Bioactive Compounds Produced by Strains of Penicillium and Talaromyces of Marine Origin
Abstract
:1. Introduction
2. Penicillium and Talaromyces: An Extraordinary Source of Bioactive Compounds
3. Bioactivities of Novel Compounds
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Jones, E.B.G.; Pang, K.L. Introduction marine fungi. In Marine Fungi and Fungal-Like Organisms; Walter de Gruyter: Berlin, Germany, 2012; pp. 1–13. [Google Scholar]
- Kohlmeyer, J.; Kohlmeyer, E. Marine Mycology: The Higher Fungi; Elsevier: Philadelphia, PA, USA, 2013; p. 704. [Google Scholar]
- König, G.M.; Kehraus, S.; Seibert, S.F.; Abdel-Lateff, A.; Müller, D. Natural products from marine organisms and their associated microbes. ChemBioChem 2006, 7, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Sallenave-Namont, C.; Pouchus, Y.F.; Du Pont, T.R.; Lassus, P.; Verbist, J.F. Toxigenic saprophytic fungi in marine shellfish farming areas. Mycopathologia 2000, 149, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Marrouchi, R.; Benoit, E.; Le Caer, J.P.; Belayouni, N.; Belghith, H.; Molgó, J.; Kharrat, R. Toxic C17-sphinganine analogue mycotoxin, contaminating Tunisian mussels, causes flaccid paralysis in rodents. Mar. Drugs 2013, 11, 4724–4740. [Google Scholar] [CrossRef] [PubMed]
- Rateb, M.E.; Ebel, R. Secondary metabolites of fungi from marine habitats. Nat. Prod. Rep. 2011, 28, 290–344. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.D.; Chu, M.; Oza, U.; Rajgarhia, V. The value of natural products to future pharmaceutical discovery. Nat. Prod. Rep. 2007, 24, 1225–1244. [Google Scholar] [CrossRef] [PubMed]
- Dias, D.A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery. Metabolites 2012, 2, 303–336. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Zhou, X.; Wang, F.; Liu, K.; Yang, B.; Yang, X.; Peng, Y.; Liu, J.; Ren, Z.; Liu, Y. A new cytotoxic sesquiterpene quinone produced by Penicillium sp. F00120 isolated from a deep sea sediment sample. Mar. Drugs 2012, 10, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Shao, C.L.; Liu, M.; Qi, X.; Wang, C.Y. Bioactive steroids from a marine-derived fungus Penicillium sp. from the South China Sea. Chem. Nat. Comp. 2014, 50, 568–570. [Google Scholar] [CrossRef]
- Stocker-Wörgötter, E. Metabolic diversity of lichen-forming ascomycetous fungi: Culturing, polyketide and shikimate metabolite production, and PKS genes. Nat. Prod. Rep. 2008, 25, 188–200. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.S.; Li, X.M.; Zhang, Y.; Li, C.S.; Cui, C.M.; Wang, B.G. Comazaphilones A–F, azaphilone derivatives from the marine sediment-derived fungus Penicillium commune QSD-17. J. Nat. Prod. 2011, 74, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Chai, Y.J.; Cui, C.B.; Li, C.W.; Wu, C.J.; Tian, C.K.; Hua, W. Activation of the dormant secondary metabolite production by introducing gentamicin-resistance in a marine-derived Penicillium purpurogenum G59. Mar. Drugs 2012, 10, 559–582. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.M.; Cui, C.B.; Li, C.W.; Wu, C.J.; Zhang, Z.J.; Li, L.; Haung, X.J.; Ye, W.C. Purpurogemutantin and purpurogemutantidin, new drimenyl cyclohexenone derivatives produced by a mutant obtained by diethyl sulfate mutagenesis of a marine-derived Penicillium purpurogenum G59. Mar. Drugs 2012, 10, 1266–1287. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-J.; Li, C.-W.; Cui, C.-B. Seven new and two known lipopeptides as well as five known polyketides: The activated production of silent metabolites in a marine-derived fungus by chemical mutagenesis strategy using diethyl sulphate. Mar. Drugs 2014, 12, 1815–1838. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Aktas, N.; Konuklugil, B.; Mándi, A.; Daletos, G.; Lin, W.; Dai, H.; Kurtan, T.; Proksch, P. A new fusarielin analogue from Penicillium sp. isolated from the Mediterranean sponge Ircinia oros. Tetrahedron Lett. 2015, 56, 5317–5320. [Google Scholar] [CrossRef]
- Taylor, J.W. One fungus = one name: DNA and fungal nomenclature twenty years after PCR. IMA Fungus 2011, 2, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Samson, R.A.; Yilmaz, N.; Houbraken, J.; Spierenburg, H.; Seifert, K.A.; Peterson, S.W.; Varga, J.; Frisvad, J.C. Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium. Stud. Mycol. 2011, 70, 159–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houbraken, J.; Samson, R.A. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Stud. Mycol. 2011, 70, 1–51. [Google Scholar] [CrossRef]
- Yilmaz, N.; Visagie, C.M.; Houbraken, J.; Frisvad, J.C.; Samson, R.A. Polyphasic taxonomy of the genus Talaromyces. Stud. Mycol. 2014, 78, 175–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frisvad, J.C.; Andersen, B.; Thrane, U. The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycol. Res. 2008, 112, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Demain, A.L.; Elander, R.P. The β-lactam antibiotics: Past, present, and future. Antonie Van Leeuwenhoek 1999, 75, 5–19. [Google Scholar] [CrossRef] [PubMed]
- Chakravarti, R.; Sahai, V. Compactin—A review. Appl. Microbiol. Biotechnol. 2004, 64, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, R.; Ciavatta, M.L.; Buommino, E.; Tufano, M.A. Antitumor extrolites produced by Penicillium species. Int. J. Biomed. Pharm. Sci. 2008, 2, 1–23. [Google Scholar]
- Frisvad, J.C.; Smedsgaard, J.; Larsen, T.O.; Samson, R.A. Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud. Mycol. 2004, 49, 201–241. [Google Scholar]
- Jones, E.G.; Suetrong, S.; Sakayaroj, J.; Bahkali, A.H.; Abdel-Wahab, M.A.; Boekhout, T.; Pang, K.L. Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Diver. 2015, 73, 1–72. [Google Scholar] [CrossRef]
- Janso, J.E.; Bernan, V.S.; Greenstein, M.; Bugni, T.S.; Ireland, C.M. Penicillium dravuni, a new marine-derived species from an alga in Fiji. Mycologia 2005, 97, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Shigemori, H.; Wakuri, S.; Yazawa, K.; Nakamura, T.; Sasaki, T.; Kobayashi, J. Fellutamides A and B, cytotoxic peptides from a marine fish-possessing fungus Penicillium fellutanum. Tetrahedron 1991, 47, 8529–8534. [Google Scholar] [CrossRef]
- Numata, A.; Takahashi, C.; Ito, Y.; Takada, T.; Kawai, K.; Usami, Y.; Matsumura, E.; Imachi, M.; Ito, T.; Hasegawa, T. Communesins, cytotoxic metabolites of a fungus isolated from a marine alga. Tetrahedron Lett. 1993, 34, 2355–2358. [Google Scholar] [CrossRef]
- Numata, A.; Takahashi, C.; Ito, Y.; Minoura, K.; Yamada, T.; Matsuda, C.; Nomoto, K. Penochalasins, a novel class of cytotoxic cytochalasans from a Penicillium species separated from a marine alga: Structure determination and solution conformation. J. Chem. Soc. Perkin Trans. 1996, 239–245. [Google Scholar] [CrossRef]
- Takahashi, C.; Numata, A.; Yamada, T.; Minoura, K.; Enomoto, S.; Konishi, K.; Nakai, M.; Matsuda, C.; Nomoto, K. Penostatins, novel cytotoxic metabolites from a Penicillium species separated from a green alga. Tetrahedron Lett. 1996, 37, 655–658. [Google Scholar] [CrossRef]
- Iwamoto, C.; Minoura, K.; Oka, T.; Ohta, T.; Hagishita, S.; Numata, A. Absolute stereostructures of novel cytotoxic metabolites, penostatins A–E, from a Penicillium species separated from an Enteromorpha alga. Tetrahedron 1999, 55, 14353–14368. [Google Scholar] [CrossRef]
- Iwamoto, C.; Minoura, K.; Hagishita, S.; Nomoto, K.; Numata, A. Penostatins F–I, novel cytotoxic metabolites from a Penicillium species separated from an Enteromorpha marine alga. J. Chem. Soc. Perkin Trans. 1998, 449–456. [Google Scholar] [CrossRef]
- Iwamoto, C.; Yamada, T.; Ito, Y.; Minoura, K.; Numata, A. Cytotoxic cytochalasans from a Penicillium species separated from a marine alga. Tetrahedron 2001, 57, 2997–3004. [Google Scholar] [CrossRef]
- Woo, J.T.; Ono, H.; Tsuji, T. Cathestatins, new cysteine protease inhibitors produced by Penicillium citrinum. Biosci. Biotechnol. Biochem. 1995, 59, 350–352. [Google Scholar] [CrossRef] [PubMed]
- Kakeya, H.; Takahashi, I.; Okada, G.; Isono, K.; Osada, H. Epolactaene, a novel neuritogenic compound in human neuroblastoma cells, produced by a marine fungus. J. Antibiot. 1995, 48, 733–735. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.B.; Usukata, M.; Kakeya, H.; Onose, R.; Okada, G.; Takahashi, I.; Isono, K.; Osada, H. Acetophthalidin, a novel inhibitor of mammalian cell cycle, produced by a fungus isolated from a sea sediment. J. Antibiot. 1996, 49, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, G.M.; Seldes, A.M. Citrinin derivatives from an intertidal marine Penicillium. An. Asoc. Quim. Argent. 1997, 85, 193–196. [Google Scholar]
- Onuki, H.; Miyashige, H.; Hasegawa, H.; Yamashita, S. NI15501A, a novel anthranilamide derivative from a marine fungus Penicillium sp. J. Antibiot. 1998, 51, 442–444. [Google Scholar] [CrossRef] [PubMed]
- Amagata, T.; Minoura, K.; Numata, A. Cytotoxic metabolites produced by a fungal strain from a Sargassum alga. J. Antibiot. 1998, 51, 432–434. [Google Scholar] [CrossRef]
- Christophersen, C.; Crescente, O.; Frisvad, J.C.; Gram, L.; Nielsen, J.; Nielsen, P.H.; Rahbæk, L. Antibacterial activity of marine-derived fungi. Mycopathologia 1998, 143, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Malmstrøm, J.; Christophersen, C.; Frisvad, J.C. Secondary metabolites characteristic of Penicillium citrinum, Penicillium steckii and related species. Phytochemistry 2000, 54, 301–309. [Google Scholar] [CrossRef]
- Son, B.W.; Jensen, P.R.; Kauffman, C.A.; Fenical, W. New cytotoxic epidithiodioxopiperazines related to verticillin A from a marine isolate of the fungus Penicillium. Nat. Prod. Lett. 1999, 13, 213–222. [Google Scholar] [CrossRef]
- Kagata, T.; Shigemori, H.; Mikami, Y.; Kobayashi, J. Coruscol A, a new metabolite from the marine-derived fungus Penicillium species. J. Nat. Prod. 2000, 63, 886–887. [Google Scholar] [CrossRef]
- Komatsu, K.; Shigemori, H.; Mikami, Y.; Kobayashi, J. Sculezonones A and B, two metabolites possessing a phenalenone skeleton from a marine-derived fungus Penicillium species. J. Nat. Prod. 2000, 63, 408–409. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Shao, Z.; Jiang, G.; Zhou, S.; Cai, J.; Vrijmoed, L.L.P.; Jones, E.G. Penicillazine, a unique quinolone derivative with 4H-5, 6-dihydro-1, 2-oxazine ring system from the marine fungus Penicillium sp. (strain# 386) from the South China Sea. Tetrahedron 2000, 56, 9607–9609. [Google Scholar]
- Edrada, R.A.; Heubes, M.; Brauers, G.; Wray, V.; Berg, A.; Gräfe, U.; Wohlfarth, M.; Mühlbacher, J.; Schaumann, K.; Sudarsono, S.; et al. Online analysis of xestodecalactones A–C, novel bioactive metabolites from the fungus Penicillium cf. montanense and their subsequent isolation from the sponge Xestospongia exigua. J. Nat. Prod. 2002, 65, 1598–1604. [Google Scholar] [PubMed]
- Amagata, T.; Amagata, A.; Tenney, K.; Valeriote, F.A.; Lobkovsky, E.; Clardy, J.; Crews, P. Unusual C25 steroids produced by a sponge-derived Penicillium citrinum. Org. Lett. 2003, 5, 4393–4396. [Google Scholar] [CrossRef] [PubMed]
- Bugni, T.S.; Bernan, V.S.; Greenstein, M.; Janso, J.E.; Maiese, W.M.; Mayne, C.L.; Ireland, C.M. Brocaenols A–C: Novel polyketides from a marine-derived Penicillium brocae. J. Org. Chem. 2003, 68, 2014–2017. [Google Scholar] [CrossRef] [PubMed]
- Bugni, T.S.; Janso, J.E.; Williamson, R.T.; Feng, X.; Bernan, V.S.; Greenstein, M.; Carter, G.T.; Maiese, W.M.; Ireland, C.M. Dictyosphaeric acids A and B: New decalactones from an undescribed Penicillium sp. obtained from the alga Dictyosphaeria versluyii. J. Nat. Prod. 2004, 67, 1396–1399. [Google Scholar] [CrossRef] [PubMed]
- Jadulco, R.; Edrada, R.A.; Ebel, R.; Berg, A.; Schaumann, K.; Wray, V.; Steube, K.; Proksch, P. New communesin derivatives from the fungus Penicillium sp. derived from the Mediterranean sponge Axinella verrucosa. J. Nat. Prod. 2004, 67, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Bringmann, G.; Lang, G.; Steffens, S.; Schaumann, K. Petrosifungins A and B, novel cyclodepsipeptides from a sponge-derived strain of Penicillium brevicompactum. J. Nat. Prod. 2004, 67, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Gautschi, J.T.; Amagata, T.; Amagata, A.; Valeriote, F.A.; Mooberry, S.L.; Crews, P. Expanding the strategies in natural product studies of marine-derived fungi: A chemical investigation of Penicillium obtained from deep water sediment. J. Nat. Prod. 2004, 67, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Vansteelandt, M.; Kerzaon, I.; Blanchet, E.; Tankoua, O.F.; Du Pont, T.R.; Joubert, Y.; Monteau, F.; Le Bizec, B.; Frisvad, J.C.; Pouchus, Y.F.; et al. Patulin and secondary metabolite production by marine-derived Penicillium strains. Fungal Biol. 2012, 116, 954–961. [Google Scholar] [CrossRef] [PubMed]
- Petit, K.E.; Mondeguer, F.; Roquebert, M.F.; Biard, J.F.; Pouchus, Y.F. Detection of griseofulvin in a marine strain of Penicillium waksmanii by ion trap mass spectrometry. J. Microbiol. Meth. 2004, 58, 59–65. [Google Scholar] [CrossRef]
- Vansteelandt, M.; Blanchet, E.; Egorov, M.; Petit, F.; Toupet, L.; Bondon, A.; Monteau, F.; Le Bizec, B.; Thomas, O.; Pouchus, Y.F.; et al. Ligerin, an antiproliferative chlorinated sesquiterpenoid from a marine-derived Penicillium strain. J. Nat. Prod. 2013, 76, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, M.; Kasai, Y.; Komatsu, K.; Sone, T.; Tanaka, M.; Mikami, Y.; Kobayashi, J. Citrinadin A, a novel pentacyclic alkaloid from marine-derived fungus Penicillium citrinum. Org. Lett. 2004, 6, 3087–3089. [Google Scholar] [CrossRef] [PubMed]
- Mugishima, T.; Tsuda, M.; Kasai, Y.; Ishiyama, H.; Fukushi, E.; Kawabata, J.; Watanabe, M.; Akao, K.; Kobayashi, J. Absolute stereochemistry of citrinadins A and B from marine-derived fungus. J. Org. Chem. 2005, 70, 9430–9435. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, M.; Tsuda, M.; Sekiguchi, M.; Mikami, Y.; Kobayashi, J. Perinadine A, a novel tetracyclic alkaloid from marine-derived fungus Penicillium citrinum. Org. Lett. 2005, 7, 4261–4264. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, M.; Sasaki, M.; Mugishima, T.; Komatsu, K.; Sone, T.; Tanaka, M.; Mikami, Y.; Kobayashi, J. Scalusamides AC, new pyrrolidine alkaloids from the marine-derived fungus Penicillium citrinum. J. Nat. Prod. 2005, 68, 273–276. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Lion, U.; Sattler, I.; Gollmick, F.A.; Grabley, S.; Cai, J.; Meiners, M.; Schünke, H.; Schaumann, K.; Dechert, U.; et al. Diastereomeric quinolinone alkaloids from the marine-derived fungus Penicillium janczewskii. J. Nat. Prod. 2005, 68, 1397–1399. [Google Scholar] [CrossRef]
- Bringmann, G.; Lang, G.; Gulder, T.A.M.; Hideyuki, H.; Mühlbacher, J.; Maksimenka, K.; Steffens, S.; Schaumann, K.; Stöhr, R.; Wiese, J.; et al. The first sorbicillinoid alkaloids, the antileukemic sorbicillactones A and B, from a sponge derived Penicillium chrysogenum strain. Tetrahedron 2005, 61, 7252–7265. [Google Scholar] [CrossRef]
- Bringmann, G.; Lang, G.; Bruhn, T.; Schäffler, K.; Steffens, S.; Schmaljohann, R.; Wiese, J.; Imhoff, J.F. Sorbifuranones A–C, sorbicillinoid metabolites from Penicillium strains isolated from Mediterranean sponges. Tetrahedron 2010, 66, 9894–9901. [Google Scholar] [CrossRef]
- Chen, L.; Fang, Y.; Zhu, T.; Gu, Q.; Zhu, W. Gentisyl alcohol derivatives from the marine-derived fungus Penicillium terrestre. J. Nat. Prod. 2008, 71, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhu, T.; Ding, Y.; Khan, I.A.; Gu, Q.; Li, D. Sorbiterrin A, a novel sorbicillin derivative with cholinesterase inhibition activity from the marine-derived fungus Penicillium terrestre. Tetrahedron Lett. 2012, 53, 325–328. [Google Scholar] [CrossRef]
- Liu, W.; Gu, Q.; Zhu, W.; Cui, C.; Fan, G. Dihydrotrichodimerol and tetrahydrotrichodimerol, two new bisorbicillinoids, from a marine-derived Penicillium terrestre. J. Antibiot. 2005, 58, 621–624. [Google Scholar] [CrossRef]
- Liu, W.; Gu, Q.; Zhu, W.; Cui, C.; Fan, G. Two new benzoquinone derivatives and two new bisorbicillinoids were isolated from a marine-derived fungus Penicillium terrestre. J. Antibiot. 2005, 58, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Gu, Q.; Zhu, W.; Cui, C.; Fan, G.; Zhu, T.; Liu, H.; Fang, Y. Penicillones A and B, two novel polyketides with tricyclo [5.3.1.0.3.8] undecane skeleton, from a marine-derived fungus Penicillium terrestre. Tetrahedron Lett. 2005, 46, 4993–4996. [Google Scholar] [CrossRef]
- Li, D.; Chen, L.; Zhu, T.; Kurtán, T.; Mándi, A.; Zhao, Z.; Li, J.; Gu, Q. Chloctanspirones A and B, novel chlorinated polyketides with an unprecedented skeleton, from marine sediment derived fungus Penicillium terrestre. Tetrahedron 2011, 67, 7913–7918. [Google Scholar] [CrossRef]
- Xue, C.; Li, T.; Deng, Z.; Fu, H.; Lin, W. Janthinolide A–B, two new 2,5-piperazinedione derivatives from the endophytic Penicillium janthinellum isolated from the soft coral Dendronephthya sp. Pharmazie 2006, 61, 1041–1044. [Google Scholar] [CrossRef]
- Rovirosa, J.; Diaz-Marrero, A.N.A.; Darías, J.; Painemal, K.; San Martín, A. Secondary metabolites from marine Penicillium brevicompactum. J. Chil. Chem. Soc. 2006, 51, 775–778. [Google Scholar] [CrossRef]
- Lang, G.; Wiese, J.; Schmaljohann, R.; Imhoff, J.F. New pentaenes from the sponge-derived marine fungus Penicillium rugulosum: Structure determination and biosynthetic studies. Tetrahedron 2007, 63, 11844–11849. [Google Scholar] [CrossRef]
- El-Beih, A.A.; Kato, H.; Tsukamoto, S.; Ohta, T. CYP3A4 inhibitors isolated from a marine derived fungus Penicillium species. J. Nat. Med. 2007, 61, 175–177. [Google Scholar] [CrossRef]
- Smetanina, O.F.; Kalinovsky, A.I.; Khudyakova, Y.V.; Pivkin, M.V.; Dmitrenok, P.S.; Fedorov, S.N.; Ji, H.; Kwak, J.-Y.; Kuznetsova, T.A. Indole alkaloids produced by a marine fungus isolate of Penicillium janthinellum Biourge. J. Nat. Prod. 2007, 70, 906–909. [Google Scholar] [CrossRef] [PubMed]
- Capon, R.J.; Stewart, M.; Ratnayake, R.; Lacey, E.; Gill, J.H. Citromycetins and bilains A–C: New aromatic polyketides and diketopiperazines from Australian marine-derived and terrestrial Penicillium spp. J. Nat. Prod. 2007, 70, 1746–1752. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Li, X.; Kang, J.S.; Choi, H.D.; Jung, J.H.; Son, B.W. Redoxcitrinin, a biogenetic precursor of citrinin from marine isolate of fungus Penicillium sp. J. Microbiol. Biotechnol. 2007, 17, 865–867. [Google Scholar] [PubMed]
- Xin, Z.; Fang, Y.; Du, L.; Zhu, T.; Duan, L.; Chen, J.; Gu, Q.; Zhu, W. Aurantiomides A–C, quinazoline alkaloids from the sponge-derived fungus Penicillium aurantiogriseum SP0-19. J. Nat. Prod. 2007, 70, 853–855. [Google Scholar] [CrossRef] [PubMed]
- Xin, Z.H.; Zhu, T.J.; Wang, W.L.; Du, L.; Fang, Y.C.; Gu, Q.Q.; Zhu, W.M. Isocoumarin derivatives from the sea squirt-derived fungus Penicillium stoloniferum QY2-10 and the halotolerant fungus Penicillium notatum B-52. Arch. Pharm. Res. 2007, 30, 816–819. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Gu, Q.Q.; Cui, C.B. Anthraquinone derivatives produced by marine-derived Penicillium flavidorsum SHK1-27 and their antitumor activities. Chin. J. Med. Chem. 2007, 17, 148–154. [Google Scholar]
- Iida, M.; Ooi, T.; Kito, K.; Yoshida, S.; Kanoh, K.; Shizuri, Y.; Kusumi, T. Three new polyketide-terpenoid hybrids from Penicillium sp. Org. Lett. 2008, 10, 845–848. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.F.; Qiao, L.; Lv, A.L.; Pei, Y.H.; Tian, L. Eremophilane sesquiterenes from the marine fungus Penicillium sp. BL27-2. Chin. Chem. Lett. 2008, 19, 562–564. [Google Scholar] [CrossRef]
- Motohashi, K.; Hashimoto, J.; Inaba, S.; Khan, S.T.; Komaki, H.; Nagai, A.; Takagi, M.; Shin-ya, K. New sesquiterpenes, JBIR-27 and-28, isolated from a tunicate-derived fungus, Penicillium sp. SS080624SCf1. J. Antibiot. 2009, 62, 247–250. [Google Scholar] [CrossRef] [PubMed]
- Mizushina, Y.; Motoshima, H.; Yamaguchi, Y.; Takeuchi, T.; Hirano, K.; Sugawara, F.; Yoshida, H. 3-O-methylfunicone, a selective inhibitor of mammalian Y-family DNA polymerases from an Australian sea salt fungal strain. Mar. Drugs 2009, 7, 624–639. [Google Scholar] [CrossRef] [PubMed]
- De Silva, E.D.; Geiermann, A.S.; Mitova, M.I.; Kuegler, P.; Blunt, J.W.; Cole, A.L.; Munro, M.H. Isolation of 2-pyridone alkaloids from a New Zealand marine-derived Penicillium species. J. Nat. Prod. 2009, 72, 477–479. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.J.; Du, L.; Hao, P.F.; Lin, Z.J.; Gu, Q.Q. Citrinal A, a novel tricyclic derivative of citrinin, from an algicolous fungus Penicillium sp. i-1-1. Chin. Chem. Lett. 2009, 20, 917–920. [Google Scholar] [CrossRef]
- Gamal-Eldeen, A.M.; Abdel-Lateff, A.; Okino, T. Modulation of carcinogen metabolizing enzymes by chromanone A; a new chromone derivative from algicolous marine fungus Penicillium sp. Environ. Toxicol. Pharmacol. 2009, 28, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Yang, X.; Zhu, T.; Wang, F.; Xiao, X.; Park, H.; Gu, Q. Diketopiperazine alkaloids from a deep ocean sediment derived fungus Penicillium sp. Chem. Pharm. Bull. 2009, 57, 873–876. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Li, D.; Zhu, T.; Cai, S.; Wang, F.; Xiao, X.; Gu, Q. New alkaloids and diterpenes from a deep ocean sediment derived fungus Penicillium sp. Tetrahedron 2009, 65, 1033–1039. [Google Scholar] [CrossRef]
- Du, L.; Feng, T.; Zhao, B.; Li, D.; Cai, S.; Zhu, T.; Wang, F.; Xiao, X.; Gu, Q. Alkaloids from a deep ocean sediment-derived fungus Penicillium sp. and their antitumor activities. J. Antibiot. 2010, 63, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Peng, J.; Zhu, T.; Gu, Q.; Keyzers, R.A.; Li, D. Sorbicillamines A–E, nitrogen-containing sorbicillinoids from the deep-sea-derived fungus Penicillium sp. F23-2. J. Nat. Prod. 2013, 76, 2106–2112. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Zhang, Z.; Zhu, T.; Gu, Q.; Li, D. Penicyclones A–E, antibacterial polyketides from the deep-sea-derived fungus Penicillium sp. F23-2. J. Nat. Prod. 2015, 78, 2699–2703. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ye, D.; Chen, X.; Lu, X.; Shao, Z.; Zhang, H.; Che, Y. Breviane spiroditerpenoids from an extreme-tolerant Penicillium sp. isolated from a deep sea sediment sample. J. Nat. Prod. 2009, 72, 912–916. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ye, D.; Shao, Z.; Cui, C.; Che, Y. A sterol and spiroditerpenoids from a Penicillium sp. isolated from a deep sea sediment sample. Mar. Drugs 2012, 10, 497–508. [Google Scholar] [CrossRef] [PubMed]
- Kerzaon, I.; Pouchus, Y.F.; Monteau, F.; Le Bizec, B.; Nourrisson, M.R.; Biard, J.F.; Grovel, O. Structural investigation and elucidation of new communesins from a marine-derived Penicillium expansum Link by liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2009, 23, 3928–3938. [Google Scholar] [CrossRef]
- Trisuwan, K.; Rukachaisirikul, V.; Sukpondma, Y.; Phongpaichit, S.; Preedanon, S.; Sakayaroj, J. Lactone derivatives from the marine-derived fungus Penicillium sp. PSU-F44. Chem. Pharm. Bull. 2009, 57, 1100–1102. [Google Scholar] [CrossRef] [PubMed]
- Trisuwan, K.; Rukachaisirikul, V.; Sukpondma, Y.; Phongpaichit, S.; Preedanon, S.; Sakayaroj, J. Furo[3,2-h]isochroman, furo[3,2-h]isoquinoline, isochroman, phenol, pyranone, and pyrone derivatives from the sea fan-derived fungus Penicillium sp. PSU-F40. Tetrahedron 2010, 66, 4484–4489. [Google Scholar] [CrossRef]
- Liu, S.; Yan, X.; Yu, M.; Chen, J.; Zhang, L. A novel compound from Penicillium sp. (M207142). Chem. Nat. Comp. 2010, 46, 116–118. [Google Scholar] [CrossRef]
- Wiese, J.; Ohlendorf, B.; Blümel, M.; Schmaljohann, R.; Imhoff, J.F. Phylogenetic identification of fungi isolated from the marine sponge Tethya aurantium and identification of their secondary metabolites. Mar. Drugs 2011, 9, 561–585. [Google Scholar] [CrossRef]
- Ueda, J.Y.; Hashimoto, J.; Inaba, S.; Takagi, M.; Shin-ya, K. JBIR-59, a new sorbicillinoid, from a marine-derived fungus Penicillium citrinum SpI080624G1f01. J. Antibiot. 2010, 63, 203–205. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, T.; Takagi, M.; Shin-ya, K. JBIR-124: A novel antioxidative agent from a marine sponge-derived fungus Penicillium citrinum SpI080624G1f01. J. Antibiot. 2012, 65, 45–47. [Google Scholar] [CrossRef] [PubMed]
- Pimenta, E.F.; Vita-Marques, A.M.; Tininis, A.; Seleghim, M.H.R.; Sette, L.D.; Veloso, K.; Ferreira, A.G.; Williams, D.E.; Patrick, B.O.; Dalisay, D.S.; et al. Use of experimental design for the optimization of the production of new secondary metabolites by two Penicillium species. J. Nat. Prod. 2010, 73, 1821–1832. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.N.; Zhu, T.J.; Cai, S.X.; Gu, Q.Q.; Li, D.H. Three new indole-containing diketopiperazine alkaloids from a deep-ocean sediment derived fungus Penicillium griseofulvum. Helv. Chim. Acta 2010, 93, 1758–1763. [Google Scholar] [CrossRef]
- Yu, K.; Ren, B.; Wei, J.; Chen, C.; Sun, J.; Song, F.; Dai, H.; Zhang, L. Verrucisidinol and verrucosidinol acetate, two pyrone-type polyketides isolated from a marine derived fungus, Penicillium aurantiogriseum. Mar. Drugs 2010, 8, 2744–2754. [Google Scholar] [CrossRef] [PubMed]
- Song, F.; Ren, B.; Yu, K.; Chen, C.; Guo, H.; Yang, N.; Gao, H.; Liu, X.; Liu, M.; Tong, Y.; et al. Quinazolin-4-one coupled with pyrrolidin-2-iminium alkaloids from marine-derived fungus Penicillium aurantiogriseum. Mar. Drugs 2012, 10, 1297–1306. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Yun, K.; Nenkep, V.N.; Choi, H.D.; Kang, J.S.; Son, B.W. Induced production of halogenated diphenyl ethers from the marine-derived fungus Penicillium chrysogenum. Chem. Biodivers. 2010, 7, 2766–2770. [Google Scholar] [CrossRef] [PubMed]
- Meyer, S.W.; Mordhorst, T.F.; Lee, C.; Jensen, P.R.; Fenical, W.; Köck, M. Penilumamide, a novel lumazine peptide isolated from the marine-derived fungus, Penicillium sp. CNL-338. Org. Biomol. Chem. 2010, 8, 2158–2163. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.S.; Li, X.M.; Du, F.Y.; Li, C.S.; Proksch, P.; Wang, B.G. Secondary metabolites from a marine-derived endophytic fungus Penicillium chrysogenum QEN-24S. Mar. Drugs 2011, 9, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.S.; Li, X.M.; Li, C.S.; Proksch, P.; Wang, B.G. Penicisteroids A and B, antifungal and cytotoxic polyoxygenated steroids from the marine alga-derived endophytic fungus Penicillium chrysogenum QEN-24S. Bioorg. Med. Chem. Lett. 2011, 21, 2894–2897. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.S.; Li, X.M.; Zhang, Y.; Li, C.S.; Wang, B.G. Conidiogenones H and I, two new diterpenes of cyclopiane class from a marine-derived endophytic fungus Penicillium chrysogenum QEN-24S. Chem. Biodivers. 2011, 8, 1748–1753. [Google Scholar] [CrossRef] [PubMed]
- Smetanina, O.F.; Yurchenko, A.N.; Kalinovsky, A.I.; Pushilin, M.A.; Slinkina, N.N.; Yurchenko, E.A.; Afiyatullov, S.S. 4-Methoxy-3-methylgoniothalamin from marine-derived fungi of the genus Penicillium. Russ. Chem. Bull. 2011, 60, 760–763. [Google Scholar] [CrossRef]
- Liu, Q.Y.; Zhou, T.; Zhao, Y.Y.; Chen, L.; Gong, M.W.; Xia, Q.W.; Ying, M.G.; Zheng, Q.H.; Zhang, Q.Q. Antitumor effects and related mechanisms of penicitrinine A, a novel alkaloid with a unique spiro skeleton from the marine fungus Penicillium citrinum. Mar. Drugs 2015, 13, 4733–4753. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Liu, W.; Hu, X.; Huang, K.; Wu, J.L.; Zhang, Q.Q. Citrinin derivatives from the marine-derived fungus Penicillium citrinum. Chem. Pharm. Bull. 2011, 59, 515–517. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Gong, M.-W.; Peng, Z.-F.; Zhou, T.; Ying, M.-G.; Zheng, Q.-H.; Liu, Q.-Y.; Zhang, Q.Q. The marine fungal metabolite, dicitrinone B, induces A375 cell apoptosis through the ROS-related caspase pathway. Mar. Drugs 2014, 12, 1939–1958. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Takada, K.; Takemoto, Y.; Yoshida, M.; Nogi, Y.; Okada, S.; Matsunaga, S. Gliotoxin analogues from a marine-derived fungus, Penicillium sp., and their cytotoxic and histone methyltransferase inhibitory activities. J. Nat. Prod. 2011, 75, 111–114. [Google Scholar] [CrossRef] [PubMed]
- Li, J.L.; Zhang, P.; Lee, Y.M.; Hong, J.; Yoo, E.S.; Bae, K.S.; Jung, J.H. Oxygenated hexylitaconates from a marine sponge-derived fungus Penicillium sp. Chem. Pharm. Bull. 2011, 59, 120–123. [Google Scholar] [CrossRef] [PubMed]
- Li, C.S.; An, C.Y.; Li, X.M.; Gao, S.S.; Cui, C.M.; Sun, H.F.; Wang, B.G. Triazole and dihydroimidazole alkaloids from the marine sediment-derived fungus Penicillium paneum SD-44. J. Nat. Prod. 2011, 74, 1331–1334. [Google Scholar] [CrossRef]
- Li, C.S.; Li, X.M.; Gao, S.S.; Lu, Y.H.; Wang, B.G. Cytotoxic anthranilic acid derivatives from deep sea sediment-derived fungus Penicillium paneum SD-44. Mar. Drugs 2013, 11, 3068–3076. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, X.; An, C.; Wang, B. Prenylated indole alkaloid derivatives from marine sediment-derived fungus Penicillium paneum SD-44. Helv. Chim. Acta 2014, 97, 1440–1444. [Google Scholar] [CrossRef]
- Gao, S.S.; Shang, Z.; Li, X.M.; Li, C.S.; Cui, C.M.; Wang, B.G. Secondary metabolites produced by solid fermentation of the marine-derived fungus Penicillium commune QSD-17. Biosci. Biotechnol. Biochem. 2012, 76, 358–360. [Google Scholar] [CrossRef] [PubMed]
- Kossuga, M.H.; Romminger, S.; Xavier, C.; Milanetto, M.C.; do Valle, M.Z.; Pimenta, E.F.; Morais, R.P.; de Carvalho, E.; Mizuno, C.M.; Coradello, L.F.C.; et al. Evaluating methods for the isolation of marine-derived fungal strains and production of bioactive secondary metabolites. Rev. Bras. Farmacogn. 2012, 22, 257–267. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Zhang, L.; Zhu, T.; Gu, Q.; Li, D. Unusual pyrrolyl 4-quinolinone alkaloids from the marine-derived fungus Penicillium sp. ghq208. Chem. Pharm. Bull. 2012, 60, 1458–1460. [Google Scholar] [CrossRef] [PubMed]
- Myobatake, Y.; Takeuchi, T.; Kuramochi, K.; Kuriyama, I.; Ishido, T.; Hirano, K.; Sugawara, F.; Yoshida, H.; Mizushina, Y. Pinophilins A and B, inhibitors of mammalian A-, B-, and Y-family DNA polymerases and human cancer cell proliferation. J. Nat. Prod. 2012, 75, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, T.; Takagi, M.; Shin-ya, K. Three new depsipeptides, JBIR-113, JBIR-114 and JBIR-115, isolated from a marine sponge-derived Penicillium sp. fS36. J. Antibiot. 2012, 65, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zheng, Z.; Huang, H.; Song, Y.; Zhang, X.; Ma, J.; Wang, B.; Zhang, C.; Ju, J. Penicacids A–C, three new mycophenolic acid derivatives and immunosuppressive activities from the marine-derived fungus Penicillium sp. SOF07. Bioorg. Med. Chem. Lett. 2012, 22, 3332–3335. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Ma, H.; Zhu, T.; Li, J.; Gu, Q.; Li, D. Penilactones A and B, two novel polyketides from Antarctic deep-sea derived fungus Penicillium crustosum PRB-2. Tetrahedron 2012, 68, 9745–9749. [Google Scholar] [CrossRef]
- Shang, Z.; Li, X.; Meng, L.; Li, C.; Gao, S.; Huang, C.; Wang, B. Chemical profile of the secondary metabolites produced by a deepsea sediment-derived fungus Penicillium commune SD-118. Chin. J. Oceanol. Limnol. 2012, 30, 305–314. [Google Scholar] [CrossRef]
- Wang, J.; Liu, P.; Wang, Y.; Wang, H.; Li, J.; Zhuang, Y.; Zhu, W. Antimicrobial aromatic polyketides from gorgonian-associated fungus, Penicillium commune 518. Chin. J. Chem. 2012, 30, 1236–1242. [Google Scholar] [CrossRef]
- Geiger, M.; Guitton, Y.; Vansteelandt, M.; Kerzaon, I.; Blanchet, E.; Robiou du Pont, T.; Frisvad, J.C.; Hess, P.; Pouchus, Y.F.; Grovel, O. Cytotoxicity and mycotoxin production of shellfish-derived Penicillium spp., a risk for shellfish consumers. Lett. Appl. Microbiol. 2013, 57, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Yurchenko, A.N.; Smetanina, O.F.; Kalinovskii, A.I.; Kirichuk, N.N.; Yurchenko, E.A.; Afiyatullov, S.S. Biologically active metabolites of the facultative marine fungus Penicillium citrinum. Chem. Nat. Comp. 2013, 48, 996–998. [Google Scholar] [CrossRef]
- Julianti, E.; Lee, J.H.; Liao, L.; Park, W.; Park, S.; Oh, D.C.; Oh, K.B.; Shin, J. New polyaromatic metabolites from a marine-derived fungus Penicillium sp. Org. Lett. 2013, 15, 1286–1289. [Google Scholar] [CrossRef] [PubMed]
- Subramani, R.; Kumar, R.; Prasad, P.; Aalbersberg, W. Cytotoxic and antibacterial substances against multi-drug resistant pathogens from marine sponge symbiont: Citrinin, a secondary metabolite of Penicillium sp. Asian Pac. J. Trop. Biomed. 2013, 3, 291–296. [Google Scholar] [CrossRef]
- Wang, M.H.; Li, X.M.; Li, C.S.; Ji, N.Y.; Wang, B.G. Secondary metabolites from Penicillium pinophilum SD-272, a marine sediment-derived fungus. Mar. Drugs 2013, 11, 2230–2238. [Google Scholar] [CrossRef] [PubMed]
- Flewelling, A.J.; Johnson, J.A.; Gray, C.A. Antimicrobials from the marine algal endophyte Penicillium sp. Nat. Prod. Commun. 2013, 8, 373–374. [Google Scholar] [PubMed]
- Qi, J.; Shao, C.L.; Li, Z.Y.; Gan, L.S.; Fu, X.M.; Bian, W.T.; Zhao, H.Y.; Wang, C.Y. Isocoumarin derivatives and benzofurans from a sponge-derived Penicillium sp. fungus. J. Nat. Prod. 2013, 76, 571–579. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Han, Z.; Peng, J.; Qian, P.Y.; Qi, S.H. Antifouling indole alkaloids from two marine derived fungi. Nat. Prod. Commun. 2013, 8, 329–332. [Google Scholar] [PubMed]
- Bao, J.; Sun, Y.L.; Zhang, X.Y.; Han, Z.; Gao, H.C.; He, F.; Qian, P.Y.; Qi, S.H. Antifouling and antibacterial polyketides from marine gorgonian coral-associated fungus Penicillium sp. SCSGAF 0023. J. Antibiot. 2013, 66, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Sohn, J.H.; Lee, D.S.; Oh, H.C. PTP1B inhibitory secondary metabolites from marine-derived fungal strains Penicillium spp. and Eurotium sp. J. Microbiol. Biotechnol. 2013, 23, 1206–1211. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.S.; Ko, W.; Quang, T.H.; Kim, K.S.; Sohn, J.H.; Jang, J.H.; Ahn, J.S.; Kim, Y.C.; Oh, H. Penicillinolide A: A new anti-inflammatory metabolite from the marine fungus Penicillium sp. SF-5292. Mar. Drugs 2013, 11, 4510–4526. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Sohn, J.H.; Jang, J.H.; Ahn, J.S.; Oh, H.; Baltrusaitis, J.; Hwang, I.H.; Gloer, J.B. Cycloexpansamines A and B: Spiroindolinone alkaloids from a marine isolate of Penicillium sp.(SF-5292). J. Antibiot. 2015, 68, 715–718. [Google Scholar] [CrossRef]
- Lee, D.S.; Jang, J.H.; Ko, W.; Kim, K.S.; Sohn, J.H.; Kang, M.S.; Ahn, J.S.; Kim, Y.C.; Oh, H. PTP1B inhibitory and anti-inflammatory effects of secondary metabolites isolated from the marine-derived fungus Penicillium sp. JF-55. Mar. Drugs 2013, 11, 1409–1426. [Google Scholar] [CrossRef] [PubMed]
- Quang, T.H.; Lee, D.S.; Sohn, J.H.; Kim, Y.C.; Oh, H. A new deoxyisoaustamide derivative from the marine-derived fungus Penicillium sp. JF-72. Bull. Korean Chem. Soc. 2013, 34, 3109–3112. [Google Scholar] [CrossRef]
- An, C.Y.; Li, X.M.; Li, C.S.; Gao, S.S.; Shang, Z.; Wang, B.G. Triazoles and other N-containing metabolites from the marine-derived endophytic fungus Penicillium chrysogenum EN-118. Helv. Chim. Acta 2013, 96, 682–687. [Google Scholar] [CrossRef]
- Gao, H.; Zhou, L.; Li, D.; Gu, Q.; Zhu, T.J. New cytotoxic metabolites from the marine-derived fungus Penicillium sp. ZLN29. Helv. Chim. Acta 2013, 96, 514–519. [Google Scholar] [CrossRef]
- Scopel, M.; Abraham, W.-R.; Henriques, A.T.; MacEdo, A.J. Dipeptide cis-cyclo(Leucyl-Tyrosyl) produced by sponge associated Penicillium sp. F37 inhibits biofilm formation of the pathogenic Staphylococcus epidermidis. Bioorg. Med. Chem. Lett. 2013, 23, 624–626. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Lin, A.; Gu, Q.; Zhu, T.; Li, D. Four new chloro-eremophilane sesquiterpenes from an Antarctic deep-sea derived fungus, Penicillium sp. PR19N-1. Mar. Drugs 2013, 11, 1399–1408. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.; Wu, G.; Gu, Q.; Zhu, T.; Li, D. New eremophilane-type sesquiterpenes from an Antarctic deep-sea derived fungus, Penicillium sp. PR19 N-1. Arch. Pharm. Res. 2014, 37, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.L.; Zhang, X.Y.; Zheng, Z.H.; Xu, X.Y.; Qi, S.H. Three new polyketides from marine-derived fungus Penicillium citrinum SCSGAF 0167. Nat. Prod. Res. 2014, 28, 239–244. [Google Scholar] [CrossRef] [PubMed]
- An, C.Y.; Li, X.M.; Li, C.S.; Xu, G.M.; Wang, B.G. Prenylated indolediketopiperazine peroxides and related homologues from the marine sediment-derived fungus Penicillium brefeldianum SD-273. Mar. Drugs 2014, 12, 746–756. [Google Scholar] [CrossRef] [PubMed]
- He, J.B.; Ji, Y.N.; Hu, D.B.; Zhang, S.; Yan, H.; Liu, X.C.; Luo, H.R.; Zhu, H.J. Structure and absolute configuration of penicilliumine, a new alkaloid from Penicillium commune 366606. Tetrahedron Lett. 2014, 55, 2684–2686. [Google Scholar] [CrossRef]
- Li, X.D.; Miao, F.P.; Liang, X.R.; Ji, N.Y. Meroterpenes from an algicolous strain of Penicillium echinulatum. Magn. Res. Chem. 2014, 52, 247–250. [Google Scholar] [CrossRef]
- Liao, L.; Lee, J.H.; You, M.; Choi, T.J.; Park, W.; Lee, S.K.; Oh, D.C.; Oh, K.B.; Shin, J. Penicillipyrones A and B, meroterpenoids from a marine-derived Penicillium sp. fungus. J. Nat. Prod. 2014, 77, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Kumla, D.; Dethoup, T.; Buttachon, S.; Singburaudom, N.; Silva, A.M.; Kijjoa, A. Spiculisporic acid E, a new spiculisporic acid derivative and ergosterol derivatives from the marine-sponge associated fungus Talaromyces trachyspermus (KUFA 0021). Nat. Prod. Commun. 2014, 9, 1147–1150. [Google Scholar]
- Peng, J.; Zhang, X.; Du, L.; Wang, W.; Zhu, T.; Gu, Q.; Li, D. Sorbicatechols A and B, antiviral sorbicillinoids from the marine-derived fungus Penicillium chrysogenum PJX-17. J. Nat. Prod. 2014, 77, 424–428. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.C.; Lee, H.S.; Ko, W.; Lee, D.S.; Sohn, J.H.; Yim, J.H.; Kim, Y.C.; Oh, H. Anti-inflammatory effect of methylpenicinoline from a marine isolate of Penicillium sp. (SF-5995): Inhibition of NF-κB and MAPK pathways in lipopolysaccharide-induced RAW264.7 macrophages and BV2 microglia. Molecules 2014, 19, 18073–18089. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, X.M.; Meng, L.H.; Jiang, W.L.; Xu, G.M.; Huang, C.G.; Wang, B.G. Bisthiodiketopiperazines and acorane sesquiterpenes produced by the marine-derived fungus Penicillium adametzioides AS-53 on different culture media. J. Nat. Prod. 2015, 78, 1294–1299. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Mándi, A.; Li, X.M.; Meng, L.H.; Kurtán, T.; Wang, B.G. Peniciadametizine A, a dithiodiketopiperazine with a unique spiro [furan-2,7′-pyrazino[1,2-b][1,2]oxazine] skeleton, and a related analogue, peniciadametizine B, from the marine sponge-derived fungus Penicillium adametzioides. Mar. Drugs 2015, 13, 3640–3652. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, X.M.; Meng, L.H.; Wang, B.G. N-Formyllapatin A, a new N-formylspiroquinazoline derivative from the marine-derived fungus Penicillium adametzioides AS-53. Phytochem. Lett. 2014, 10, 145–148. [Google Scholar] [CrossRef]
- Quang, T.H.; Ngan, N.T.T.; Ko, W.; Kim, D.C.; Yoon, C.S.; Sohn, J.H.; Yim, J.H.; Kim, Y.C.; Oh, H. Tanzawaic acid derivatives from a marine isolate of Penicillium sp. (SF-6013) with anti-inflammatory and PTP1B inhibitory activities. Bioorg. Med. Chem. Lett. 2014, 24, 5787–5791. [Google Scholar] [CrossRef] [PubMed]
- Kildgaard, S.; Mansson, M.; Dosen, I.; Klitgaard, A.; Frisvad, J.C.; Larsen, T.O.; Nielsen, K.F. Accurate dereplication of bioactive secondary metabolites from marine-derived fungi by UHPLC-DAD-QTOFMS and a MS/HRMS library. Mar. Drugs 2014, 12, 3681–3705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuravleva, O.I.; Sobolevskaya, M.P.; Afiyatullov, S.S.; Kirichuk, N.N.; Denisenko, V.A.; Dmitrenok, P.S.; Yurchenko, E.A.; Dyshlovoy, S.A. Sargassopenillines A–G, 6,6-spiroketals from the alga-derived fungi Penicillium thomii and Penicillium lividum. Mar. Drugs 2014, 12, 5930–5943. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Ohlendorf, B.; Oesker, V.; Wiese, J.; Malien, S.; Schmaljohann, R.; Imhoff, J.F. Acetylcholinesterase inhibitors from a marine fungus Talaromyces sp. strain LF458. Mar. Biotechnol. 2015, 17, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Han, L.; Shao, C.L.; She, Z.G.; Wang, C.Y. Bioactive diphenyl ether derivatives from a gorgonian-derived fungus Talaromyces sp. Chem. Biodivers. 2015, 12, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.L.; Shao, C.L.; Zhang, Q.; Wang, K.L.; Guan, F.F.; Shi, T.; Wang, C.Y. Azaphilone and diphenyl ether derivatives from a gorgonian-derived strain of the fungus Penicillium pinophilum. J. Nat. Prod. 2015, 78, 2310–2314. [Google Scholar] [CrossRef] [PubMed]
- Ngokpol, S.; Suwakulsiri, W.; Sureram, S.; Lirdprapamongkol, K.; Aree, T.; Wiyakrutta, S.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P. Drimane sesquiterpene-conjugated amino acids from a marine isolate of the fungus Talaromyces minioluteus (Penicillium minioluteum). Mar. Drugs 2015, 13, 3567–3580. [Google Scholar] [CrossRef] [PubMed]
- Afiyatullov, S.S.; Leshchenko, E.V.; Sobolevskaya, M.P.; Gerasimenko, A.V.; Khudyakova, Y.V.; Kirichuk, N.N.; Mikhailov, V.V. New 3-[2′(R)-hydroxybutyl]-7-hydroxyphthalide from marine isolate of the fungus Penicillium claviforme. Chem. Nat. Comp. 2015, 51, 111–115. [Google Scholar] [CrossRef]
- Asiri, I.A.; Badr, J.M.; Youssef, D.T. Penicillivinacine, antimigratory diketopiperazine alkaloid from the marine-derived fungus Penicillium vinaceum. Phytochem. Lett. 2015, 13, 53–58. [Google Scholar] [CrossRef]
- Shaala, L.A.; Youssef, D.T. Identification and bioactivity of compounds from the fungus Penicillium sp. CYE-87 isolated from a marine tunicate. Mar. Drugs 2015, 13, 1698–1709. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.-Q.; Li, P.-H.; Chao, Y.-X.; Chen, H.; Du, N.; He, Q.-X.; Liu, K.-C. Alkaloids with cardiovascular effects from the marine-derived fungus Penicillium expansum Y32. Mar. Drugs 2015, 13, 6489–6504. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Ko, S.K.; Son, S.; Shin, K.S.; Ryoo, I.J.; Hong, Y.S.; Oh, H.; Hwang, B.Y.; Hirota, H.; Takahashi, S.; et al. Haenamindole, an unusual diketopiperazine derivative from a marine-derived Penicillium sp. KCB12F005. Bioorg. Med. Chem. Lett. 2015, 25, 5398–5401. [Google Scholar] [CrossRef] [PubMed]
- Cardoso-Martínez, F.; de la Rosa, J.M.; Díaz-Marrero, A.R.; Darias, J.; Cerella, C.; Diederich, M.; Cueto, M. Tanzawaic acids isolated from a marine-derived fungus of the genus Penicillium with cytotoxic activities. Org. Biomol. Chem. 2015, 13, 7248–7256. [Google Scholar] [CrossRef] [PubMed]
- Bu, Y.Y.; Yamazaki, H.; Takahashi, O.; Kirikoshi, R.; Ukai, K.; Namikoshi, M. Penicyrones A and B, an epimeric pair of α-pyrone-type polyketides produced by the marine-derived Penicillium sp. J. Antibiot. 2016, 69, 57–61. [Google Scholar] [CrossRef]
- Ding, Z.; Zhang, L.; Fu, J.; Che, Q.; Li, D.; Gu, Q.; Zhu, T. Phenylpyropenes E and F: New meroterpenes from the marine-derived fungus Penicillium concentricum ZLQ-69. J. Antibiot. 2015, 68, 748–751. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, H.; Nakayama, W.; Takahashi, O.; Kirikoshi, R.; Izumikawa, Y.; Iwasaki, K.; Toraiwa, K.; Ukai, K.; Rotinsulu, H.; Wewengkang, D.S.; et al. Verruculides A and B, two new protein tyrosine phosphatase 1B inhibitors from an Indonesian ascidian-derived Penicillium verruculosum. Bioorg. Med. Chem. Lett. 2015, 25, 3087–3090. [Google Scholar] [CrossRef] [PubMed]
- Lynn, D.G.; Phillips, N.J.; Hutton, W.C.; Shabanowitz, J.; Fennell, D.I.; Cole, R.J. Talaromycins: Application of homonuclear spin correlation maps to structure assignment. J. Am. Chem. Soc. 1982, 104, 7319–7322. [Google Scholar] [CrossRef]
- Frisvad, J.C.; Filtenborg, O.; Samson, R.A.; Stolk, A.C. Chemotaxonomy of the genus Talaromyces. Antonie Van Leeuwenhoek 1990, 57, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Li, B.; Zheng, C.; Wang, G. Molecular detection of fungal communities in the Hawaiian marine sponges Suberites zeteki and Mycale armata. Appl. Environ. Microbiol. 2008, 74, 6091–6101. [Google Scholar] [CrossRef] [PubMed]
- Webster, N.S.; Taylor, M.W. Marine sponges and their microbial symbionts: Love and other relationships. Environ. Microbiol. 2012, 14, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Gosio, B. Ricerche bacteriologiche e chimiche sulle alterazioni del mais. Riv. Ig. Sanità Pubblica 1896, 7, 825–868. [Google Scholar]
- Clutterbuck, P.W.; Raistrick, H. Studies in the biochemistry of microorganisms XXXI. The molecular constitution of the metabolic products of Penicillium brevi-compactum Dierckx and related species. Biochem. J. 1933, 27, 654–667. [Google Scholar] [CrossRef] [PubMed]
- Lipsky, J.L. Mycophenolate mofetil. Lancet 1996, 348, 1357–1359. [Google Scholar] [CrossRef]
- Bentley, R. Mycophenolic acid: A one hundred year odyssey from antibiotic to immunosuppressant. Chem. Rev. 2000, 100, 3801–3826. [Google Scholar] [CrossRef] [PubMed]
- Oxford, A.E.; Raistrick, H.; Simonart, P. Studies in the biochemistry of microorganisms. LX. Griseofulvin, C17H17O6Cl, a metabolic product of Penicillium griseo-fulvum Dierckx. Biochem. J. 1939, 33, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, R.; Fiorentino, A. Antitumor metabolites of fungi. Curr. Bioact. Compd. 2014, 10, 207–244. [Google Scholar] [CrossRef]
- Johnson, J.R.; Bruce, W.F.; Dutcher, J.D. Gliotoxin, the antibiotic principle of Gliocladium fimbriatum. I. Production, physical and biological properties. J. Am. Chem. Soc. 1943, 65, 2005–2009. [Google Scholar] [CrossRef]
- Sekita, S.; Yoshihira, K.; Natori, S.; Kuwano, H. Structures of chaetoglobosin A and B, cytotoxic metabolites of Chaetomium globosum. Tetrahedron Lett. 1973, 14, 2109–2112. [Google Scholar] [CrossRef]
- De Stefano, S.; Nicoletti, R.; Milone, A.; Zambardino, S. 3-O-Methylfunicone, a fungitoxic metabolite produced by the fungus Penicillium pinophilum. Phytochemistry 1999, 52, 1399–1401. [Google Scholar] [CrossRef]
- Nicoletti, R.; de Stefano, M.; de Stefano, S.; Trincone, A.; Marziano, F. Antagonism against Rhizoctonia solani and fungitoxic metabolite production by some Penicillium isolates. Mycopathologia 2004, 158, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Stammati, A.; Nicoletti, R.; De Stefano, S.; Zampaglioni, F.; Zucco, F. Cytostatic properties of a novel compound derived from Penicillium pinophilum: An in vitro study. Altern. Lab. Anim. 2002, 30, 1–7. [Google Scholar]
- Buommino, E.; Nicoletti, R.; Gaeta, G.M.; Orlando, M.; Ciavatta, M.L.; Baroni, A.; Tufano, M.A. 3-O-Methylfunicone induces apoptosis and hsp70 activation in HeLa cells. Cell Prolif. 2004, 37, 413–426. [Google Scholar] [CrossRef] [PubMed]
- Buommino, E.; Boccellino, M.; De Filippis, A.; Petrazzuolo, M.; Cozza, V.; Nicoletti, R.; Ciavatta, M.L.; Quagliuolo, L.; Tufano, M.A. 3-O-methylfunicone produced by Penicillium pinophilum affects cell motility of breast cancer cells, downregulating αvβ5 integrin and inhibiting metalloproteinase-9 secretion. Mol. Carcinog. 2007, 46, 930–940. [Google Scholar] [CrossRef]
- Nicoletti, R.; Buommino, E.; De Filippis, A.; Lopez-Gresa, M.P.; Manzo, E.; Carella, A.; Petrazzuolo, M.; Tufano, M.A. Bioprospecting for antagonistic Penicillium strains as a resource of new antitumor compounds. World J. Microbiol. Biotechnol. 2008, 24, 189–195. [Google Scholar] [CrossRef]
- Baroni, A.; De Luca, A.; De Filippis, A.; Petrazzuolo, M.; Manente, L.; Nicoletti, R.; Tufano, M.A.; Buommino, E. 3-O-Methylfunicone, a metabolite from Penicillium pinophilum, inhibits proliferation of human melanoma cells by causing G2/M arrest and inducing apoptosis. Cell Prolif. 2009, 42, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, R.; Manzo, E.; Ciavatta, M.L. Occurence and bioactivities of funicone-related compounds. Int. J. Mol. Sci. 2009, 10, 1430–1444. [Google Scholar] [CrossRef] [PubMed]
- Buommino, E.; Paoletti, I.; De Filippis, A.; Nicoletti, R.; Ciavatta, M.L.; Menegozzo, S.; Menegozzo, M.; Tufano, M.A. 3-O-Methylfunicone, a metabolite produced by Penicillium pinophilum, modulates ERK1/2 activity, affecting cell motility of human mesothelioma cells. Cell Prolif. 2010, 43, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Buommino, E.; Tirino, V.; De Filippis, A.; Silvestri, F.; Nicoletti, R.; Ciavatta, M.L.; Pirozzi, G.; Tufano, M.A. 3-O-methylfunicone, from Penicillium pinophilum, is a selective inhibitor of breast cancer stem cells. Cell Prolif. 2011, 44, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Buommino, E.; De Filippis, A.; Nicoletti, R.; Menegozzo, M.; Menegozzo, S.; Ciavatta, M.L.; Rizzo, A.; Brancato, V.; Tufano, M.A.; Donnarumma, G. Cell-growth and migration inhibition of human mesothelioma cells induced by 3-O-methylfunicone from Penicillium pinophilum and cisplatin. Investig. New Drugs 2012, 30, 1343–1351. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, R.; Scognamiglio, M.; Fiorentino, A. Structural and bioactive properties of 3-O-methylfunicone. Mini Rev. Med. Chem. 2014, 14, 1043–1047. [Google Scholar] [CrossRef]
- Harned, A.M.; Volp, K.A. The sorbicillinoid family of natural products: Isolation, biosynthesis, and synthetic studies. Nat. Prod. Rep. 2011, 28, 1790–1810. [Google Scholar] [CrossRef] [PubMed]
- Cram, D.J. Mold metabolites. II. The structure of sorbicillin, a pigment produced by the mold Penicillium notatum. J. Am. Chem. Soc. 1948, 70, 4240–4243. [Google Scholar] [CrossRef] [PubMed]
- Visagie, C.M.; Houbraken, J.; Frisvad, J.C.; Hong, S.B.; Klaassen, C.H.W.; Perrone, G.; Seifert, K.A.; Varga, J.; Yaguchi, T.; Samson, R.A. Identification and nomenclature of the genus Penicillium. Stud. Mycol. 2014, 78, 343–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matallah-Boutiba, A.; Ruiz, N.; Sallenave-Namont, C.; Grovel, O.; Amiard, J.C.; Pouchus, Y.F.; Boutiba, Z. Screening for toxigenic marine-derived fungi in Algerian mussels and their immediate environment. Aquaculture 2012, 342, 75–79. [Google Scholar] [CrossRef]
- Greve, H.; Mohamed, I.E.; Pontius, A.; Kehraus, S.; Gross, H.; König, G.M. Fungal metabolites: Structural diversity as incentive for anticancer drug development. Phytochem. Rev. 2010, 9, 537–545. [Google Scholar] [CrossRef]
- Gomes, N.G.; Lefranc, F.; Kijjoa, A.; Kiss, R. Can some marine-derived fungal metabolites become actual anticancer agents? Mar. Drugs 2015, 13, 3950–3991. [Google Scholar] [CrossRef] [PubMed]
- Kakeya, H.; Onozawa, C.; Sato, M.; Arai, K.; Osada, H. Neuritogenic effect of epolactaene derivatives on human neuroblastoma cells which lack high-affinity nerve growth factor receptors. J. Med. Chem. 1997, 40, 391–394. [Google Scholar] [CrossRef] [PubMed]
- Perpelescu, M.; Kobayashi, J.I.; Furuta, M.; Ito, Y.; Izuta, S.; Takemura, M.; Suzuki, M.; Yoshida, S. Novel phenalenone derivatives from a marine-derived fungus exhibit distinct inhibition spectra against eukaryotic DNA polymerases. Biochemistry 2002, 41, 7610–7616. [Google Scholar] [CrossRef] [PubMed]
- Mizushina, Y.; Kobayashi, S.; Kuramochi, K.; Nagata, S.; Sugawara, F.; Sakaguchi, K. Epolactaene, a novel neuritogenic compound in human neuroblastoma cells, selectively inhibits the activities of mammalian DNA polymerases and human DNA topoisomerase II. Biochem. Biophys. Res. Commun. 2000, 273, 784–788. [Google Scholar] [CrossRef] [PubMed]
- Nitiss, J.L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer 2009, 9, 338–350. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, K.; Tsuji, T.; Wakuri, S.; Yazawa, K.; Kondo, K.; Shigemori, H.; Kobayashi, J.I. Stimulation of nerve growth factor synthesis and secretion by fellutamide A in vitro. Biosci. Biotechnol. Biochem. 1993, 57, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Hines, J.; Groll, M.; Fahnestock, M.; Crews, C.M. Proteasome inhibition by fellutamide B induces nerve growth factor synthesis. Chem. Biol. 2008, 15, 501–512. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Du, L.; Tang, X.; Jung, S.Y.; Zheng, B.; Soh, B.Y.; Kim, S.Y.; Gu, Q.; Park, H. Brevicompanine E reduces lipopolysaccharide-induced production of proinflammatory cytokines and enzymes in microglia by inhibiting activation of activator protein-1 and nuclear factor-κB. J. Neuroimmunol. 2009, 216, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.P.; Yang, C.G.; Wei, P.Y.; Li, L.; Luo, D.Q.; Zheng, Z.H.; Lu, X.H. Penostatin derivatives, a novel kind of protein phosphatase 1B inhibitors isolated from solid cultures of the entomogenous fungus Isaria tenuipes. Molecules 2014, 19, 1663–1671. [Google Scholar] [CrossRef] [PubMed]
- Murray, A.P.; Faraoni, M.B.; Castro, M.J.; Alza, N.P.; Cavallaro, V. Natural AChE inhibitors from plants and their contribution to Alzheimer’s disease therapy. Curr. Neuropharmacol. 2013, 11, 388–413. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.; Li, D.; Chidawanyika, T.; Nathan, C.; Li, H. Fellutamide B is a potent inhibitor of the Mycobacterium tuberculosis proteasome. Arch. Biochem. Biophys. 2010, 501, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.C.; Li, X.M.; Gloer, J.B.; Wang, B.G. First total syntheses and antimicrobial evaluation of penicimonoterpene, a marine-derived monoterpenoid, and its various derivatives. Mar. Drugs 2014, 12, 3352–3370. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, H.; Matsumoto, H.; Akiyama, K. New insecticidal compounds, communesins C, D and E, from Penicillium expansum Link MK-57. Biosci. Biotechnol. Biochem. 2004, 68, 753–756. [Google Scholar] [CrossRef] [PubMed]
- Park, M.S.; Fong, J.J.; Oh, S.Y.; Kwon, K.K.; Sohn, J.H.; Lim, Y.W. Marine-derived Penicillium in Korea: Diversity, enzyme activity, and antifungal properties. Antonie Van Leeuwenhoek 2014, 106, 331–345. [Google Scholar] [CrossRef] [PubMed]
- Bringmann, G.; Gulder, T.A.; Lang, G.; Schmitt, S.; Stöhr, R.; Wiese, J.; Nagel, K.; Imhoff, J.F. Large-scale biotechnological production of the antileukemic marine natural product sorbicillactone A. Mar. Drugs 2007, 5, 23–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Species Name 1 | Strain No. | Source of Isolation 2 | Location | Products 3 | References |
---|---|---|---|---|---|
P. fellutanum (P. dierckxii) | - | F Apogon endekataenia | Manazaru (Japan) | Fellutamide A–B | [28] |
Penicillium sp. (P. marinum) | OUPS-79 | G Ulva (Enteromorpha) intestinalis | Tanabe Bay (Japan) | Communesin A–B, Penochalasin A–H, Penostatin A–I, Chaetoglobosin A,F,O, Patulin, Epiepoxydon | [29,30,31,32,33,34] |
P. citrinum | - | S unidentified sponge | Suruga Bay (Japan) | Cathestatin A–B, Estatin A–B | [35] |
Penicillium sp. | BM1689-P | sediment | Uchiura Bay (Japan) | Epolactaene | [36] |
Penicillium sp. | BM923 | sediment | Miho (Japan) | Acetophthalidin, 3,4,6-Trihydroxymellein | [37] |
Penicillium sp. | - | intertidal sediment | San Antonio Oeste (Argentina) | Cyclo(l-prolyl-l-tyrosyl) | [38] |
Penicillium sp. | NI15501 | sediment (depth 14 m) | Tomari (Japan) | NI15501A | [39] |
P. waksmanii | OUPS-N133 | B Sargassum ringgoldianum | Japan | Pyrenocine A–B,D–E, Cis-bis(methylthio)silvatin | [40] |
P. citrinum | many strains | several sources | Mochima Bay and Paria Bay (Venezuela) | Citrinin, Tanzawaic acid A | [41,42] |
P. steckii | M23B-7 = IBT20952 and 12 more strains | T unidentified tunicate, and other sources (molluscs, fish, sponges) | Mochima Bay and Paria Bay (Venezuela) | Tanzawaic acid E–F, 3,7-Dimethyl-8-hydroxy-6-methoxyisochroman, 3,7-Dimethyl-1,8-dihydroxy-6-methoxyisochroman | [41,42] |
Penicillium sp. | #CNC-350 | G Avrainvillea longicaulis | Sweetings Cay (Bahamas) | Verticillin A, 11′-Deoxyverticillin A, 11,11′-Dideoxyverticillin A, Bisdethio-bis(methylthio)-dioxopiperazine | [43] |
Penicillium sp. | K029 | M Mytilus coruscus | Seragaki (Japan) | Coruscol A, Herquline A | [44] |
Penicillium sp. | K036 | M M. coruscus | Seragaki (Japan) | Sculezonone A–B | [45] |
Penicillium sp. | #386 | sand | South China Sea | Penicillazine (Trichodermamide A) | [46] |
P. cf. montanense | HBI-3/D | S Xestospongia exigua | Mangangan Island (Indonesia) | Xestodecalactone A–C | [47] |
P. citrinum | 991084 | S Axinella sp. | Papua New Guinea | Isocyclocitrinol A, 22-Acetylisocyclocitrinol A | [48] |
P. brocae | F97S76 | S Zyzzya sp. | Fiji | Brocaenol A–C | [49] |
Penicillium sp. (P. dravuni) | F01V25 | G Dictyosphaeria versluyii | Dravuni (Fiji) | Dictyosphaeric acid A–B, Carviolin | [50] |
Penicillium sp. (P. marinum) | E-00-12/3 | S Axinella verrucosa | Elba Island (Italy) | Communesin B,C–D, Griseofulvin, Dechlorogriseofulvin, Oxaline | [51] |
P. cf. brevicompactum | E-00-2/6a | S Petrosia ficiformis | Elba Island (Italy) | Petrosifungin A–B, Brevianamide A, Asperphenamate, Mycophenolic acid | [52] |
Penicillium sp. | a004181, b004181 | sediment (depth 4380 ft) | Matuka (Fiji) | Anserinone A–B, Formylanserinone B, Epoxyserinone A–B, Deoxyanserinone B, Hydroxymethylanserinone B | [53] |
P. waksmanii (Penicillium sp.) | LCP99.43.43 = MMS351 | water | La Prée (France) | Griseofulvin, Dechlorogriseofulvin, Orcinol, Penicillic acid, Agroclavine, Festuclavine, Nortryptoquivaline, Ligerin | [54,55,56] |
P. citrinum | N059 | R Actinotrichia fragilis | Okinawa (Japan) | Citrinin, Citrinadin A–B | [57,58] |
P. citrinum | N055 | F Scarus ovifrons | Okinawa (Japan) | Perinadine A, Scalusamide A–C | [59,60] |
P. janczewskii | H-TW5/869 | water | Helgoland Island (Germany) | 3,4-Dihydroxy-4-(4′-methoxyphenyl)-3,4-dihydro-2(1H)-quinolinone, Peniprequinolone, 3-Methoxy-4-hydroxy-4-(4′-methoxyphenyl)-3,4-dihydro-2(1H)-quinolinone | [61] |
P. chrysogenum | DSM16137 = E01-10/3 | S Ircinia fasciculata | Elba Island (Italy) | Sorbicillactone A–B, Sorbivinetone, Sorbivinetol, Sorbifuranone A–C, Bisvertinolone, Sorbicillin, Oxosorbicillinol, Meleagrin, Roquefortine C–D | [62,63] |
P. terrestre (P. crustosum) | M204077 | sediment | Jiaozhou Bay (China) | Sorbicillin, Dihydrobisvertinolone, Tetrahydrobisvertinolone, Trichodimerol, Dihydrotrichodimerol, Tetrahydrotrichodimerol, Sorbiterrin A, Penicillone A–B, Chloctanspirone A–B, Terrestrol A–H,K–L, 2-(2′-3′-Dihydrosorbyl)-3,6-dimethyl-5-hydroxy-1,4-benzoquinone, 3-Acetonyl-2,6-dimethyl-5-hydroxy-1,4-benzoquinone | [64,65,66,67,68,69] |
P. janthinellum | - | C Dendronephyta sp. | Hainan (China) | Griseofulvin, Dechlorogriseofulvin, Janthinolide A–B, Deoxymycelianamide | [70] |
P. brevicompactum | Cl-2002 | S Cliona sp. | Quintay (Chile) | Mycophenolic acid, Mycophenolic acid methyl ester, Tyrosol | [71] |
P. rugulosum (T. rugulosus) | KF021 | S Chondrosia reniformis | Elba Island (Italy) | Prugosene A1,A2,B1,B2,B3,C1,C2 | [72] |
Penicillium sp. | - | B Sargassum tortile | Toyama Bay (Japan) | 4-Hydroxy-2-methoxyacetanilide, 4-Methoxyphenylacetic acid, 4-(2-Hydroxyethyl)phenol, 3-Methoxyphenol, 4-Hydroxyphenylacetic acid | [73] |
P. janthinellum | - | sediment (depth 11 m) | Amursky Bay (Sea of Japan) | Shearinine A,D–F | [74] |
P. bilaiae | MST-MF667 | boat ramp | Port Huon (Tasmania, Australia) | Cyclo(l-prolyl-l-tyrosyl), Cyclo(l-phenalanyl-l-prolyl), Cyclo(l-prolyl-l-valyl), Cis-bis(methylthio)silvatin, Bilain A–C, Pistillarin, Citromycin, 2,3-Dihydrocitromycin, Citromycetin, 2,3-Dihydrocitromycetin | [75] |
Penicillium sp. | MFA446 | G Ulva pertusa | Bijin Island (Korea) | Citrinin, Citrinin H2, Redoxcitrinin, Phenol A, Phenol A acid, 4-Hydroxymellein | [76] |
P. aurantiogriseum | SP0-19 | S Mycale plumose | Jiaozhou Bay (China) | Aurantiomide A–C, Anacin | [77] |
P. stoloniferum (P. brevicompactum) | QY2-10 | T unidentified ascidian | Jiaozhou Bay (China) | Stoloniferol A–B | [78] |
P. flavidorsum (P. glabrum) | SHK1-27 | sediment | Weizhou Island (China) | Averufin, 8-O-Methylaverufin, 6,8-O-Dimethylaverufin, Averantin, Nidurufin, Versicolorin A–B, Versiconol | [79] |
P. minioluteum (T. minioluteus) | 03HE3-1 | mud | Heita Bay (Japan) | Miniolutelide A–B, 22-Epoxyberkeleydione | [80] |
Penicillium sp. | BL27-2 | mud | Bering Sea | 3-Acetyl-13-deoxyphomenone, 8α-Hydroxy-13-deoxyphomenone, Sporogen-AO1, 3-Acetyl-9,7(11)-dien-7α-hydroxy-8-oxoeremophilane, 6-Dehydropetasol, 7-Hydroxypetasol | [81] |
Penicillium sp. | SS080624SCf1 | T Didemnum molle | Ishigaki Island (Japan) | Phomenone, Sporogen-AO1, JBIR-27, JBIR-28 | [82] |
Penicillium sp. (Talaromyces sp.) | AF1-2 | salt pan | Australia | 3-O-Methylfunicone | [83] |
Penicillium sp. | CANU MCPT14-1-5 | B Xiphophora gladiata | Otago (New Zealand) | PF1140, Deoxy-PF1140, Deoxyakanthomycin | [84] |
Penicillium sp. | i-1-1 | G Blidingia minima | Yantai (China) | Citrinin, Citrinal A, 2,3,4-Trimethyl-5,7-dihydroxy-2,3-dihydrobenzofuran | [85] |
Penicillium sp. | EG-51 | G Ulva sp. | Suez Canal (Egypt) | Chromanone A | [86] |
Penicillium sp. | F1 | sediment (depth 5080 m) | Pacific Ocean | Brevicompanine B,D–H, Fructigenine B | [87] |
Penicillium sp. | F23-2 | sediment (depth 5080 m) | Pacific Ocean | Meleagrin B–E, Roquefortines F–I, Conidiogenone B–G, Sorbicillamine A–E, Bisvertinolone, Rezishanone C, Penicyclone A–E | [88,89,90,91] |
Penicillium sp. | 3A00005 | sediment (depth 5115 m) | East Pacific Ocean | Brevione A–B,F–K, Sterolic acid | [92,93] |
P. expansum | MMS42 | sediment | Le Croisic (France) | Communesin A–B, D–F, Com470, Com512, Com522, Com524, Com570, Com622, Com 644, Patulin, Chaetoglobosin 528, Chaetoglobosin 530, Citrinin, Roquefortine C–D, Expansolide A–B, Aurantioclavine, Verruculotoxin | [54,94] |
Penicillium sp. | PSU-F44 | C Annella sp. | Similan Islands (Thailand) | Penicipyrone, Penicilactone, Brefeldin A,C, Oxobrefeldin A | [95] |
Penicillium sp. | PSU-F40 | C Annella sp. | Similan Islands (Thailand) | Penicipyrone, Penicipyranone, Penicisochroman A–E, Penicisoquinoline, Peniciphenol, TMC-120B, TMC-120C, 2-(2-Methoxybenzoyl)pyrrole, 1-(2,4-Dihydroxy-6-methylphenyl)-3-methyl-1-butanone, Nicotinic acid | [96] |
Penicillium sp. | M207142 | sediment | China | (2E,4E)-1-(2,6-Dihydroxy-3,5-dimethyl-phenyl)hexa-2,4-dien-1-one, Penicillone A, 2′,3′-Dihydrosorbicillin | [97] |
P. chrysogenum | R03-8/4 = LF066 | S Tethya aurantium | Limsky Canal (Croatia) | Meleagrin, Roquefortine C–D, Sorbifuranone B–C, Bisvertinolone, 2′,3′-Dihydrosorbicillin, Xanthocillins, Cillifuranone | [63,98] |
P. citrinum | SpI080624G1f01 | S unidentified Demospongia | Ishigaki Island (Japan) | Redoxcitrinin, Sclerotinin A–B, Bisorbibutenolide, Bisvertinolone, Trichodimerol, JBIR-59, JBIR-124 | [99,100] |
P. oxalicum | F30 = CBMAI1185 | G Caulerpa sp. | Sao Paulo State (Brazil) | Meleagrin, Oxaline | [101] |
P. citrinum | F53 = CBMAI1186 | G Caulerpa sp. | Sao Paulo State (Brazil) | Citrinin, Citrinalin A–B, (E)-1-(2,3-dihydro-1H-pyrrol-1-yl)-2-methyldec-8-ene-1,3-dione, 1-(2,3-dihydro-1H-pyrrol-1-yl)-2-methyldecane-1,3-dione | [101] |
P. griseofulvum | - | sediment (depth 2481 m) | Pacific Ocean | Echinulin, Preechinulin, Didehydroechinulin, Isoechinulin B, Neoechinulins A–B, Tardioxopiperazine A, Variecolorin H,M–O | [102] |
P. aurantiogriseum | MF361 | mud | Bohai Sea (China) | Verrucosidin, Norverrrucosidin, Verrucosidinol, Verrucosidinol acetate, Terrestric acid, Aurantiomide C, Auranthine, Auranomide A–C | [103,104] |
P. chrysogenum | MFB574-2 | R Hypnea species complex | Yokgee Island (Korea) | 4,6,4′,6′-Tetrabromo-3,3′-dihydroxy-5,5′-dimethyldiphenyl ether, 4,6,2′,4′,6′-Pentabromo-3,3′-dihydroxy-5,5′-dimethyldiphenyl ether, 3,3′-Dihydroxy-5,5′-dimethyldiphenyl ether, Violacerol I–II | [105] |
Penicillium sp. | CNL-338 | R Laurencia sp. | Bahamas | Penilumamide, Aspochalasin D–E | [106] |
P. chrysogenum | QEN-24S | R Laurencia sp. | Weizhou Island (China) | Penicitide A–B, Penicimonoterpene, Penicisteroid A–B, Conidiogenol, 2-(2,4-Dihydroxy-6-methylbenzoyl)-glycerol, Anicequol, 1-(2,4-Dihydroxy-6-methylbenzoyl)-glycerol, Conidiogenone B–D,F,H–I | [107,108,109] |
P. glabrum | - | P Zostera marina (stem) | Trinity Bay (Sea of Japan) | Sulochrin, 4-Methoxy-3-methylgoniothalamin | [110] |
P. implicatum | - | P Z. marina (rhizome) | Trinity Bay (Sea of Japan) | Sulochrin, 4-Methoxy-3-methylgoniothalamin | [110] |
P. citrinum | - | sediment | Langqi Island (China) | Citrinin, Decarboxydihydrocitrinone, Penicitrinol C–E, Dicitrinone B, Penicitrinine A | [111,112,113] |
Penicillium sp. | JMF034 | sediment (depth 1151 m) | Suruga Bay (Japan) | Gliotoxin, Gliotoxin G, 5a,6-Didehydrogliotoxin, 6-Deoxy-5a,6-didehydrogliotoxin, Bis(dethio)-10a-methylthio-3a-deoxy-3,3a-didehydrogliotoxin, Bis(dethio)bis(methylthio)gliotoxin, Bis(dethio)bis-(methylthio)-5a,6-didehydrogliotoxin | [114] |
P. brevicompactum | LF259 | S T. aurantium | Limsky Canal (Croatia) | Mycophenolic acid | [98] |
P. citreoviride | LF590 | S T. aurantium | Limsky Canal (Croatia) | Citreoviridins, Territrem B | [98] |
P. canescens (Penicillium sp.) | LF596 | S T. aurantium | Limsky Canal (Croatia) | Griseofulvin, Fiscalin A–C, Tryptoquivalin, Nortryptoquivalin | [98] |
P. sclerotiorum | LF607 | S T. aurantium | Limsky Canal (Croatia) | Sclerotiorin, Sclerotioramin, Azaphilone derivative (comp. D) | [98] |
Penicillium sp. | J05B-3-F-1 | S Stelletta sp. | Jeju Island (Korea) | (3S)-Hexylitaconic acid, (3S,8R)-Methyl 8-hydroxy-3-methoxycarbonyl-2-methylenenonanoate, (3S,8R)-8-Hydroxy-3-carboxy-2-methylenenonanoic acid, (3S)-9-Hydroxy-3-carboxy-2-methylenenonanoic acid, (3S)-Methyl-9-hydroxy-3-methoxycarbonyl-2-methylenenonanoate | [115] |
P. paneum | SD-44 | sediment (depth 20 m) | South China Sea | Penipanoid A–C, 2-(4-Hydroxybenzyl)quinazolin-4(3H)-one, Penipacid A–E, Penipaline A–C, (−)-(3S)-2,3,4,9-Tetrahydro-1,1-dimethyl-1H-β-carboline-3-carboxylic acid, 1,7-Dihydro-7,7-dimethylpyrano[2,3-g]indole-3-carbaldehyde | [116,117,118] |
P. commune | QSD-17 | sediment | South China Sea | Meleagrin, Asperamide B1, Citreohybridonol, 3-Deacetylcitreohybridonol, Comazaphilone A–F, Isophomenone, Conidiogenone B–D,F, Conidiogenol | [12,119] |
Penicillium sp. | DG(M3)6′C | C Didemnum granulatum | Toque Island (Brazil) | 13-Desoxyphomenone | [120] |
P. raistrickii | AC(M2)14 | S Axinella cf. corrugata | Toque Island (Brazil) | Norlichexanthone | [120] |
P. paxilli | Ma(G)K | S Mycale angulosa | Toque Island (Brazil) | Pyrenocine A–B,J | [120] |
P. steckii | AS(F)39 | B Sargassum sp. | Toque Island (Brazil) | 8-Methoxy-3,5-dimethylisochroman-6-ol | [120] |
Penicillium sp. | ghq208 | sediment | Jiaozhou Bay (China) | Penicinoline, Penicinoline E, Methylpenicinoline, Quinolactacide | [121] |
P. pinophilum (T. pinophilus) | - | G Ulva fasciata | Kasai Marine Park (Japan) | Pinophilin A–B, Sch725680 | [122] |
Penicillium sp. | fS36 | S unidentified sponge | Takarajima Island (Japan) | JBR-113,-114,-115 | [123] |
Penicillium sp. | F00120 | sediment (depth 1300 m) | South China Sea | Penicilliumin A | [9] |
Penicillium sp. | SOF07 | sediment (depth 675 m) | South China Sea | Mycophenolic acid, Hydroxy-mycophenolic acid, Penicacid A–C | [124] |
P. crustosum | PRB-2 | sediment (depth 526 m) | Prydz Bay (Antarctica) | Penilactone A–B, 2′,4′-Dihydroxy-3′-methoxymethyl-5′-methylacetophenone | [125] |
P. commune | SD-118 | sediment | South China Sea | Meleagrin, Chrysogine, Methyl 2-N-(2-hydroxyphenyl)carbamoylacetate, Asperamide A–B, Xanthocillin X, N-(2-Hydroxypropanoyl)-2-amino benzoic acid amide, N-(2-Hydroxyphenyl)acetamide, 4-Hydroxy benzaldehyde, Methyl-2-(2-(1H-indol-3-yl)ethyl)carbamoyl)acetate, N2′-Acetyltryptophan methyl ester, N-Acetyldopamine | [126] |
P. commune | 518 | C Muricella abnormalis | Danzhou (Hainan, China) | Communol A–G, Clavatol, 2,4-Dihydroxy-3-methylacetophenone, 2,4-Dihydroxy-3-methoxymethyl-5-methylacetophenone, 2,4-Dihydroxy-5-methylacetophenone, cis-Bis(methylthio)silvatin | [127] |
P. canescens | MMS194 | water | La Baule (France) | Griseofulvin, Dechlorogriseofulvin, Oxaline, Maculosin, Penicillic acid, Penitremone A–C | [54] |
P. canescens | MMS460 | sediment | Le Croisic (France) | Griseofulvin, Dechlorogriseofulvin, Oxaline, Penicillic acid, Penitremone A–C | [54] |
Penicillium sp. | MMS747 | sediment | La Couplasse (France) | Griseofulvin, Dechlorogriseofulvin, Penicillic acid, Nortryptoquivaline, Agroclavine, Festuclavine | [54] |
P. chrysogenum | MMS5 | M shellfish | Le Croisic (France) | Meleagrin, Roquefortine C–D, Chrysogine, Aurantioclavine, Maculosin, Glandicolin A–B, Terrestric acid, Verruculotoxin | [54] |
P. antarcticum | MMS14 | M cockles | Le Croisic (France) | Chrysogine, Cladosporin(=asperentin), 5-Hydroxyasperentin, Antarone A, Violaceic acid, Patulin, Terrestric acid | [54,128] |
P. antarcticum | MMS15 | M cockles | Le Croisic (France) | Chrysogine, Cladosporin, 5-Hydroxyasperentin, Aurantioclavine, Antarone A, Patulin, Terrestric acid | [54,128] |
P. antarcticum | MMS163 | M mussel | Loire estuary (France) | Patulin, Chrysogine, Cladosporin, 5-Hydroxyasperentin, Terrestric acid | [128] |
P. marinum | MMS266 | M mussel | La Baule (France) | Penostatin derivatives, Fusoxysporone | [128] |
P. restrictum | MMS417 | M cockles | Le Croisic (France) | Pestalotin, Hydroxypestalotin, 5,6-Dihydro-4-methoxy-6-(1-oxopentyl)-2H-pyran-2-one | [128] |
P. citrinum | - | C soft coral | Van Phong Bay (Vietnam) | JBIR-27, Petasol, Sporogen AO-1, Dihydrosporogen AO-1 | [129] |
Penicillium sp. | F011 | sediment | Korea | Herqueiazole, Herqueioxazole, Herqueidiketal | [130] |
Penicillium sp. | FF001 | S Melophlus sp. | Cicia (Fiji) | Citrinin | [131] |
P. pinophilum (T. pinophilus) | SD-272 | sediment | Pearl River estuary (China) | Pinodiketopiperazine A, 6,7-Dihydroxy-3-methoxy-3-methyl phthalide, Cyclo(d-prolyl-d-valyl), Cyclo(trans-4-OH-d-prolyl-d-phenylalanyl), N-methylphenyldehydroalanyl-l-prolin-anhydrid, l-5-Oxoproline methyl ester, Rubralide C, Alternariol 2,4-dimethyl ether, Altenuene, 5′-Epialtenuene | [132] |
Penicillium sp. | - | B Fucus spiralis | Shetland Islands (Scotland) | Patulin, Epiepoformin, Phyllostine, Cladosporin | [133] |
Penicillium sp. | MWZ14-4 | S unidentified sponge | Weizhou (South China Sea) | Penicimarin A–F, Penicifuran A–D, Aspergillumarin A–B, Sescandelin-B, 5,6,8-Trihydroxy-4-(1′-hydroxyethyl)isocoumarin | [134] |
Penicillium sp. | SCSIO00258 | C Dichotella gemmacea | Sanya (Hainan, China) | Penilloid A, Roquefortine C, Isoroquefortine C, Methoxyroquefortine C, Meleagrin, Glandicoline B, Neoxaline, (Z)-3-(1H-Imidazole-4-yimethylene)-6-(1H-indl-3-ylmethyl)-2,5–piperazinediol | [135] |
Penicillium sp. | SCSGAF0023 | C D. gemmacea | Sanya (Hainan, China) | Paecilin C, 6,8,5′6′-Tetrahydroxy-3′-methylflavone, Emodin, Citrorosein, Isorhodoptilometrin, Penicillixanthone A, Secalonic acid B–D | [136] |
Penicillium sp. | SF-5203 | intertidal sediment | Wan Island (Korea) | Fructigenine A, Cyclopenol | [137] |
Penicillium sp. | SF-5292 | Z unidentified Bryozoan | Jeju Island (Korea) | Penicillinolide A, Cycloexpansamine A–B | [138,139] |
Penicillium sp. | SF-5295 | S unidentified sponge | Jeju Island (Korea) | Viridicatol | [137] |
Penicillium sp. (P. glabrum) | JF-55 | S unidentified sponge | Jeju Island (Korea) | Penstyrylpyrone, Anhydrofulvic acid, Citromycetin | [140] |
Penicillium sp. | JF-72 | S unidentified sponge | Jeju Island (Korea) | Deoxyisoaustamide, Deoxydihydroisoaustamide, 16β-Hydroxy-17β-methoxy-deoxydihydroisoaustamide | [141] |
P. chrysogenum | EN-118 | B Sargassum pallidum | Fujian (China) | Chrysotriazole A–B, 2-(4-Hydroxybenzoyl)-4(3H)-quinazolinone, 2-(4-Hydroxybenzyl)quinazolin-4(3H)-one), 2-(4-Hydroxyphenyl)acetylamide), N-(2-(4-Hydroxyphenyl)acetyl)formamide, N-(2E)-(4-Hydroxyphenyl) ethenyl)formamide, N-(2Z)-(4-Hydroxyphenyl)ethenylformamide | [142] |
Penicillium sp. | ZLN29 | sediment | Jiaozhou Bay (China) | Penicillide, Prenpenicillide, Prenxanthone, Bioxanthracene, NG-011, NG-012, 15-G256α-2, 15-G256β | [143] |
Penicillium sp. | F37 | S A. corrugata | Arvoredo Island (Brazil) | cis-Cyclo(leucyl-tyrosyl) | [144] |
Penicillium sp. | PR19N-1 = MBC06294 | sludge (depth 1000 m) | Prydz Bay (Antarctica) | 1-Chloro-3β-acetoxy-7-hydroxy-trinoreremophil-1,6,9-trien-8-one, 1-α-Chloro-2β-hydroxyeremophil-7(11),9-dien-8-one, 1α-Chloro-2β-hydroxyeremophil-7(11),9-dien-8-one, 5 new eremophilane compounds, Eremofortine C | [145,146] |
P. citrinum | SCSGAF167 | C Echinogorgia aurantiaca | Sanya (Hainan, China) | Penicitrinol G–H, 2,11-Dihydroxy-1-methoxycarbonyl-9-carboxylxanthone, Chrysophanol | [147] |
P. brefeldianum | SD-273 | sediment (depth 100 m) | Pearl River estuary (China) | Verruculogen, 24-Hydroxyverruculogen, 26-Hydroxyverruculogen, 13-O-Prenyl-26-hydroxyverruculogen, Fumitremorgin A, Cyclotryprostatin A, TR-2 | [148] |
P. commune | 366606 | water | Qingdao (China) | Penicilliumine | [149] |
P. echinulatum | pt-4 | R Chondrus ocellatus | Pingtan Island (China) | Arisugacin C,G,J,K, Territrem C | [150] |
Penicillium sp. | F446 | sediment (depth 25 m) | Geomun-do Island (Korea) | Penicillipyrone A–B | [151] |
T. trachyspermus | KUFA0021 | S Clathria reianwardii | Kram Island (Thailand) | Spiculisporic acid E, Glaucanic acid, Glauconic acid | [152] |
P. chrysogenum | PJX-17 | sediment | South China Sea | Sorbicathecol A–B, Protocatechuic acid methyl ester, Caffeic acid methyl ester | [153] |
Penicillium sp. | SF-5995 | C unidentified soft coral | Terra Nova Bay (Antarctica) | Methylpenicinoline | [154] |
P. adametzioides | AS-53 | S unidentified sponge | Wenchang (Hainan, China) | Lapatin A–B, Prelapatin B, N-Formyllapatin A, Glyantrypine, Adametizine A–B, Adametacorenol A–B, Peniciadametizine A–B, Brasiliamide A, Viridicatumtoxin, Fumitremorgin B, Verruculogen | [155,156,157] |
Penicillium sp. | SF-6013 | U Brisaster latifrons | Sea of Okhotsk (Russia) | Tanzawaic acid A–B,D–E, 2E,4Z-Tanzawaic acid D | [158] |
P. bialowiezense | IBT28294 | water | North Sea | Asperphenamates, Mycophenolic acid, F13459, Andrastin A, Chrysogeside B–E, Quinolactacin A, Raistrick phenols, Xanthoepocin, Citreohybridonol, Preaustinoids, Fellutamides, Breviones | [159] |
P. lividum | KMM4663 | B Sargassum miyabei | Lazurnaya Bay (Sea of Japan) | Sargassopenilline B–G | [160] |
P. thomii | KMM4645 | B S. miyabei | Lazurnaya Bay (Sea of Japan) | Sargassopenilline A,E | [160] |
Talaromyces sp. | LF458 | S A. verrucosa | Elba Island (Italy) | Talaromycesone A–B, Talaroxanthenone, Vermixocin A–B, AS-186c, Δ1′,3′,-1′-Dehydroxypenicillide, 1′,2′-Dehydropenicillide, 3′-Methoxy-1′2′-dehydropenicillide | [161] |
Talaromyces sp. | SBE-14 | C Subergorgia suberosa | Weizhou (South China Sea) | Talaromycin A-C4, Penicillide, Δ1′,3′,-1′-Dehydroxypenicillide,Purpactin A,C,C′, Tenellic acid methyl esther | [162] |
P. pinophilum (T. pinophilus) | XS-20090E18 | C unidentified gorgonian | Xisha Island (South China Sea) | Purpactin A, Penicillide, Isopenicillide, Hydroxypenicillide, Sch1385568, Sch725680, Pinophilin B,D–F, Mitorubrin, Mitorubrinol, Mitorubrinic acid | [163] |
T. miniolouteus | PILE14-5 | S unidentified sponge | Phi Phi Island (Thailand) | Minioluteumide A–D, Purpuride, Purpuride B, Berkedrimane B | [164] |
P. claviforme (P. vulpinum) | KMM4665 | P Z. marina | Peter the Great Gulf (Russia) | 3-[2′(R)-Hydroxybutyl]-7-hydroxyphthalide, (–)-3-Butyl-7-hydroxyphthalide, Isopatulin, Cyclopenin, Cyclopeptin | [165] |
P. vinaceum | CYE-88 | S Hyrtios erectus | Yanbu (Saudi Arabia) | Penicillivinacine, Cyclo(d-tryptophanyl-l-prolyl), Citreoisocoumarin, Brevianamide F, Indol-3-carbaldehyde, α-Cyclopiazonic acid, Terretrione A | [166] |
Penicillium sp. | CYE-87 | T Didemnum sp. | Suez Canal (Egypt) | Terretrione C–D, Indol-3-carbaldehyde, 3,6-Diisobutylpyrazin-2(1H)-one, Methyl-2-([2-(1H-indol-3-yl)ethyl]carbamoyl)acetate, Tryptamine | [167] |
Penicillium sp. | IO1 | S Ircinia oros | Kermer (Turkey) | Fusarielin I, Griseofulvin, Dechlorogriseofulvin | [16] |
Penicillium sp. | IO2 | S I. oros | Kermer (Turkey) | Curvularin, Dehydrocurvularin, Trichodimerol | [16] |
P. expansum | Y32 | water | Indian Ocean, west of Sumatra | Communesine A–B,I, Fumiquinazoline Q, Prelapatin B, Penochalasin E, Glyantripine, Protuboxepin A–B,E, Cottoquinazoline A, Chaetoglobosin C | [168] |
Penicillium sp. | KCB12F005 | sediment | Haenam (Korea) | Haenamindole | [169] |
Penicillium sp. | CF07370 | sediment (depth 100 m) | Gulf of California (Mexico) | Tanzawaic acid B,E,M–P | [170] |
Penicillium sp. | TPU1271 | organic debris attached to oyster | Oshika Peninsula (Japan) | Penicyrone A–B, Verrucosidin, Fructigenine A, Verrucofortine, Cyclo(l-Tryptophanyl-l-Phenylalanyl), Cyclopenol, Cyclopenin, Penipratynolene, Aspterric acid, Viridicatol | [171] |
P. concentricum | ZLQ-69 | water | Bohai Sea (China) | Phenylpyropene B-D,E–F, Pyripyropene A–B,E,O | [172] |
P. verruculosum (T. verruculosum) | TPU1311 | T Polycarpa aurata | Manado (Indonesia) | Verruculide A–B, Chrodrimanins A–B,H | [173] |
Compound | Bioactivity | Cell Lines Assayed | References |
---|---|---|---|
Acetophthalidin | Cytostatic (arrest at M phase) | tsFT210 | [37] |
3-Acetyl-9,7(11)-dien-7α-hydroxyl-8-oxoeremophilane | Cytotoxic | A549, BEL-7402 | [81] |
Adametacorenol B | Cytotoxic | NCI-H446 | [155] |
Auranomides | Antiproliferative | K562, ACHN, HepG2, A549 | [104] |
Aurantiomide B | Cytotoxic | HL-60, P388 | [77] |
Aurantiomide C | Cytotoxic | BEL-7402, P388 | |
Breviones F–H | Antiproliferative | HeLa | [92] |
Brevione I | Cytotoxic | MCF-7, A549 | [93] |
Brocaenols A–C | Cytotoxic | HCT-116 | [49] |
Chloctanspirones A–B | Cytotoxic | HL-60, A549 | [69] |
1-Chloro-3β-acetoxy-7-hydroxyl-trinoreremophil-1,6,9-trien-8-one | Cytotoxic | HL-60, A549 | [145] |
Citrinadin A | Cytotoxic | L1210, KB | [57] |
Citrinadin B | Cytotoxic | L1210 | [58] |
Citrinal A | Cytotoxic | K562 | [85] |
Comazaphilones D–F | Cytotoxic | SW1990 | [12] |
Communesins A–B | Cytotoxic | P388 | [29] |
Communesins B–D | Antiproliferative | U-937, THP-1, NAMALWA, MOLT-3, SUP-B15 | [51] |
Conidiogenone B | Cytotoxic | BEL-7402, HL-60 | [88] |
11′-Deoxyverticillin A, 11,11′-Dideoxyverticillin A | Cytotoxic | HCT-116 | [43] |
Dihydrotrichodimerol, Tetrahydrotrichodimerol | Cytotoxic | P388, A549 | [66] |
(2E,4E)-1-(2,6-Dihydroxy-3,5-dimethylphenyl)hexa-2,4-dien-1-one | Cytotoxic | HeLa, SW620 | [97] |
3,4-Dihydroxy-4-(4′-methoxyphenyl)-3,4-dihydro-2(1H)-quinolinone | Cytotoxic | SKOV-3 | [61] |
Epolactaene | Cytostatic (arrest at G0/G1 phase) | SH-SY5Y | [204] |
Fellutamides A–B | Cytotoxic | P388, KB | [28] |
Formylanserinone B, Epoxyserinone B | Cytotoxic | L1210, C38, CFU-GM, H116, H125, MDA-MB-435 | [53] |
Gliotoxin derivatives | Cytotoxic | P388 | [114] |
Herqueidiketal | Cytotoxic | A549 | [130] |
JBIR-28 | Cytotoxic | HeLa | [82] |
Ligerin | Antiproliferative | OSRGa, POS1, AT6-1, L929 | [56] |
Meleagrin B | Cytotoxic | BEL-7402, HL-60, A549, MOLT-4 | [88] |
Pro-apoptotic | HL-60 | [89] | |
Meleagrins D–E | Cytotoxic | A549 | [89] |
Minioluteumides | Cytotoxic | HepG2 | [164] |
Penicacid A | Antiproliferative | Mouse splenocytes | [124] |
Penicilliumin A | Cytotoxic | A375, B16, HeLa | [9] |
Penicillivinacine | Antimigratory | MDA-MB-231 | [166] |
Penicillones A–B | Cytotoxic | P388, A549 | [68] |
Penicillone A | Cytotoxic | SW620 | [97] |
Penicisteroid A | Cytotoxic | HeLa, SW1990, NCI-H460 | [108] |
Penicitide A | Cytotoxic | HepG2 | [107] |
Penicitrinine A | Antiproliferative, pro-apoptotic | 23 tumor cell lines | [111] |
Penicitrinols C, E | Cytotoxic | HL-60 | [112] |
Penipacids A, E | Cytotoxic | RKO | [117] |
Penipalines B–C | Cytotoxic | A549, HCT-116 | [118] |
Penipanoid A | Cytotoxic | SMMC-7721 | [116] |
Penochalasins A–H | Cytotoxic | P388 | [30,34] |
Penostatins A–C,E–I | Cytotoxic | P388 | [31,32,33] |
Perinadine A | Cytotoxic | L1210 | [59] |
Phenylpyropene E | Cytotoxic | MGC-803 | [171] |
Pinophilins | Antiproliferative | A549, BALL-1, HCT116, HeLa, NUGC-3 | [122] |
Prenpenicillide | Cytotoxic | HepG2 | [143] |
Pyrenocine E | Cytotoxic | P388 | [40] |
Sargassopenilline E | Cytotoxic | CD-1 | [160] |
Shearinines | Pro-apoptotic | HL-60 | [74] |
Sorbicillactones, Sorbivinetol, Sorbivinetone | Cytotoxic | L5178y | [62] |
Tanzawaic acids | Antiproliferative, pro-apoptotic | K562, U937, Jurkat, Raji | [170] |
Terrestrols A–H | Cytotoxic | BEL-7402, HL-60, A549, MOLT-4 | [64] |
Terretrione D | Antimigratory | MDA-MB-231 | [167] |
Compound | Bioactivity | Microbial Species Assayed | References |
---|---|---|---|
Adametizine A | Antibacterial | Aeromonas hydrophila, Staphyloccocus aureus, Vibrio harveyi, Vibrio parahaemolyticus | [155] |
Antifungal | Gaeumannomyces graminis | ||
Arisugacin K | Antibacterial | Escherichia coli | [150] |
Cillifuranone | Antibacterial | Xanthomonas campestris | [98] |
Antifungal | Septoria tritici | ||
Comazaphilones | Antibacterial | Bacillus subtilis, Pseudomonas fluorescens, S. aureus m.r. | [12] |
Communol A, F–G | Antibacterial | Enterobacter aerogenes, E. coli | [127] |
Conidiogenone B | Antibacterial | Pseudomonas aeruginosa, Pseudomonas fluorescens, S. aureus m.r., Staphylococcus epidermidis | [109] |
Antifungal | Candida albicans | ||
Dictyosphaeric acid A | Antibacterial | Enterococcus faecium, S. aureus, S. aureus m.r. | [50] |
Antifungal | C. albicans | ||
Isocyclocitrinols | Antibacterial | Enterococcus durans, S. epidermidis | [48] |
Peniciadametizines | Antifungal | Alternaria brassicae | [156] |
Penicifuran A | Antibacterial | Bacillus cereus, Staphylococcus albus | [134] |
Penicilactone | Antibacterial | S. aureus m.r. | [95] |
Penicimonoterpene | Antifungal | A. brassicae, Aspergillus niger, Fusarium graminearum | [107,214] |
Antibacterial | A. hydrophila, E. coli, Micrococcus luteus, S. aureus, V. harveyi, V. parahaemolyticus | [214] | |
Penicisteroid A | Antifungal | A. brassicae, A. niger | [108] |
Penicitide A | Antifungal | A. brassicae, A. niger | [107] |
Penicyclones A–E | Antibacterial | S. aureus | [91] |
Perinadine A | Antibacterial | B. subtilis, M. luteus | [59] |
Pinodiketopiperazine A | Antibacterial | E. coli | [132] |
Scalusamide A | Antibacterial | M. luteus | [60] |
Antifungal | Cryptococcus neoformans | ||
Talaromycesones | Antibacterial | S. aureus m.r., S. epidermidis | [161] |
Terretrione D | Antifungal | C. albicans | [167] |
Xestodecalactone B | Antifungal | C. albicans | [47] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicoletti, R.; Trincone, A. Bioactive Compounds Produced by Strains of Penicillium and Talaromyces of Marine Origin. Mar. Drugs 2016, 14, 37. https://doi.org/10.3390/md14020037
Nicoletti R, Trincone A. Bioactive Compounds Produced by Strains of Penicillium and Talaromyces of Marine Origin. Marine Drugs. 2016; 14(2):37. https://doi.org/10.3390/md14020037
Chicago/Turabian StyleNicoletti, Rosario, and Antonio Trincone. 2016. "Bioactive Compounds Produced by Strains of Penicillium and Talaromyces of Marine Origin" Marine Drugs 14, no. 2: 37. https://doi.org/10.3390/md14020037
APA StyleNicoletti, R., & Trincone, A. (2016). Bioactive Compounds Produced by Strains of Penicillium and Talaromyces of Marine Origin. Marine Drugs, 14(2), 37. https://doi.org/10.3390/md14020037