (N = 60), with greater values in the shorter limb (12.83° vs. 11.04°), which was close to significance (
p = 0.065). The group with LBP (NP = 30) showed a similar trend, also close to statistical significance (
p = 0.054), with significantly higher values of abduction angle in both legs compared to the group without LBP (NwP = 30). In the walking test, the left–right load distributions were significantly dispersed. The mean pressure on the longer limb was significantly higher in group 1 (NP = 30) (
p = 0.031), whereas this difference was not statistically significant in group 2 (NwP = 30). For mean peak pressure, there were no significant differences in any of the groups tested. In addition, the mean ground contact time during gait was longer for the longer limb in the whole study population (N = 60) (938.8 ms vs. 915 ms), but again, this difference did not reach statistical significance (
p = 0.305). Comparative analysis showed no differences between the groups. Conclusions: This study showed that in people with anatomical LLD, both with and without LBP, most parameters reflected marked asymmetries in peak and mean pressures and abduction angles. A prolongation of ground contact time has also been shown, and even though some parameters were not statistically significant, it is important to note the high dispersion of left–right loading, which provides information on body load asymmetries in patients with anatomical LLD. Given that there were no differences between the groups for most of the parameters, it is important for both clinical practice and further research that the abnormalities observed in both groups (NP = 30, NwP = 30) may have been a significant predictor of the development of LBP, as the abnormalities preceded the onset of pain. This should be taken into account in diagnostic and preventive measures.
Full article