Toxicity at the Edge of Life: A Review on Cyanobacterial Toxins from Extreme Environments
Abstract
:1. Introduction
2. Cyanotoxins and Environmental Factors
3. Polar Deserts
3.1. Ecosystem Description
3.2. Cyanotoxins
4. Hot Deserts
4.1. Ecosystem Description
4.2. Cyanotoxins
5. Alkaline Lakes
5.1. Ecosystem Description
5.2. Cyanotoxins
6. Hypersaline Environments
6.1. Ecosystem Description
6.2. Cyanotoxins
7. Hot Springs
7.1. Ecosystem Description
7.2. Cyanotoxins
8. Concluding Remarks
8.1. Challenges and Knowledge Gaps
8.2. Indications for Risk Assessment
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Whitton, B.A.; Potts, M. (Eds.) The Ecology of Cyanobacteria: Their Diversity in Time and Space; Kluwer Academic: Dordrecht, The Netherlands, 2000; p. 669. [Google Scholar]
- Friedmann, E.I. Endolithic microbial life in hot and cold deserts. In Limits of Life; Springer: Berlin, Germany, 1980; pp. 33–45. [Google Scholar]
- Wierzchos, J.; Ascaso, C.; McKay, C.P. Endolithic cyanobacteria in halite rocks from the hyperarid core of the atacama desert. Astrobiology 2006, 6, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Oliver, R.L.; Hamilton, D.P.; Brookes, J.D.; Ganf, G.G. Physiology, blooms and prediction of planktonic cyanobacteria. In Ecology of Cyanobacteria II; Springer: Berlin, Germany, 2012; pp. 155–194. [Google Scholar]
- Singh, S.; Kate, B.N.; Banerjee, U. Bioactive compounds from cyanobacteria and microalgae: An overview. Crit. Rev. Biotechnol. 2005, 25, 73–95. [Google Scholar] [CrossRef] [PubMed]
- Metcalf, J.S.; Codd, G.A. Cyanotoxins. In Ecology of Cyanobacteria II; Springer: Berlin, Germany, 2012; pp. 651–675. [Google Scholar]
- Bernard, C.; Ballot, A.; Thomazeau, S.; Maloufi, S.; Furey, A.; Mankiewicz-Boczek, J.; Pawlik-Skowrónska, B.; Capelli, C.; Salmaso, N. Appendix 2: Cyanobacteria associated with the production of cyanotoxins. In Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis; Wiley: Chichester, UK, 2017; pp. 501–525. [Google Scholar]
- Sivonen, K.; Jones, G. Cyanobacterial toxins. In Toxic Cyanobacteria in Water: A Guide to Public Health Consequences, Monitoring and Management; Chorus, I., Bartram, J., Eds.; E and FN Spon: London, UK, 1999; pp. 41–111. [Google Scholar]
- Whitton, B.A.; Potts, M. Introduction to the cyanobacteria. In Ecology of Cyanobacteria II; Springer: Berlin, Germany, 2012; pp. 1–13. [Google Scholar]
- Pearson, L.A.; Dittmann, E.; Mazmouz, R.; Ongley, S.E.; D’Agostino, P.M.; Neilan, B.A. The genetics, biosynthesis and regulation of toxic specialized metabolites of cyanobacteria. Harmful Algae 2016, 54, 98–111. [Google Scholar] [CrossRef] [PubMed]
- Cirés, S.; Ballot, A. A review of the phylogeny, ecology and toxin production of bloom-forming Aphanizomenon spp. and related species within the Nostocales (Cyanobacteria). Harmful Algae 2016, 54, 21–43. [Google Scholar] [CrossRef] [PubMed]
- Tonk, L.; Bosch, K.; Visser, P.M.; Huisman, J. Salt tolerance of the harmful cyanobacterium Microcystis aeruginosa. Aquat. Microb. Ecol. 2007, 46, 117–123. [Google Scholar] [CrossRef]
- McAllister, T.G.; Wood, S.A.; Hawes, I. The rise of toxic benthic phormidium proliferations: A review of their taxonomy, distribution, toxin content and factors regulating prevalence and increased severity. Harmful Algae 2016, 55, 282–294. [Google Scholar] [CrossRef] [PubMed]
- Neilan, B.A.; Pearson, L.A.; Muenchhoff, J.; Moffitt, M.C.; Dittmann, E. Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environ. Microbiol. 2013, 15, 1239–1253. [Google Scholar] [CrossRef] [PubMed]
- Ongley, S.E.; Pengelly, J.J.; Neilan, B.A. Elevated Na+ and pH influence the production and transport of saxitoxin in the cyanobacteria Anabaena circinalis AWQC131C and Cylindrospermopsis raciborskii T3. Environ. Microbiol. 2016, 18, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Stucken, K.; John, U.; Cembella, A.; Soto-Liebe, K.; Vásquez, M. Impact of nitrogen sources on gene expression and toxin production in the diazotroph Cylindrospermopsis raciborskii CS-505 and non-diazotroph Raphidiopsis brookii D9. Toxins 2014, 6, 1896–1915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cirés, S.; Wörmer, L.; Timón, J.; Wiedner, C.; Quesada, A. Cylindrospermopsin production and release by the potentially invasive cyanobacterium Aphanizomenon ovalisporum under temperature and light gradients. Harmful Algae 2011, 10, 668–675. [Google Scholar] [CrossRef]
- Saker, M.L.; Griffiths, D.J. The effect of temperature on growth and cylindrospermopsin content of seven isolates of Cylindrospermopsis raciborskii (Nostocales, Cyanophyceae) from water bodies in Northern Australia. Phycologia 2000, 39, 349–354. [Google Scholar] [CrossRef]
- Muenchhoff, J.; Siddiqui, K.S.; Poljak, A.; Raftery, M.J.; Barrow, K.D.; Neilan, B.A. A novel prokaryotic l-arginine:Glycine amidinotransferase is involved in cylindrospermopsin biosynthesis. FEBS J. 2010, 277, 3844–3860. [Google Scholar] [CrossRef] [PubMed]
- D’Agostino, P.M.; Song, X.; Neilan, B.A.; Moffitt, M.C. Comparative proteomics reveals that a saxitoxin-producing and a nontoxic strain of Anabaena circinalis are two different ecotypes. J. Proteome Res. 2014, 13, 1474–1484. [Google Scholar] [CrossRef] [PubMed]
- Vincent, W.F. Microbial Ecosystems of Antarctica; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Priscu, J.C.; Fritsen, C.H.; Adams, E.E.; Giovannoni, S.J.; Paerl, H.W.; McKay, C.P.; Doran, P.T.; Gordon, D.A.; Lanoil, B.D.; Pinckney, J.L. Perennial antarctic lake ice: An oasis for life in a polar desert. Science 1998, 280, 2095–2098. [Google Scholar] [CrossRef] [PubMed]
- Skidmore, J.; Ellefson, D.; McNamara, B.; Couto, M.; Wolfe, A.; Maddock, J. Polar clustering of the chemoreceptor complex in Escherichia coli occurs in the absence of complete CheA function. J. Bacteriol. 2000, 182, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Price, P.B. A habitat for psychrophiles in deep antarctic ice. Proc. Natl. Acad. Sci. USA 2000, 97, 1247–1251. [Google Scholar] [CrossRef] [PubMed]
- Gleitz, M.; vd Loeff, M.R.; Thomas, D.N.; Dieckmann, G.S.; Millero, F.J. Comparison of summer and winter inorganic carbon, oxygen and nutrient concentrations in Antarctic sea ice brine. Mar. Chem. 1995, 51, 81–91. [Google Scholar] [CrossRef]
- Thomas, D.; Dieckmann, G. Antarctic sea ice—A habitat for extremophiles. Science 2002, 295, 641–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makhalanyane, T.P.; Valverde, A.; Birkeland, N.-K.; Cary, S.C.; Tuffin, I.M.; Cowan, D.A. Evidence for successional development in antarctic hypolithic bacterial communities. ISME J. 2013, 7, 2080. [Google Scholar] [CrossRef] [PubMed]
- De los Ríos, A.; Cary, C.; Cowan, D. The spatial structures of hypolithic communities in the dry valleys of East Antarctica. Polar Biol. 2014, 37, 1823–1833. [Google Scholar] [CrossRef]
- Yung, C.C.; Chan, Y.; Lacap, D.C.; Pérez-Ortega, S.; de los Rios-Murillo, A.; Lee, C.K.; Cary, S.C.; Pointing, S.B. Characterization of chasmoendolithic community in Miers Valley, Mcmurdo Dry Valleys, Antarctica. Microb. Ecol. 2014, 68, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Namsaraev, Z.; Mano, M.-J.; Fernandez, R.; Wilmotte, A. Biogeography of terrestrial cyanobacteria from antarctic ice-free areas. Ann. Glaciol. 2010, 51, 171–177. [Google Scholar] [CrossRef]
- Kleinteich, J.; Hildebrand, F.; Wood, S.A.; Cirés, S.; Agha, R.; Quesada, A.; Pearce, D.; Convey, P.; Kpper, F.; Dietrich, D. Diversity of toxin and non-toxin containing cyanobacterial mats of meltwater ponds on the Antarctic Peninsula: A pyrosequencing approach. Antarct. Sci. 2014, 26, 521–532. [Google Scholar] [CrossRef]
- Kleinteich, J.; Wood, S.A.; Kupper, F.C.; Camacho, A.; Quesada, A.; Frickey, T.; Dietrich, D.R. Temperature-related changes in polar cyanobacterial mat diversity and toxin production. Nat. Clim. Chang. 2012, 2, 356–360. [Google Scholar] [CrossRef]
- Kleinteich, J.; Wood, S.A.; Puddick, J.; Schleheck, D.; Küpper, F.C.; Dietrich, D. Potent toxins in Arctic environments—Presence of saxitoxins and an unusual microcystin variant in arctic freshwater ecosystems. Chem. Biol. Interact. 2013, 206, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Hitzfeld, B.C.; Lampert, C.S.; Späth, N.; Mountfort, D.; Kaspar, H.; Dietrich, D.R. Toxin production in cyanobacterial mats from ponds on the McMurdo Ice Shelf, Antarctica. Toxicon 2000, 38, 1731–1748. [Google Scholar] [CrossRef]
- Jungblut, A.-D.; Hoeger, S.J.; Mountfort, D.; Hitzfeld, B.C.; Dietrich, D.R.; Neilan, B.A. Characterization of microcystin production in an Antarctic cyanobacterial mat community. Toxicon 2006, 47, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Wood, S.A.; Mountfort, D.; Selwood, A.I.; Holland, P.T.; Puddick, J.; Cary, S.C. Widespread distribution and identification of eight novel microcystins in Antarctic cyanobacterial mats. Appl. Environ. Microb. 2008, 74, 7243–7251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chrapusta, E.; Węgrzyn, M.; Zabaglo, K.; Kaminski, A.; Adamski, M.; Wietrzyk, P.; Bialczyk, J. Microcystins and anatoxin-a in Arctic biocrust cyanobacterial communities. Toxicon 2015, 101, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Kaasalainen, U.; Fewer, D.P.; Jokela, J.; Wahlsten, M.; Sivonen, K.; Rikkinen, J. Cyanobacteria produce a high variety of hepatotoxic peptides in lichen symbiosis. Proc. Natl. Acad. Sci. USA 2012, 109, 5886–5891. [Google Scholar] [CrossRef] [PubMed]
- Kaasalainen, U.; Fewer, D.P.; Jokela, J.; Wahlsten, M.; Sivonen, K.; Rikkinen, J. Lichen species identity and diversity of cyanobacterial toxins in symbiosis. New Phytol. 2013, 198, 647–651. [Google Scholar] [CrossRef] [PubMed]
- Trout-Haney, J.; Wood, Z.; Cottingham, K. Presence of the cyanotoxin microcystin in Arctic lakes of Southwestern Greenland. Toxins 2016, 8, 256. [Google Scholar] [CrossRef] [PubMed]
- Loftin, K.A.; Graham, J.L.; Hilborn, E.D.; Lehmann, S.C.; Meyer, M.T.; Dietze, J.E.; Griffith, C.B. Cyanotoxins in inland lakes of the United States: Occurrence and potential recreational health risks in the EPA national lakes assessment 2007. Harmful Algae 2016, 56, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Puddick, J.; Prinsep, M.R.; Wood, S.A.; Cary, S.C.; Hamilton, D.P.; Holland, P.T. Further characterization of glycine-containing microcystins from the McMurdo Dry Valleys of Antarctica. Toxins 2015, 7, 493–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiese, M.; D’Agostino, P.M.; Mihali, T.K.; Moffitt, M.C.; Neilan, B.A. Neurotoxic alkaloids: Saxitoxin and its analogs. Mar. Drugs 2010, 8, 2185–2211. [Google Scholar] [CrossRef] [PubMed]
- Casero, M.C.; Ballot, A.; Agha, R.; Quesada, A.; Cirés, S. Characterization of saxitoxin production and release and phylogeny of sxt genes in paralytic shellfish poisoning toxin-producing Aphanizomenon gracile. Harmful Algae 2014, 37, 28–37. [Google Scholar] [CrossRef]
- Mazmouz, R.; Chapuis-Hugon, F.; Mann, S.; Pichon, V.; Méjean, A.; Ploux, O. Biosynthesis of cylindrospermopsin and 7-epicylindrospermopsin in Oscillatoria sp strain PCC6506: Identification of the cyr gene cluster and toxin analysis. Appl. Environ. Microb. 2010, 76, 4943–4949. [Google Scholar] [CrossRef] [PubMed]
- Quiblier, C.; Wood, S.; Echenique-Subiabre, I.; Heath, M.; Villeneuve, A.; Humbert, J.F. A review of current knowledge on toxic benthic freshwater cyanobacteria ecology, toxin production and risk management. Water Res. 2013, 47, 5464–5479. [Google Scholar]
- Makhalanyane, T.P.; Valverde, A.; Gunnigle, E.; Frossard, A.; Ramond, J.-B.; Cowan, D.A. Microbial ecology of hot desert edaphic systems. FEMS Microbiol. Rev. 2015, 39, 203–221. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Gao, K.; Whitton, B.A. Semi-arid regions and deserts. In Ecology of Cyanobacteria II; Springer: Berlin, Germany, 2012; pp. 345–369. [Google Scholar]
- Metcalf, J.; Banack, S.; Richer, R.; Cox, P. Neurotoxic amino acids and their isomers in desert environments. J. Arid Environ. 2015, 112, 140–144. [Google Scholar] [CrossRef]
- Metcalf, J.; Richer, R.; Cox, P.; Codd, G. Cyanotoxins in desert environments may present a risk to human health. Sci. Total Environ. 2012, 421, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Cox, P.A.; Richer, R.; Metcalf, J.S.; Banack, S.A.; Codd, G.A.; Bradley, W.G. Cyanobacteria and BMAA exposure from desert dust: A possible link to sporadic ALS among Gulf War veterans. Amyotroph. Lateral Scler. 2009, 10, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Craighead, D.; Metcalf, J.S.; Banack, S.A.; Amgalan, L.; Reynolds, H.V.; Batmunkh, M. Presence of the neurotoxic amino acids β-N-methylamino-l-alanine (BMAA) and 2,4-diamino-butyric acid (DAB) in shallow springs from the Gobi Desert. Amyotroph. Lateral Scler. 2009, 10, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Richer, R.; Banack, S.A.; Metcalf, J.S.; Cox, P.A. The persistence of cyanobacterial toxins in desert soils. J. Arid Environ. 2015, 112, 134–139. [Google Scholar] [CrossRef]
- Ballot, A.; Krienitz, L.; Kotut, K.; Wiegand, C.; Metcalf, J.S.; Codd, G.A.; Pflugmacher, S. Cyanobacteria and cyanobacterial toxins in three alkaline Rift Valley lakes of Kenya—Lakes Bogoria, Nakuru and Elmenteita. J. Plankton Res. 2004, 26, 925–935. [Google Scholar] [CrossRef]
- Ballot, A.; Krienitz, L.; Kotut, K.; Wiegand, C.; Pflugmacher, S. Cyanobacteria and cyanobacterial toxins in the alkaline crater Lakes Sonachi and Simbi, Kenya. Harmful Algae 2005, 4, 139–150. [Google Scholar] [CrossRef]
- Kocasari, F.S.; Gulle, I.; Kocasari, S.; Pekkaya, S.; Mor, F. The occurrence and levels of cyanotoxin nodularin from Nodularia spumigena in the alkaline and salty Lake Burdur, Turkey. J. Limnol. 2015. [Google Scholar] [CrossRef]
- Krienitz, L.; Ballot, A.; Kotut, K.; Wiegand, C.; Pütz, S.; Metcalf, J.S.; Codd, G.A.; Stephan, P. Contribution of hot spring cyanobacteria to the mysterious deaths of lesser flamingos at Lake Bogoria, Kenya. FEMS Microbiol. Ecol. 2003, 43, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, Z.A. Toxic cyanobacteria and cyanotoxins in public hot springs in Saudi Arabia. Toxicon 2008, 51, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Faassen, E.J. Presence of the neurotoxin BMAA in aquatic ecosystems: What do we really know? Toxins 2014, 6, 1109–1138. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.E.; Grant, W.D.; Duckworth, A.W.; Owenson, G.G. Microbial diversity of soda lakes. Extremophiles 1998, 2, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Grant, W.; Mwatha, W.; Jones, B. Alkaliphiles: Ecology, diversity and applications. FEMS Microbiol. Rev. 1990, 6, 255–269. [Google Scholar] [CrossRef]
- Glaring, M.A.; Vester, J.K.; Lylloff, J.E.; Al-Soud, W.A.; Sørensen, S.J.; Stougaard, P. Microbial diversity in a permanently cold and alkaline environment in Greenland. PLoS ONE 2015, 10, e0124863. [Google Scholar] [CrossRef] [PubMed]
- Nonga, H.; Sandvik, M.; Miles, C.; Lie, E.; Mdegela, R.; Mwamengele, G.; Semuguruka, W.; Skaare, J. Possible involvement of microcystins in the unexplained mass mortalities of Lesser Flamingo (Phoeniconaias minor Geoffroy) at Lake Manyara in Tanzania. Hydrobiologia 2011, 678, 167–178. [Google Scholar] [CrossRef]
- Metcalf, J.; Banack, S.; Kotut, K.; Krienitz, L.; Codd, G. Amino acid neurotoxins in feathers of the Lesser Flamingo, Phoeniconaias minor. Chemosphere 2013, 90, 835–839. [Google Scholar] [CrossRef] [PubMed]
- Jassby, A. Spirulina: A model for microalgae as human food. In Algae Human Affiars; Cambridge University Press: Cambridge, UK, 1988; pp. 149–180. [Google Scholar]
- Vonshak, A. Strain selection of Spirulina suitable for mass production. Hydrobiologia 1987, 151, 75–77. [Google Scholar] [CrossRef]
- Javor, B. Hypersaline Environments: Microbiology and Biogeochemistry; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Oren, A. Diversity of halophilic microorganisms: Environments, phylogeny, physiology, and applications. J. Ind. Microbiol. Biotechnol. 2002, 28, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Ventosa, A.; de la Haba, R.R.; Sánchez-Porro, C.; Papke, R.T. Microbial diversity of hypersaline environments: A metagenomic approach. Curr. Opin. Microbiol. 2015, 25, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Rothschild, L.J.; Giver, L.J.; White, M.R.; Mancinelli, R.L. Metabolic activity of microorganisms in evaporites. J. Phycol. 1994, 30, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Oren, A. Salts and brines. In Ecology of Cyanobacteria II; Springer: Berlin, Germany, 2012; pp. 401–426. [Google Scholar]
- Vishwakarma, R.; Rai, A.K. Microcystin congeners contribute to toxicity in the halophilic cyanobacterium Aphanothece halophytica. Arch. Biol. Sci. 2014, 66, 1441–1446. [Google Scholar] [CrossRef]
- McCulley, B.E. Factors Affecting the Toxic Cyanobacteria Nodularia Spumigena in Farmington Bay of Great Salt Lake, Utah. Master’s Thesis, Utah State University, Logan, UT, USA, 2014. [Google Scholar]
- Ward, D.M.; Castenholz, R.W.; Miller, S.R. Cyanobacteria in geothermal habitats. In Ecology of Cyanobacteria II: Their Diversity in Space and Time; Whitton, B.A., Ed.; Springer: Berlin, Germany, 2012; pp. 39–64. [Google Scholar]
- Renaut, R.; Tiercelin, J.; Owen, R. Mineral precipitation and diagenesis in the sediments of the Lake Bogoria basin, Kenya Rift Valley. Geol. Soc. Lond. Spec. Publ. 1986, 25, 159–175. [Google Scholar] [CrossRef]
- McCall, J. Lake Bogoria, Kenya: Hot and warm springs, geysers and holocene stromatolites. Earth-Sci. Rev. 2010, 103, 71–79. [Google Scholar] [CrossRef]
- Brock, T.D. Evolutionary and ecological aspects of the cyanophytes. In The Biology of the Blue-Green Algae; Carr, N.G., Whitton, B.A., Eds.; Blackwell Scientific Publications: Oxford, UK, 1973; pp. 487–500. [Google Scholar]
- Moreira, C.; Martins, A.; Moreira, C.; Vasconcelos, V. Toxigenic cyanobacteria in volcanic lakes and hot springs of a North Atlantic island (S. Miguel, Azores, Portugal). Fresen. Environ. Bull. 2011, 20, 420–426. [Google Scholar]
- Cirés, S.; Alvarez-Roa, C.; Wood, S.A.; Puddick, J.; Loza, V.; Heimann, K. First report of microcystin-producing Fischerella sp. (Stigonematales, Cyanobacteria) in tropical Australia. Toxicon 2014, 88, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Prinsep, M.R.; Caplan, F.R.; Moore, R.E.; Patterson, G.M.; Honkanen, E.R.; Boynton, A.L. Microcystin-LA from a blue-green alga belonging to the Stigonematales. Phytochemistry 1992, 31, 1247–1248. [Google Scholar] [CrossRef]
- Shih, P.M.; Wu, D.; Latifi, A.; Axen, S.D.; Fewer, D.P.; Talla, E.; Calteau, A.; Cai, F.; de Marsac, N.T.; Rippka, R. Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc. Natl. Acad. Sci. USA 2013, 110, 1053–1058. [Google Scholar] [CrossRef] [PubMed]
- Rucker, J.; Stuken, A.; Nixdorf, B.; Fastner, J.; Chorus, I.; Wiedner, C. Concentrations of particulate and dissolved cylindrospermopsin in 21 Aphanizomenon-dominated temperate lakes. Toxicon 2007, 50, 800–809. [Google Scholar] [CrossRef] [PubMed]
- Svirčev, Z.; Tokodi, N.; Drobac, D. Review of 130 years of research on cyanobacteria in aquatic ecosystems in Serbia presented in a Serbian cyanobacterial database. Adv. Oceanogr. Limnol. 2017, 8. [Google Scholar] [CrossRef]
- Bláhová, L.; Babica, P.; Maršálková, E.; Maršálek, B.; Bláha, L. Concentrations and seasonal trends of extracellular microcystins in freshwaters of the Czech Republic–results of the national monitoring program. CLEAN-Soil Air Water 2007, 35, 348–354. [Google Scholar] [CrossRef]
- Cirés, S.; Wörmer, L.; Ballot, A.; Agha, R.; Wiedner, C.; Velazquez, D.; Casero, M.C.; Quesada, A. Phylogeography of cylindrospermopsin and paralytic shellfish toxin-producing Nostocales cyanobacteria from Mediterranean Europe (Spain). Appl. Environ. Microb. 2014, 80, 1359–1370. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Directive 2006/7/EC concerning the management of bathing water quality and repealing directive 76/160/EEC. Off. J. Eur. Union 2006, L64, 37–51. [Google Scholar]
- Pentecost, A.; Whitton, B.A. Subaerial cyanobacteria. In Ecology of Cyanobacteria II; Springer: Berlin, Germany, 2012; pp. 291–316. [Google Scholar]
- Albertano, P. Cyanobacterial biofilms in monuments and caves. In Ecology of Cyanobacteria II; Springer: Berlin, Germany, 2012; pp. 317–343. [Google Scholar]
- Ferrão-Filho, A.D.S.; Kozlowsky-Suzuki, B. Cyanotoxins: Bioaccumulation and effects on aquatic animals. Mar. Drugs 2011, 9, 2729–2772. [Google Scholar] [CrossRef] [PubMed]
- Krienitz, L.; Ballot, A.; Casper, P.; Kotut, K.; Pflugmacher, S.; Wiegand, C. Toxic cyanobacteria and massive deaths of flamingos: What we can learn from Arthrospira mass-cultivation? Phycologia 2005, 44, 141. [Google Scholar]
- Sukenik, A.; Hadas, O.; Kaplan, A.; Quesada, A. Invasion of Nostocales (Cyanobacteria) to subtropical and temperate freshwater lakes—Physiological, regional and global driving forces. Front. Microb. 2012, 3, 86. [Google Scholar] [CrossRef] [PubMed]
- Sili, C.; Torzillo, G.; Vonshak, A. Arthrospira (Spirulina). In Ecology of Cyanobacteria II; Springer: Berlin, Germany, 2012; pp. 677–705. [Google Scholar]
Toxin | Environmental Factor | Range Assayed | Genera |
---|---|---|---|
Anatoxin-a | Temperature (°C) | 10–30 | Anabaena, Aphanizomenon, Cuspidothrix (basionym Aphanizomenon), Phormidium |
Light irradiance (µmol photons m−2·s−1) | 2–128 | Anabaena, Aphanizomenon, Cuspidothrix (basionym Aphanizomenon), Phormidium | |
Cylindrospermopsin | Temperature (°C) | 15–35 | Aphanizomenon, Chrysosporum, (basionym Aphanizomenon), Cylindrospermopsis, Oscillatoria |
Light irradiance (µmol photons m−2·s−1) | 2–340 | Aphanizomenon, Chrysosporum (basionym Aphanizomenon), Cylindrospermopsis, Oscillatoria | |
Microcystins | Temperature (°C) | 10–35 | Anabaena, Microcystis, Nostoc, Planktothrix |
Light irradiance (µmol photons m−2·s−1) | 1–205 | Anabaena, Microcystis, Nostoc, Planktothrix | |
pH | 7–14 | Microcystis | |
Salinity (‰) | 0–10 | Microcystis | |
Paralytic Shellfish Toxins | Temperature (°C) | 15–28 | Anabaena, Aphanizomenon, Cuspidothrix (basionym Aphanizomenon), Cylindrospermopsis, Raphidiopsis |
Light irradiance (µmol photons m−2·s−1) | 15–150 | Anabaena, Aphanizomenon, Cylindrospermopsis, Raphidiopsis | |
pH | 7–9.5 | Anabaena, Cylindrospermopsis, Raphidiopsis | |
Salinity (‰) | 0–10 | Anabaena, Cylindrospermopsis, Raphidiopsis | |
Nodularin | Temperature (°C) | 10–30 | Nodularia |
Light irradiance (µmol photons m−2·s−1) | 2–155 | Nodularia | |
Salinity (‰) | 0–35 | Nodularia |
Ecosystem | Toxins | Location | Sample Type | Potential Producers 1 | Toxin Content (µg/g DW) | Toxin Genes | References |
---|---|---|---|---|---|---|---|
Polar deserts (Artic) | ATX | Svalbard, Norway | Biocrusts | Oscillatoria spp., Phormidium spp. | 0.3–0.6 | nr | [37] |
MC | Baffin Island, Canada | Mats | Nostoc sp., Phormidum spp., Planktothrix sp. | <0.02–4.3 | mcyA, mcyB, mcyE | [32,33] | |
Svalbard, Norway | Biocrusts | Nostoc spp., Oscillatoria spp., Phormidium spp. | 0.1–11.1 | nr | [37] | ||
Cyanolichens | Nostoc spp. | nr | mcyE | [38,39] | |||
Lapland, Finland | Cyanolichens | Nostoc spp. | nr - <10 | mcyE | [38,39] | ||
18 lakes in SW Greenland | Whole water sample | nr | 0.005–0.4 µg/L | nr | [40] | ||
PST | Baffin Island, Canada | Mats | Scytonema sp., Lyngbya sp. | 0.02 | sxtA, sxtA mRNA | [33] | |
Polar deserts (Antarctica) | CYN | Adelaide Island | Mats | Oscillatoria sp. | <0.01–0.16 1 | cyrA, cyrB, cyrJ | [31] |
MC | Adelaide Island | Mats | Nostoc sp. | 0.01–0.30 1 | mcyA, mcyE | [31] | |
Mc Murdo Ice Shelf | Mats | nr | nr | nr | [34] | ||
Mats | Phormidium, Oscillatoria, Nostoc, Anabaena | 11.4 | NRPS, PKS | [35] | |||
Mats | Nostoc sp. | <0.001–15.9 | mcyE | [36] | |||
Livingston Island | Mats | Nostoc sp., Phormidum spp., Planktothrix sp. | <0.01–1.7 | nr | [32] | ||
NOD | Mc Murdo Ice Shelf | Mats | nr | nr | nr | [34] |
Ecosystem | Toxins | Location | Sample Type | Potential Producers 1 | Toxin Content (µg/g DW) | Toxin Genes | References |
---|---|---|---|---|---|---|---|
Hot deserts | BMAA | Qatar desert | Biocrusts | nr | nr | nr | [49,51] |
Gobi Desert, Mongolia | Phytoplankton (springs) | Anabaena spp. | nr | nr | [52] | ||
DAB, AEG | Qatar desert | Biocrusts | nr | DAB: 2.8–7.0 AEG: 0.7–4.4 | nr | [53] | |
Gobi Desert, Mongolia | Phytoplankton (springs) | Anabaena spp. | nr | nr | [52] | ||
MC | Qatar desert | Biocrusts | nr | 0.001–0.05 | mcyD | [50] | |
ATX(S) | Qatar desert | Biocrusts | Microcoleus/Phormidum spp. | 0.001 2 | nr | [50] | |
Alkaline lakes | ATX | 4 lakes in Rift Valley, Kenya | Phytoplankton | Arthrospira fusiformis | 0.3–223 | nr | [54,55] |
MC | 4 lakes in Rift Valley, Kenya | Phytoplankton | Arthrospira fusiformis | 1.6–4593 | nr | [54,55] | |
NOD | Lake Burdur, Turkey | Water | Nodularia spumigena | 0.30–4.82 µg/L | nr | [56] | |
Hot springs | ATX | Lake Bogoria, Kenya | Mats | Phormidium, Oscillatoria, Synechococcus | 10–18 | nr | [57] |
MC | Lake Bogoria, Kenya | Mats | Phormidium, Oscillatoria, Synechococcus | 221–845 | nr | [57] | |
Jazan, Saudi Arabia | Mats | Oscillatoria limosa Synechococcus lividus | 468–512.5 | nr | [58] | ||
Water | nr | 4.6–5.7 µg/L | nr | [58] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cirés, S.; Casero, M.C.; Quesada, A. Toxicity at the Edge of Life: A Review on Cyanobacterial Toxins from Extreme Environments. Mar. Drugs 2017, 15, 233. https://doi.org/10.3390/md15070233
Cirés S, Casero MC, Quesada A. Toxicity at the Edge of Life: A Review on Cyanobacterial Toxins from Extreme Environments. Marine Drugs. 2017; 15(7):233. https://doi.org/10.3390/md15070233
Chicago/Turabian StyleCirés, Samuel, María Cristina Casero, and Antonio Quesada. 2017. "Toxicity at the Edge of Life: A Review on Cyanobacterial Toxins from Extreme Environments" Marine Drugs 15, no. 7: 233. https://doi.org/10.3390/md15070233
APA StyleCirés, S., Casero, M. C., & Quesada, A. (2017). Toxicity at the Edge of Life: A Review on Cyanobacterial Toxins from Extreme Environments. Marine Drugs, 15(7), 233. https://doi.org/10.3390/md15070233