Removal of Chloroacetanilide Herbicides from Water Using Heterogeneous Photocatalysis with TiO2/UV-A
Abstract
:1. Introduction
2. Results
2.1. Photocatalytic Degradation of Alachlor, Acetochlor, and Metolachlor
2.2. Toxicity Evaluation
2.2.1. Toxicity of Single Chloroacetanilide Herbicides
2.2.2. Toxicity of Photocatalytic Degradation Products
3. Discussion
4. Materials and Methods
4.1. Chemicals and Materials
4.2. Photocatalytic Experiments
4.3. Analytical Methods
4.4. Algal Bioassay for Toxicity Determination
4.4.1. Microplate Bioassay
4.4.2. Flask Bioassay
4.4.3. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mohanty, S.S.; Jena, H.M. A systemic assessment of the environmental impacts and remediation strategies for chloroacetanilide herbicides. J. Water Process. Eng. 2019, 31, 100860. [Google Scholar] [CrossRef]
- Huang, T.; Huang, Y.; Huang, Y.; Yang, Y.; Zhao, Y.; Martyniuk, C.J. Toxicity assessment of the herbicide acetochlor in the human liver carcinoma (HepG2) cell line. Chemosphere 2020, 243, 125345. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.D.; Soares, E.V. Exposure of the alga Pseudokirchneriella subcapitata to environmentally relevant concentrations of the herbicide metolachlor: Impact on the redox homeostasis. Ecotoxicol. Environ. Saf. 2021, 207, 111264. [Google Scholar] [CrossRef] [PubMed]
- Thiam, A.; Salazar, R. Fenton-based electrochemical degradation of metolachlor in aqueous solution by means of BDD and Pt electrodes: Influencing factors and reaction pathways. Environ. Sci. Pollut. Res. 2019, 26, 2580–2591. [Google Scholar] [CrossRef] [PubMed]
- Sigurnjak, M.; Ukić, Š.; Cvetnić, M.; Markić, M.; Novak Stankov, M.; Rasulev, B.; Kušić, H.; Lončarić Božić, A.; Rogošić, M.; Bolanča, T. Combined toxicities of binary mixtures of alachlor, chlorfenvinphos, diuron and isoproturon. Chemosphere 2020, 240, 124973. [Google Scholar] [CrossRef]
- Machado, M.D.; Soares, E.V. Reproductive cycle progression arrest and modification of cell morphology (shape and biovolume) in the alga Pseudokirchneriella subcapitata exposed to metolachlor. Aquat. Toxicol. 2020, 222, 105449. [Google Scholar] [CrossRef] [Green Version]
- Souissi, Y.; Bouchonnet, S.; Bourcier, S.; Kusk, K.O.; Sablier, M.; Andersen, H.R. Identification and ecotoxicity of degradation products of chloroacetamide herbicides from UV-treatment of water. Sci. Total Environ. 2013, 458–460, 527–534. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Chen, Y.; Vymazal, J.; Kule, L.; Koželuh, M. Dynamics of chloroacetanilide herbicides in various types of mesocosm wetlands. Sci. Total Environ. 2017, 577, 386–394. [Google Scholar] [CrossRef]
- Debenest, T.; Silvestre, J.; Coste, M.; Pinelli, E. Effects of pesticides on freshwater diatoms. Rev. Environ. Contam. Toxicol. 2010, 203, 87–103. [Google Scholar] [CrossRef]
- Abigail, M.E.A.; Samuel, S.M.; Ramalingam, C. Addressing the environmental impacts of butachlor and the available remediation strategies: A systematic review. Int. J. Environ. Sci. Technol. 2015, 12, 4025–4036. [Google Scholar] [CrossRef] [Green Version]
- Orge, C.A.; Pereira, M.F.R.; Faria, J.L. Photocatalytic-assisted ozone degradation of metolachlor aqueous solution. Chem. Eng. J. 2017, 318, 247–253. [Google Scholar] [CrossRef]
- Kim, H.; Wang, H.; Ki, J.S. Chloroacetanilides inhibit photosynthesis and disrupt the thylakoid membranes of the dinoflagellate Prorocentrum minimum as revealed with metazachlor treatment. Ecotoxicol. Environ. Saf. 2021, 211, 111928. [Google Scholar] [CrossRef] [PubMed]
- Jamshidi, F.; Dehghani, M.; Yousefinejad, S.; Azhdarpoor, A. Photocatalytic degradation of alachlor by TiO2 nanoparticles from aqueous solutions under UV radiation. J. Exp. Nanosci. 2019, 14, 116–128. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhang, X.; Xu, J.; Qiu, J.; Zhu, J.; Cao, H.; He, J. Anaerobic biodegradation of acetochlor by acclimated sludge and its anaerobic catabolic pathway. Sci. Total Environ. 2020, 748, 141122. [Google Scholar] [CrossRef]
- Machado, M.D.; Soares, E.V. Sensitivity of freshwater and marine green algae to three compounds of emerging concern. J. Appl. Phycol. 2019, 31, 399–408. [Google Scholar] [CrossRef] [Green Version]
- Gar Alalm, M.; Tawfik, A.; Ookawara, S. Comparison of solar TiO2 photocatalysis and solar photo-Fenton for treatment of pesticides industry wastewater: Operational conditions, kinetics, and costs. J. Water Process. Eng. 2015, 8, 55–63. [Google Scholar] [CrossRef]
- Gar Alalm, M.G.; Tawfik, A.; Ookawara, S. Combined solar advanced oxidation and PAC adsorption for removal of pesticides from industrial wastewater. J. Mater. Environ. Sci. 2015, 6, 800–809. [Google Scholar]
- Lou, Y.Y.; Geneste, F.; Soutrel, I.; Amrane, A.; Fourcade, F. Alachlor dechlorination prior to an electro-Fenton process: Influence on the biodegradability of the treated solution. Sep. Purif. Technol. 2020, 232, 115936. [Google Scholar] [CrossRef]
- Wang, J.; Zhuan, R. Degradation of antibiotics by advanced oxidation processes: An overview. Sci. Total Environ. 2020, 701, 135023. [Google Scholar] [CrossRef]
- Aziz, K.H.H.; Omer, K.M.; Mahyar, A.; Miessner, H.; Mueller, S.; Moeller, D. Application of photocatalytic falling film reactor to elucidate the degradation pathways of pharmaceutical diclofenac and ibuprofen in aqueous solutions. Coatings 2019, 9, 465. [Google Scholar] [CrossRef] [Green Version]
- Cuerda-Correa, E.M.; Alexandre-Franco, M.F.; Fernández-González, C. Advanced oxidation processes for the removal of antibiotics from water. An overview. Water 2020, 12, 102. [Google Scholar] [CrossRef] [Green Version]
- Stan, C.D.; Cretescu, I.; Pastravanu, C.; Poulios, I.; Drǎgan, M. Treatment of pesticides in wastewater by heterogeneous and homogeneous photocatalysis. Int. J. Photoenergy 2012, 2012, 194823. [Google Scholar] [CrossRef]
- Cheng, M.; Zeng, G.; Huang, D.; Lai, C.; Xu, P.; Zhang, C.; Liu, Y. Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review. Chem. Eng. J. 2016, 284, 582–598. [Google Scholar] [CrossRef]
- Lee, C.M.; Palaniandy, P.; Dahlan, I. Pharmaceutical residues in aquatic environment and water remediation by TiO2 heterogeneous photocatalysis: A review. Environ. Earth Sci. 2017, 76, 611. [Google Scholar] [CrossRef]
- Isari, A.A.; Payan, A.; Fattahi, M.; Jorfi, S.; Kakavandi, B. Photocatalytic degradation of rhodamine B and real textile wastewater using Fe-doped TiO2 anchored on reduced graphene oxide (Fe-TiO2/rGO): Characterization and feasibility, mechanism and pathway studies. Appl. Surf. Sci. 2018, 462, 549–564. [Google Scholar] [CrossRef]
- Hu, N.; Xu, Y.; Sun, C.; Zhu, L.; Sun, S.; Zhao, Y.; Hu, C. Removal of atrazine in catalytic degradation solutions by microalgae Chlorella sp. and evaluation of toxicity of degradation products via algal growth and photosynthetic activity. Ecotoxicol. Environ. Saf. 2021, 207, 111546. [Google Scholar] [CrossRef]
- Mbiri, A.; Wittstock, G.; Taffa, D.H.; Gatebe, E.; Baya, J.; Wark, M. Photocatalytic degradation of the herbicide chloridazon on mesoporous titania/zirconia nanopowders. Environ. Sci. Pollut. Res. 2018, 25, 34873–34883. [Google Scholar] [CrossRef]
- Wong, C.C.; Chu, W. The direct photolysis and photocatalytic degradation of alachlor at different TiO2 and UV sources. Chemosphere 2003, 50, 981–987. [Google Scholar] [CrossRef]
- de Luna, M.D.G.; Rivera, K.K.P.; Suwannaruang, T.; Wantala, K. Alachlor photocatalytic degradation over uncalcined Fe–TiO2 loaded on granular activated carbon under UV and visible light irradiation. Desalination Water Treat. 2016, 57, 6712–6722. [Google Scholar] [CrossRef]
- Malini, T.P.; Ramesh, A.; Selvi, J.A.; Arthanareeswari, M.; Kamaraj, P. Kinetic modeling of photocatalytic degradation of alachlor using TiO2 (Degussa P25) in aqueous solution. Orient. J. Chem. 2016, 32, 3165–3173. [Google Scholar] [CrossRef] [Green Version]
- Rivera, K.K.P.; de Luna, M.D.G.; Suwannaruang, T.; Wantala, K. Photocatalytic degradation of reactive red 3 and alachlor over uncalcined Fe–TiO2 synthesized via hydrothermal method. Desalin. Water Treat. 2016, 57, 22017–22028. [Google Scholar] [CrossRef]
- Suwannaruang, T.; Wantala, K. Single-step uncalcined N-TiO2 synthesis, characterizations and its applications on alachlor photocatalytic degradations. Appl. Surf. Sci. 2016, 380, 257–267. [Google Scholar] [CrossRef]
- Zheng, D.; Xin, Y.; Ma, D.; Wang, X.; Wu, J.; Gao, M. Preparation of graphene/TiO2 nanotube array photoelectrodes and their photocatalytic activity for the degradation of alachlor. Catal. Sci. Technol. 2016, 6, 1892–1902. [Google Scholar] [CrossRef]
- Molla, M.; Furukawa, M.; Tateishi, I.; Katsumata, H.; Kaneco, S. Optimization of Alachlor Photocatalytic Degradation with Nano-TiO2 in Water under Solar Illumination: Reaction Pathway and Mineralization. Clean Technol. 2018, 1, 141–153. [Google Scholar] [CrossRef] [Green Version]
- Pérez, M.H.; Vega, L.P.; Zúñiga-Benítez, H.; Peñuela, G.A. Comparative Degradation of Alachlor Using Photocatalysis and Photo-Fenton. Water Air Soil Pollut. 2018, 229, 346. [Google Scholar] [CrossRef]
- Sakkas, V.A.; Arabatzis, I.M.; Konstantinou, I.K.; Dimou, A.D.; Albanis, T.A.; Falaras, P. Metolachlor photocatalytic degradation using TiO2 photocatalysts. Appl. Catal. B 2004, 49, 195–205. [Google Scholar] [CrossRef]
- Peng, Y.-Z.; Ma, W.-H.; Jia, M.-K.; Zhao, X.-R.; Johnson, D.M.; Huang, Y.-P. Comparing the degradation of acetochlor to RhB using BiOBr under visible light: A significantly different rate-catalyst dose relationship. Appl. Catal. B 2016, 181, 517–523. [Google Scholar] [CrossRef]
- Mermana, J.; Sutthivaiyakit, P.; Blaise, C.; Gagné, F.; Charnsethikul, S.; Kidkhunthod, P.; Sutthivaiyakit, S. Photocatalysis of S-metolachlor in aqueous suspension of magnetic cerium-doped mTiO2 core–shell under simulated solar light. Environ. Sci. Pollut. Res. 2017, 24, 4077–4092. [Google Scholar] [CrossRef]
- Rancaño, L.; Rivero, M.J.; Mueses, M.Á.; Ortiz, I. Comprehensive kinetics of the photocatalytic degradation of emerging pollutants in a LED-assisted photoreactor. S-metolachlor as case study. Catalysts 2021, 11, 48. [Google Scholar] [CrossRef]
- Li, H.Y.; Qu, J.H.; Zhao, X.; Liu, H.J. Removal of alachlor from water by catalyzed ozonation in the presence of Fe2+, Mn2+, and humic substances. J. Environ. Sci. Health-B Pestic. Food Contam. Agric. Wastes 2004, 39, 791–803. [Google Scholar] [CrossRef]
- Qiang, Z.; Liu, C.; Dong, B.; Zhang, Y. Degradation mechanism of alachlor during direct ozonation and O3/H2O2 advanced oxidation process. Chemosphere 2010, 78, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Huang, Y.; Cui, S. Removal of alachlor from water by catalyzed ozonation on Cu/Al2O3 honeycomb. Chem. Cent. J. 2013, 7, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katsumata, H.; Kaneco, S.; Suzuki, T.; Ohta, K.; Yobiko, Y. Photo-Fenton degradation of alachlor in the presence of citrate solution. J. Photochem. Photobiol. A Chem. 2006, 180, 38–45. [Google Scholar] [CrossRef]
- Pipi, A.R.F.; De Andrade, A.R.; Brillas, E.; Sirés, I. Total removal of alachlor from water by electrochemical processes. Sep. Purif. Technol. 2014, 132, 674–683. [Google Scholar] [CrossRef]
- Wardenier, N.; Liu, Z.; Nikiforov, A.; Van Hulle, S.W.H.; Leys, C. Micropollutant elimination by O3, UV and plasma-based AOPs: An evaluation of treatment and energy costs. Chemosphere 2019, 234, 715–724. [Google Scholar] [CrossRef]
- Wardenier, N.; Gorbanev, Y.; Van Moer, I.; Nikiforov, A.; Van Hulle, S.W.H.; Surmont, P.; Lynen, F.; Leys, C.; Bogaerts, A.; Vanraes, P. Removal of alachlor in water by non-thermal plasma: Reactive species and pathways in batch and continuous process. Water Res. 2019, 161, 549–559. [Google Scholar] [CrossRef]
- Acero, J.L.; Benitez, F.J.; Real, F.J.; Maya, C. Oxidation of Acetamide Herbicides in Natural Waters by Ozone and by the Combination of Ozone/Hydrogen Peroxide: Kinetic Study and Process Modeling. Ind. Eng. Chem. Res. 2003, 42, 5762–5769. [Google Scholar] [CrossRef]
- Restivo, J.; Órfão, J.J.M.; Armenise, S.; Garcia-Bordejé, E.; Pereira, M.F.R. Catalytic ozonation of metolachlor under continuous operation using nanocarbon materials grown on a ceramic monolith. J. Hazard. Mater. 2012, 239–240, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Lou, Y.; Zhuang, X.; Song, S.; Liu, W.; Xu, C. Magnetic Pr6O11/SiO2@Fe3O4 particles as the heterogeneous catalyst for the catalytic ozonation of acetochlor: Performance and aquatic toxicity. Sep. Purif. Technol. 2018, 197, 63–69. [Google Scholar] [CrossRef]
- Huston, P.L.; Pignatello, J.J. Degradation of selected pesticide active ingredients and commercial formulations in water by the photo-assisted Fenton reaction. Water Res. 1999, 33, 1238–1246. [Google Scholar] [CrossRef]
- Benzaquén, T.B.; Benzzo, M.T.; Isla, M.A.; Alfano, O.M. Impact of some herbicides on the biomass activity in biological treatment plants and biodegradability enhancement by a photo-Fenton process. Water Sci. Technol. 2013, 67, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Guelfi, D.R.V.; Gozzi, F.; Machulek, A.; Sirés, I.; Brillas, E.; de Oliveira, S.C. Degradation of herbicide S-metolachlor by electrochemical AOPs using a boron-doped diamond anode. Catal. Today 2018, 313, 182–188. [Google Scholar] [CrossRef]
- Mahmoud, W.M.M.; Rastogi, T.; Kümmerer, K. Application of titanium dioxide nanoparticles as a photocatalyst for the removal of micropollutants such as pharmaceuticals from water. Curr. Opin. Green Sustain. Chem. 2017, 6, 1–10. [Google Scholar] [CrossRef]
- Reghunath, S.; Pinheiro, D.; KR, S.D. A review of hierarchical nanostructures of TiO2: Advances and applications. Appl. Surf. Sci. 2021, 3, 100063. [Google Scholar] [CrossRef]
- Serga, V.; Burve, R.; Krumina, A.; Romanova, M.; Kotomin, E.A.; Popov, A.I. Extraction–pyrolytic method for TiO2 polymorphs production. Crystals 2021, 11, 431. [Google Scholar] [CrossRef]
- Gupta, S.M.; Tripathi, M. A review of TiO2 nanoparticles. Sci. Bull. 2011, 56, 1639–1657. [Google Scholar] [CrossRef] [Green Version]
- Kang, X.; Liu, S.; Dai, Z.; He, Y.; Song, X.; Tan, Z. Titanium dioxide: From engineering to applications. Catalysts 2019, 9, 191. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Li, T.; Zhou, Q. Impact of titanium dioxide (TiO2) modification on its application to pollution treatment—A review. Catalysts 2020, 10, 804. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Smith, S.M.; Wantala, K.; Kajitvichyanukul, P. Photocatalytic remediation of persistent organic pollutants (POPs): A review. Arab. J. Chem. 2020, 13, 8309–8337. [Google Scholar] [CrossRef]
- Lopes, J.Q.; Cardeal, R.A.; Araújo, R.D.S.; Assunção, J.C.D.C.; Salgado, B.C.B. Application of titanium dioxide as photocatalyst in diuron degradation: Operational variables evaluation and mechanistic study. Eng. Sanit. Ambient. 2021, 26, 61–68. [Google Scholar] [CrossRef]
- Andersen, J.; Pelaez, M.; Guay, L.; Zhang, Z.; O’Shea, K.; Dionysiou, D.D. NF-TiO2 photocatalysis of amitrole and atrazine with addition of oxidants under simulated solar light: Emerging synergies, degradation intermediates, and reusable attributes. J. Hazard. Mater. 2013, 260, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Gholami, M.; Shirzad-Siboni, M.; Farzadkia, M.; Yang, J.K. Synthesis, characterization, and application of ZnO/TiO2 nanocomposite for photocatalysis of a herbicide (Bentazon). Desalin. Water Treat. 2016, 57, 13632–13644. [Google Scholar] [CrossRef]
- Le Cunff, J.; Tomašić, V.; Wittine, O. Photocatalytic degradation of the herbicide terbuthylazine: Preparation, characterization and photoactivity of the immobilized thin layer of TiO2/chitosan. J. Photochem. Photobiol. A Chem. 2015, 309, 22–29. [Google Scholar] [CrossRef]
- Fiorenza, R.; Di Mauro, A.; Cantarella, M.; Gulino, A.; Spitaleri, L.; Privitera, V.; Impellizzeri, G. Molecularly imprinted N-doped TiO2 photocatalysts for the selective degradation of o-phenylphenol fungicide from water. Mater. Sci. Semicond. Process. 2020, 112, 105019. [Google Scholar] [CrossRef]
- Berberidou, C.; Kitsiou, V.; Lambropoulou, D.A.; Michailidou, D.; Kouras, A.; Poulios, I. Decomposition and detoxification of the insecticide thiacloprid by TiO2-mediated photocatalysis: Kinetics, intermediate products and transformation pathways. J. Chem. Technol. Biotechnol. 2019, 94, 2475–2486. [Google Scholar] [CrossRef]
- Borges, M.E.; García, D.M.; Hernández, T.; Ruiz-Morales, J.C.; Esparza, P. Supported photocatalyst for removal of emerging contaminants from wastewater in a continuous packed-bed photoreactor configuration. Catalysts 2015, 5, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Hashim, N.; Thakur, S.; Patang, M.; Crapulli, F.; Ray, A.K. Solar degradation of diclofenac using Eosin-Y-activated TiO2: Cost estimation, process optimization and parameter interaction study. Environ. Technol. 2017, 38, 933–944. [Google Scholar] [CrossRef]
- Jallouli, N.; Pastrana-Martínez, L.M.; Ribeiro, A.R.; Moreira, N.F.F.; Faria, J.L.; Hentati, O.; Silva, A.M.T.; Ksibi, M. Heterogeneous photocatalytic degradation of ibuprofen in ultrapure water, municipal and pharmaceutical industry wastewaters using a TiO2/UV-LED system. Chem. Eng. J. 2018, 334, 976–984. [Google Scholar] [CrossRef]
- Zheng, X.; Xu, S.; Wang, Y.; Sun, X.; Gao, Y.; Gao, B. Enhanced degradation of ciprofloxacin by graphitized mesoporous carbon (GMC)-TiO2 nanocomposite: Strong synergy of adsorption-photocatalysis and antibiotics degradation mechanism. J. Colloid Interface Sci. 2018, 527, 202–213. [Google Scholar] [CrossRef]
- Biancullo, F.; Moreira, N.F.F.; Ribeiro, A.R.; Manaia, C.M.; Faria, J.L.; Nunes, O.C.; Castro-Silva, S.; Silva, A.M.T. Heterogeneous photocatalysis using UVA-LEDs for the removal of antibiotics and antibiotic resistant bacteria from urban wastewater treatment plant effluents. Chem. Eng. J. 2019, 367, 304–313. [Google Scholar] [CrossRef]
- Cai, Q.; Hu, J. Decomposition of sulfamethoxazole and trimethoprim by continuous UVA/LED/TiO2 photocatalysis: Decomposition pathways, residual antibacterial activity and toxicity. J. Hazard. Mater. 2017, 323, 527–536. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Li, L.; Wei, C.; Li, H.; Chen, D. Role of active oxidative species on TiO2 photocatalysis of tetracycline and optimization of photocatalytic degradation conditions. J. Environ. Biol. 2015, 36, 837–843. [Google Scholar] [PubMed]
- Guo, C.; Wang, K.; Hou, S.; Wan, L.; Lv, J.; Zhang, Y.; Qu, X.; Chen, S.; Xu, J. H2O2 and/or TiO2 photocatalysis under UV irradiation for the removal of antibiotic resistant bacteria and their antibiotic resistance genes. J. Hazard. Mater. 2017, 323, 710–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asencios, Y.J.O.; Lourenço, V.S.; Carvalho, W.A. Removal of phenol in seawater by heterogeneous photocatalysis using activated carbon materials modified with TiO2. Catal. Today 2022, 388–389, 247–258. [Google Scholar] [CrossRef]
- Lopes da Silva, F.; Laitinen, T.; Pirilä, M.; Keiski, R.L.; Ojala, S. Photocatalytic Degradation of Perfluorooctanoic Acid (PFOA) From Wastewaters by TiO2, In2O3 and Ga2O3 Catalysts. Top. Catal. 2017, 60, 1345–1358. [Google Scholar] [CrossRef]
- Nguyen, C.H.; Tran, M.L.; Tran, T.T.V.; Juang, R.S. Enhanced removal of various dyes from aqueous solutions by UV and simulated solar photocatalysis over TiO2/ZnO/rGO composites. Sep. Purif. Technol. 2020, 232, 115962. [Google Scholar] [CrossRef]
- Nyankson, E.; Efavi, J.K.; Agyei-Tuffour, B.; Manu, G. Synthesis of TiO2-Ag3PO4photocatalyst material with high adsorption capacity and photocatalytic activity: Application in the removal of dyes and pesticides. RSC Adv. 2021, 11, 17032–17045. [Google Scholar] [CrossRef]
- Domínguez-Jaimes, L.P.; Cedillo-González, E.I.; Luévano-Hipólito, E.; Acuña-Bedoya, J.D.; Hernández-López, J.M. Degradation of primary nanoplastics by photocatalysis using different anodized TiO2 structures. J. Hazard. Mater. 2021, 413, 125452. [Google Scholar] [CrossRef]
- Babu, D.S.; Srivastava, V.; Nidheesh, P.V.; Kumar, M.S. Detoxification of water and wastewater by advanced oxidation processes. Sci. Total Environ. 2019, 696, 133961. [Google Scholar] [CrossRef]
- Sharma, A.; Ahmad, J.; Flora, S.J.S. Application of advanced oxidation processes and toxicity assessment of transformation products. Environ. Res. 2018, 167, 223–233. [Google Scholar] [CrossRef]
- Kim, K.H.; Kabir, E.; Jahan, S.A. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 2017, 575, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Caux, P.Y.; Ménard, L.; Kent, R.A. Comparative study of the effects of MCPA, butylate, atrazine, and cyanazine on Selenastrum capricornutum. Environ. Pollut. 1996, 92, 219–225. [Google Scholar] [CrossRef]
- Muñoz, M.J.; Ramos, C.; Tarazona, J.V. Bioaccumulation and toxicity of hexachlorobenzene in Chlorella vulgaris and Daphnia magna. Aquat. Toxicol. 1996, 35, 211–220. [Google Scholar] [CrossRef]
- Chaufan, G.; Juárez, Á.; Basack, S.; Ithuralde, E.; Sabatini, S.E.; Genovese, G.; Oneto, M.; Kesten, E.; Ríos de Molina, M.D.C. Toxicity of hexachlorobenzene and its transference from microalgae (Chlorella kessleri) to crabs (Chasmagnathus granulatus). Toxicology 2006, 227, 262–270. [Google Scholar] [CrossRef]
- Ji, J.; Long, Z.; Lin, D. Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chem. Eng. J. 2011, 170, 525–530. [Google Scholar] [CrossRef]
- Daghrir, R.; Drogui, P.; Robert, D. Modified TiO2 for environmental photocatalytic applications: A review. Ind. Eng. Chem. Res. 2013, 52, 3581–3599. [Google Scholar] [CrossRef]
- Ibhadon, A.O.; Fitzpatrick, P. Heterogeneous photocatalysis: Recent advances and applications. Catalysts 2013, 3, 189–218. [Google Scholar] [CrossRef] [Green Version]
- Gilja, V.; Katancic, Z.; Krehula, L.K.; Mandic, V.; Hrnjak-Murgic, Z. Eflciency of TiO2 catalyst supported by modified waste fly ash during photodegradation of RR45 dye. J. Sel. Top. Quantum Electron. 2019, 26, 292–300. [Google Scholar] [CrossRef]
- Balakrishnan, A.; Appunni, S.; Gopalram, K. Immobilized TiO2/chitosan beads for photocatalytic degradation of 2,4-dichlorophenoxyacetic acid. Int. J. Biol. Macromol. 2020, 161, 282–291. [Google Scholar] [CrossRef]
- Bi, Q.; Huang, X.; Dong, Y.; Huang, F. Conductive Black Titania Nanomaterials for Efficient Photocatalytic Degradation of Organic Pollutants. Catal. Lett. 2020, 150, 1346–1354. [Google Scholar] [CrossRef] [Green Version]
- Bockenstedt, J.; Vidwans, N.A.; Gentry, T.; Vaddiraju, S. Catalyst recovery, regeneration and reuse during large-scale disinfection of water using photocatalysis. Water 2021, 13, 2623. [Google Scholar] [CrossRef]
- Chen, Y.H.; Wang, B.K.; Hou, W.C. Graphitic carbon nitride embedded with graphene materials towards photocatalysis of bisphenol A: The role of graphene and mediation of superoxide and singlet oxygen. Chemosphere 2021, 278, 130334. [Google Scholar] [CrossRef] [PubMed]
- Prashanth, V.; Priyanka, K.; Remya, N. Solar photocatalytic degradation of metformin by TiO2 synthesized using Calotropis gigantea leaf extract. Water Sci. Technol. 2021, 83, 1072–1084. [Google Scholar] [CrossRef] [PubMed]
- Baran, N.; Gourcy, L. Sorption and mineralization of S-metolachlor and its ionic metabolites in soils and vadose zone solids: Consequences on groundwater quality in an alluvial aquifer (Ain Plain, France). J. Contam. Hydrol. 2013, 154, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Orge, C.A.; Pereira, M.F.R.; Faria, J.L. Photocatalytic ozonation of model aqueous solutions of oxalic and oxamic acids. Appl. Catal. B 2015, 174–175, 113–119. [Google Scholar] [CrossRef]
- Rice, C.P.; McCarty, G.W.; Bialek-Kalinski, K.; Zabetakis, K.; Torrents, A.; Hapeman, C.J. Analysis of metolachlor ethane sulfonic acid (MESA) chirality in groundwater: A tool for dating groundwater movement in agricultural settings. Sci. Total Environ. 2016, 560–561, 36–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rui, Z.; Wu, S.; Peng, C.; Ji, H. Comparison of TiO2 Degussa P25 with anatase and rutile crystalline phases for methane combustion. Chem. Eng. J. 2014, 243, 254–264. [Google Scholar] [CrossRef]
- Tobaldi, D.M.; Pullar, R.C.; Seabra, M.P.; Labrincha, J.A. Fully quantitative X-ray characterisation of Evonik Aeroxide TiO2 P25®. Mater. Lett. 2014, 122, 345–347. [Google Scholar] [CrossRef]
- Mehrjouei, M.; Müller, S.; Möller, D. Degradation of oxalic acid in a photocatalytic ozonation system by means of Pilkington ActiveTM glass. J. Photochem. Photobiol. A 2011, 217, 417–424. [Google Scholar] [CrossRef]
- Anton, F.A.; Ariz, M.; Alia, M. Ecotoxic effects of four herbicides (glyphosate, alachlor, chlortoluron and isoproturon) on the algae Chlorella pyrenoidosa Chick. Sci. Total Environ. 1993, 134, 845–851. [Google Scholar] [CrossRef]
- Ma, J.; Lin, F.; Wang, S.; Xu, L. Toxicity of 21 herbicides to the green alga Scenedesmus quadricauda. Bull. Environ. Contam. Toxicol. 2003, 71, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Vonk, J.A.; Kraak, M.H.S. Herbicide Exposure and Toxicity to Aquatic Primary Producers. Rev. Environ. Contam. Toxicol. 2020, 250, 119–171. [Google Scholar] [CrossRef] [PubMed]
- Lanasa, S.; Niedzwiecki, M.; Reber, K.P.; East, A.; Sivey, J.; Salice, C.J. Comparative Toxicity of Herbicide Active Ingredients, Safener Additives and Commercial Formulations to Non-Target Algae, Raphidocelis Subcapitata. Environ. Toxicol. Chem. 2022, 41, 1466–1476. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Ye, W.; Zhan, X.; Liu, W. A comparative study of rac- and S-metolachlor toxicity to Daphnia magna. Ecotoxicol. Environ. Saf. 2006, 63, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Pérez, J.; Domingues, I.; Soares, A.M.V.M.; Loureiro, S. Growth rate of Pseudokirchneriella subcapitata exposed to herbicides found in surface waters in the Alqueva reservoir (Portugal): A bottom-up approach using binary mixtures. Ecotoxicology 2011, 20, 1167–1175. [Google Scholar] [CrossRef] [PubMed]
- Fairchild, J.F.; Ruessler, D.S.; Carlson, A.R. Comparative sensitivity of five species of macrophytes and six species of algae to atrazine, metribuzin, alachlor, and metolachlor. Environ. Toxicol. Chem. 1998, 17, 1830–1834. [Google Scholar] [CrossRef]
- Mercurio, P.; Eaglesham, G.; Parks, S.; Kenway, M.; Beltran, V.; Flores, F.; Mueller, J.; Negri, A.P. Contribution of transformation products towards the total herbicide toxicity to tropical marine organisms. Sci. Rep. 2018, 8, 4808. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, C.J.; Boxall, A.B.A. Assessing the ecotoxicity of pesticide transformation products. Environ. Sci. Technol. 2003, 37, 4617–4625. [Google Scholar] [CrossRef]
- Osano, O.; Admiraal, W.; Klamer, H.J.C.; Pastor, D.; Bleeker, E.A.J. Comparative toxic and genotoxic effects of chloroacetanilides, formamidines and their degradation products on Vibrio fischeri and Chironomus riparius. Environ. Pollut. 2002, 119, 195–202. [Google Scholar] [CrossRef]
- Friedman, C.L.; Lemley, A.T.; Hay, A. Degradation of chloroacetanilide herbicides by anodic Fenton treatment. J. Agric. Food Chem. 2006, 54, 2640–2651. [Google Scholar] [CrossRef]
- Bonnet, J.L.; Bonnemoy, F.; Dusser, M.; Bohatier, J. Assessment of the potential toxicity of herbicides and their degradation products to nontarget cells using two microorganisms, the bacteria Vibrio fischeri and the ciliate Tetrahymena pyriformis. Environ. Toxicol. 2007, 22, 78–91. [Google Scholar] [CrossRef] [PubMed]
- Virág, D.; Naár, Z.; Kiss, A. Microbial toxicity of pesticide derivatives produced with UV-photodegradation. Bull. Environ. Contam. Toxicol. 2007, 79, 356–359. [Google Scholar] [CrossRef] [PubMed]
- Mestankova, H.; Escher, B.; Schirmer, K.; von Gunten, U.; Canonica, S. Evolution of algal toxicity during (photo)oxidative degradation of diuron. Aquat. Toxicol. 2011, 101, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Berberidou, C.; Kitsiou, V.; Karahanidou, S.; Lambropoulou, D.A.; Kouras, A.; Kosma, C.I.; Albanis, T.; Poulios, I. Photocatalytic degradation of the herbicide clopyralid: Kinetics, degradation pathways and ecotoxicity evaluation. J. Chem. Technol. Biotechnol. 2016, 91, 2510–2518. [Google Scholar] [CrossRef]
- OECD. Test No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test OECD Guidelines for the Testing of Chemicals, Section 2; OECD Publishing: Paris, France, 2011. [Google Scholar] [CrossRef] [Green Version]
- Bischoff, H.W.; Bold, H.C. Some soil algae from enchanted rock and related algae species. Phycol. Res. 1963, 44, 1–95. [Google Scholar]
Chloroacetanilide Herbicide | Metolachlor | Acetochlor | Alachlor |
---|---|---|---|
72 h EC50 (µg/L) | 115.10 (86.19–148.50) | 19.13 (13.25–25.71) | 14.07 (9.59–19.66) |
Compound | MRM Transition | Declustering Potential DP (V) | Collision Energy CE (V) | Collision Cell Exit Potential CXP (V) |
---|---|---|---|---|
Alachlor OA | 264/160 | −20 | −18 | −5 |
Alachlor ESA | 314/121 | −35 | −30 | −7 |
Acetochlor OA | 264/146 | −30 | −18 | −5 |
Acetochlor ESA | 314/80 | −50 | −68 | −9 |
Metolachlor OA | 278/206 | −5 | −16 | −9 |
Metolachlor ESA | 328/121 | −55 | −32 | −7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roulová, N.; Hrdá, K.; Kašpar, M.; Peroutková, P.; Josefová, D.; Palarčík, J. Removal of Chloroacetanilide Herbicides from Water Using Heterogeneous Photocatalysis with TiO2/UV-A. Catalysts 2022, 12, 597. https://doi.org/10.3390/catal12060597
Roulová N, Hrdá K, Kašpar M, Peroutková P, Josefová D, Palarčík J. Removal of Chloroacetanilide Herbicides from Water Using Heterogeneous Photocatalysis with TiO2/UV-A. Catalysts. 2022; 12(6):597. https://doi.org/10.3390/catal12060597
Chicago/Turabian StyleRoulová, Nikola, Kateřina Hrdá, Michal Kašpar, Petra Peroutková, Dominika Josefová, and Jiří Palarčík. 2022. "Removal of Chloroacetanilide Herbicides from Water Using Heterogeneous Photocatalysis with TiO2/UV-A" Catalysts 12, no. 6: 597. https://doi.org/10.3390/catal12060597
APA StyleRoulová, N., Hrdá, K., Kašpar, M., Peroutková, P., Josefová, D., & Palarčík, J. (2022). Removal of Chloroacetanilide Herbicides from Water Using Heterogeneous Photocatalysis with TiO2/UV-A. Catalysts, 12(6), 597. https://doi.org/10.3390/catal12060597