Bone Regeneration of Rat Tibial Defect by Zinc-Tricalcium Phosphate (Zn-TCP) Synthesized from Porous Foraminifera Carbonate Macrospheres
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physico-Chemical Characterization of Zn-TCP
2.1.1. X-Ray Powder Diffraction (XRD) Analysis
2.1.2. Quantitative Measurement of Ionic Composition of Samples
Materials | Calcium (mg/g) | Phosphate (mg/g) | Zinc (mg/g) |
---|---|---|---|
Foraminifera | 0.043 ± 0.0001 | 0 | 0 |
β-TCP | 0.045 ± 0.0002 | 0.0041 ± 0.0001 | 0 |
ZnTCP | 0.05 ± 0.0001 | 0.0046 ± 0.0001 | 0.0003 ± 0.00001 |
2.1.3. Morphological Observation by Scanning Electron Microscopy (SEM)
2.2. Radiological and Histological Assessment of Bone Regeneration
2.2.1. Computed Tomography (CT) Imaging of Bone Regeneration
2.2.2. Histological Assessment of Defect Site
3. Experimental Section
3.1. Production, Synthesis and Evaluation of Zn-TCP
3.2. Animal Maintenance and Surgical Procedures
3.3. Radiological and Histological Assessment of Defect
3.4. Statistical Analysis
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Chou, J.; Valenzuela, S.M.; Santos, J.; Bishop, D.; Milthorpe, B.; Green, D.W.; Otsuka, M.; Ben-Nissan, B.; Milthorpe, B. Strontium- and magnesium-enriched biomimetic β-TCP beta-tcp macrospheres with potential for bone tissue morphogenesis. J. Tissue Eng. Regen. Med. 2012, 7. [Google Scholar] [CrossRef]
- Chou, J.; Ben-Nissan, B.; Green, D.W.; Valenzuela, S.M.; Kohan, L. Targeting and dissolution characteristics of bone forming and antibacterial drugs by harnessing the structure of microspherical shells from coral beach sand. Adv. Eng. Mater. 2010, 13, 93–99. [Google Scholar]
- Chou, J.; Ito, T.; Otsuka, M.; Ben-Nissan, B.; Milthorpe, B. Simvastatin loaded β-TCP drug deliverys induces bone formation and prevents rhabdomyolysis in OVX mice. Adv. Healthcare Mater. 2012, 2, 678–681. [Google Scholar]
- Chou, J.; Ito, T.; Otsuka, M.; Ben-Nissan, B.; Milthorpe, B. The effectiveness of the controlled release of simvastatin from β-TCP macrosphere in the treatment of OVX mice. J. Tissue Eng. Regen. Med. 2013. [Google Scholar] [CrossRef]
- Chou, J.; Hao, J.; Hatoyama, H.; Ben-Nissan, B.; Milthorpe, B.; Otsuka, M. The therapeutic effect on bone mineral formation from biomimetic zinc containing tricalcium phosphate (ZnTCP) in zinc-deficient osteoporotic mice. PLoS ONE 2013, 8. [Google Scholar] [CrossRef]
- Roy, D.; Linnehan, S. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 1974, 247, 220–222. [Google Scholar] [CrossRef]
- Ben-Nissan, B. Natural bioceramic: From coral to bone and beyond. Curr. Opin. Solid State Mater. Sci. 2003, 7, 283–288. [Google Scholar] [CrossRef]
- Chou, J.; Ben-Nissan, B.; Choi, A.; Wuhrer, R.; Green, D. Conversion of coral sand to calcium phosphate for biomedical application. J. Aust. Ceram. Soc. 2007, 43, 44–48. [Google Scholar]
- Yamaguchi, M. Role of nutritional zinc in the prevention of osteoporosis. Mol. Cell. Biochem. 2010, 338, 241–254. [Google Scholar] [CrossRef]
- Angus, R.M.; Sambrook, P.N.; Pocock, N.A.; Eisman, J.A. Dietary intake and bone mineral density. Bone Miner. 1988, 4, 265–277. [Google Scholar]
- Sandstead, H.H.; Prasad, A.S.; Schulert, A.R.; Farid, Z.; Miale, A., Jr.; Bassilly, S.; Darby, W.J. Human zinc deficiency, endocrine manifestations and response to treatment. Am. J. Clin. Nutr. 1967, 20, 422–442. [Google Scholar]
- Ganss, B.; Jheon, A. Zinc finger transcription factors in skeletal development. Crit. Rev. Oral. Biol. Med. 2004, 15, 282–297. [Google Scholar] [CrossRef]
- Ikeuchi, M.; Ito, A.; Dohi, Y.; Ohgushi, H.; Shimaoka, H.; Yonemasu, K.; Tateishi, T. Osteogenic differentiation of cultured rat and human bone marrow cells on the surface of zinc-releasing calcium phosphate ceramics. J. Biomed. Mater. Res. A 2003, 67, 1115–1122. [Google Scholar]
- Kawamura, H.; Ito, A.; Miyakawa, S.; Layrolle, P.; Ojima, K.; Ichinose, N.; Tateishi, T. Stimulatory effect of zinc-releasing calcium phosphate implant on bone formation in rabbit femora. J. Biomed. Mater. Res. 2000, 50, 184–190. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Weitzmann, M.N. Zinc stimulates osteoblastogenesis and suppresses osteoclastogenesis by antagonizing NF-κB activation. J. Mol. Cell. Biochem. 2011, 355, 179–186. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Yamaguchi, R. Action of zinc on bone metabolismin rats: Increases in alkaline phosphatase activity and DNA content. Biochem. Pharmacol. 1986, 35, 773–777. [Google Scholar] [CrossRef]
- Hall, S.L.; Dimai, H.P.; Farley, J.R. Effects of zinc on human skeletal alkaline phosphatase activity in vitro. Calcif. Tissue Int. 1999, 64, 163–172. [Google Scholar] [CrossRef]
- Ito, A.; Ojima, K.; Naito, H.; Ichinose, N.; Tateishi, T. Preparation, solubility and cytocompatibility of zinc-releasing calcium phosphate ceramics. J. Biomed. Mater. Res. 2000, 50, 178–183. [Google Scholar] [CrossRef]
- Otsuka, M.; Marunaka, S.; Matsuda, Y.; Ito, A.; Layrolle, P.; Naito, H.; Ichinose, N. Calcium level-responsive in vitro zinc release from zinc containing tricalcium phosphate (zntcp). J. Biomed. Mater. Res. 2000, 52, 819–824. [Google Scholar] [CrossRef]
- Otsuka, M.; Marunaka, S.; Matsuda, Y.; Ito, A.; Naito, H.; Ichinose, N.; Kokubo, T.; Nakamura, T.; Higuchi, W.I. Effect of particle size on zinc release from zinc containing tricalcium phosphate (zntcp) in zn-deficient osteoporosis rats. Biomed. Mater. Eng. 2003, 13, 103–113. [Google Scholar]
- Otsuka, M.; Ohshita, Y.; Marunaka, S.; Matsuda, Y.; Ito, A.; Ichinose, N.; Otsuka, K.; Higuchi, W.I. Effect of controlled zinc release on bone mineral density from injectable Zn-containing beta-tricalcium phosphate suspension in zinc-deficient diseased rats. J. Biomed. Mater. Res. A 2004, 69, 552–560. [Google Scholar]
- Seo, H.J.; Cho, Y.E.; Kim, T.; Shin, H.I.; Kwun, I.S. Zinc may increase bone formation through stimulating cell proliferation, alkaline phosphatase activity and collagen synthesis in osteoblastic mc3t3-e1 cells. Nutr. Res. Pract. 2010, 4, 356–361. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Chou, J.; Hao, J.; Kuroda, S.; Bishop, D.; Ben-Nissan, B.; Milthorpe, B.; Otsuka, M. Bone Regeneration of Rat Tibial Defect by Zinc-Tricalcium Phosphate (Zn-TCP) Synthesized from Porous Foraminifera Carbonate Macrospheres. Mar. Drugs 2013, 11, 5148-5158. https://doi.org/10.3390/md11125148
Chou J, Hao J, Kuroda S, Bishop D, Ben-Nissan B, Milthorpe B, Otsuka M. Bone Regeneration of Rat Tibial Defect by Zinc-Tricalcium Phosphate (Zn-TCP) Synthesized from Porous Foraminifera Carbonate Macrospheres. Marine Drugs. 2013; 11(12):5148-5158. https://doi.org/10.3390/md11125148
Chicago/Turabian StyleChou, Joshua, Jia Hao, Shinji Kuroda, David Bishop, Besim Ben-Nissan, Bruce Milthorpe, and Makoto Otsuka. 2013. "Bone Regeneration of Rat Tibial Defect by Zinc-Tricalcium Phosphate (Zn-TCP) Synthesized from Porous Foraminifera Carbonate Macrospheres" Marine Drugs 11, no. 12: 5148-5158. https://doi.org/10.3390/md11125148
APA StyleChou, J., Hao, J., Kuroda, S., Bishop, D., Ben-Nissan, B., Milthorpe, B., & Otsuka, M. (2013). Bone Regeneration of Rat Tibial Defect by Zinc-Tricalcium Phosphate (Zn-TCP) Synthesized from Porous Foraminifera Carbonate Macrospheres. Marine Drugs, 11(12), 5148-5158. https://doi.org/10.3390/md11125148