Production Inhibition and Excretion Promotion of Urate by Fucoidan from Laminaria japonica in Adenine-Induced Hyperuricemic Mice
Abstract
:1. Introduction
2. Results
2.1. Blocking Adenine-Induced Increase of Serum Uric Acid in Mice
2.2. Hepatoprotection of Fucoidan in Adenine Administered Mice
2.3. Attenuation of Adenine Mediated Renal Damage by Fucoidan
2.4. Inhibition Against Activities of Adenosine Deaminase and Xanthine Oxidase in Liver of Mice Exposed to Adenine by Fucoidan
2.5. Modification of Expression Profile of Renal Urate Transporter Gene in Adenine-Treated Mice
3. Discussion
4. Materials and Methods
4.1. Animals and Experimental Procedure
4.2. Biochemistry Analysis
4.3. Western Blot Assay
4.4. The Relative Organ Mass of Liver and Kidney
4.5. Data Statistical Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lee, J.M.; Kim, H.C.; Cho, H.M.; Oh, S.M.; Choi, D.P.; Suh, I. Association between serum uric acid level and metabolic syndrome. J. Prev. Med. Public Health 2012, 45, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Zoccali, C.; Mallamaci, F. Uric acid, hypertension, and cardiovascular and renal complications. Curr. Hypertens. Rep. 2013, 15, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Borghi, C.; Cicero, A.F.G. Uric acid and early prevention of vascular diseases: Woman under the looking glass. Int. J. Cardiol. 2018, 272, 314–315. [Google Scholar] [CrossRef] [PubMed]
- Suresh, E.; Das, P. Recent advances in management of gout. Q. J. Med. 2012, 105, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Bove, M.; Cicero, A.F.G.; Borghi, C. The effect of xanthine oxidase inhibitors on blood pressure and renal function. Curr. Hypertens. Rep. 2017, 19, 95. [Google Scholar] [CrossRef] [PubMed]
- Gliozzi, M.; Malara, N.; Muscoli, S.; Mollace, V. The treatment of hyperuricemia. Int. J. Cardiol. 2016, 213, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Hao, S.; Zhang, C.; Song, H. Natural products improving hyperuricemia with hepatorenal dual effects. Evid-Based Complement. Alt. Med 2016, 7390504. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Chen, S.; Li, S.; Lu, M.; Li, Y.; Su, Y. Efficacy and safety of Chinese medicinal herbs for the treatment of hyperuricemia: A systematic review and meta-analysis. Evid-Based Complement. Alt. Med 2016, 2146204. [Google Scholar] [CrossRef] [PubMed]
- Wijesinghe, W.A.J.P.; Jeon, Y.J. Biological activities and potential industrial applications of fucose rich sulfated polysaccharide and fucoidans isolated from brown seaweeds: A review. Carbohyd. Polym. 2012, 88, 13–20. [Google Scholar] [CrossRef]
- Chen, A.; Lan, Y.; Liu, J.; Zhang, F.; Zhang, L.; Li, B. The structure property and endothelial protective activity of fucoidan from Laminaria japonica. Int. J. Biol. Macromol. 2017, 105, 1421–1429. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, Q.; Zhang, Z.; Zhang, H.; Niu, X. Structural studies on a novel fucogalactan sulfate extracted from the brown seaweed Laminaria japonica. Int. J. Biol. Macromol. 2010, 47, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Senthilkumar, K.; Manivasagan, P.; Venkatesan, J.; Kim, S.K. Brown seaweed fucoidan: Biological activity and apoptosis, growth signaling mechanism in cancer. Int. J. Biol. Macromol. 2013, 60, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Sun, J.; Su, X.; Yu, Q.L.; Yu, Q.Y.; Zhang, P. A review about the development of fucoidan in antitumor activity: Progress and challenges. Carbohyd. Polym. 2016, 154, 96–111. [Google Scholar] [CrossRef] [PubMed]
- Veena, C.K.; Josephine, A.; Preetha, S.P.; Varalakshmi, P.; Sundarapandiyan, R. Renal peroxidative changes mediated by oxalate: The protective role of fucoidan. Life Sci. 2006, 79, 1789–1795. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, Q.; Jin, W.; Niu, X.; Zhang, H. Effects and mechanism of low molecular weight fucoidan in mitigating the peroxidative and renal damage induced by adenine. Carbohyd. Polym. 2011, 84, 417–423. [Google Scholar] [CrossRef]
- Wang, J.; Wang, F.; Yun, H.; Zhang, H.; Zhang, Q. Effects and mechanism of fucoidan derivates from Laminaria japonica in experimental adenine-induced chronic kidney disease. J. Ethnopharmacol. 2012, 139, 807–813. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Sun, Y.; Weng, L.; Li, Y.; Zhang, Q.; Zhou, H.; Yang, B. Low molecular weight fucoidan protects renal tubular cells from injury induced albumin overload. Sci. Rep. 2016, 6, 31759. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, X.; Zhang, Q.; Zhao, T. Low molecular weight fucoidan and its fractions inhibit renal epithelial mesenchymal transition induced by TGF-1 or FGF-2. Int. J. Biol. Macromol. 2017, 105, 1482–1490. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, J.; Zhang, H.; Zhang, Q. Renoprotective effect of low-molecular-weight sulfated polysaccharide from the seaweed Laminaria japonica on glycerol-induced acute kidney injury in rats. Int. J. Biol. Macromol. 2014, 95, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Terkeltaub, R.; Bushinsky, D.A.; Becker, M.A. Recent development in our understanding of the renal basis of hyperuricemia and the development of novel antihyperuricemic therapeutics. Arthritis Res. Ther. 2006, 8 (Suppl. 1), S4. [Google Scholar] [CrossRef]
- Xu, X.; Hu, J.; Song, N.; Chen, R.; Zhang, T.; Ding, X. Hyperuricemia increases the risk of acute kidney injury: A systematic review and meta-analysis. BMC Nephrol. 2017, 18, 27. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, K.; Nagamine, T. Effects of fucoidan on the biotinidase kinetics in human hepatocellular carcinoma. Anticancer Res. 2009, 29, 1211–1218. [Google Scholar] [PubMed]
- Meenakshi, S.; Umayaparvathi, S.; Saravanan, R.; Manivasagam, T.; Balasubramanian, T. Hepatoprotective effects of fucoidan isolated from the seaweed Turbinaria decurrens in ethanol intoxicated rats. Int. J. Biol. Macromol. 2014, 67, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Yoon, J.H.; Yoo, J.J.; Lee, M.; Lee, D.H.; Cho, E.J.; Lee, J.; Yu, S.J.; Kim, Y.J.; Kim, C.Y. Fucoidan protects hepatocytes from apoptosis and inhibits invasion of hepatocellular carcinoma by up-regulating p42/44 MAPK-dependent NDRG-1/CAP43. Acta Pharm. Sin. B 2015, 5, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Verzola, D.; Ratto, E.; Villaggio, B.; Parodi, E.L.; Pontremoli, R.; Garibotto, G.; Viazzi, F. Uric acid promotes apoptosis in human proximal tubule cells by oxidative stress and the activation of NADPH oxidase NOX 4. PLoS ONE 2014, 9, e115210. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Choi, J.; Park, H. Antioxidant activities of fucoidan degraded by gamma irradiation and acidic hydrolysis. Radiat. Phys. Chem. 2015, 109, 23–26. [Google Scholar] [CrossRef]
- Huang, C.Y.; Wu, S.J.; Yang, W.N.; Kuan, A.W.; Chen, C.Y. Antioxidant activities of crude extract of fucoidan extracted from Sargassum glaucescens by a compressional-puffing-hydrothermal. Food Chem. 2016, 197, 1121–1129. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.Q.; Wang, J.; Yin, Z.X.; Guo, R.F.; Chen, J.; Liang, H.Y.; Liu, Y. Comparative study of quercetin and allopurinol on serum uric acid levels and hepatorenal functions in hyperuricemic rats. J. China Pharm. Univ. 2015, 46, 458–463. [Google Scholar]
- Niu, Y.F.; Gao, L.H.; Liu, X.; Lin, H.; Zhang, Y.; Li, L. Effects of mangiferin on uric acid levels and the function of liver/kidney in potassium oxonate-inducecd hyperuricemic rats. Chin. Pharmacol. Bull. 2012, 28, 1578–1581. [Google Scholar]
- Richette, P.; Bardin, T. Gout. Lancet 2010, 375, 318–328. [Google Scholar] [CrossRef]
- Susic, D.; Frohlich, E.D. Hyperuricemia: A biomarker of renal hemodynamic impairment. Cardiorenal. Med. 2015, 5, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.K.; Mount, D.B.; Reginato, A.M. Pathogensis of gout. Ann. Int. Med. 2005, 143, 499–516. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yang, C.; Zhao, Y.; Zeng, X.; Liu, F.; Fu, P. Is hyperuricemia an independent risk factor for new-onset chronic kidney disease?: A systematic review and meta-analysis based on observational cohort studies. BMC Nephrol. 2014, 15, 122. [Google Scholar] [CrossRef] [PubMed]
- Feig, D.I. Uric acid: A novel mediator and marker of risk in chronic kidney disease? Curr. Opin. Nephrol. Hypertens 2009, 18, 526–530. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Fang, L.; Jiang, L.; Wen, P.; Cao, H.; He, W.; Dai, C.; Yang, J. Uric acid induces renal inflammation via activating tubular NF-kappaB signaling pathway. PLoS ONE 2012, 7, e39738. [Google Scholar]
- Sun, J.; Sun, J.T.; Song, B.; Zhang, L.; Shao, Q.; Liu, Y.; Yuan, D.; Zhang, Y.; Qu, X. Fucoidan inhibits CCL22 production through NF-κB pathway in M2 macrophages: A potential therapeutic strategy for cancer. Sci. Rep. 2016, 6, 35855. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.W.; Yoon, S.Y.; Oh, S.J.; Kim, S.K.; Kang, K.W. Bifunctional effects of fucoidan on the expression of inducible nitric oxide synthase. Biochem. Biophys. Res. Commun. 2006, 346, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Park, H.Y.; Han, M.H.; Park, C.; Jin, C.Y.; Kim, G.Y.; Choi, I.W.; Kim, N.D.; Nam, T.; Kwon, T.K.; Choi, Y.H. Anti-inflammatory effects of fucoidan through inhibition of NF-κB, MAPK and Akt activation in lipopolysaccharide-induced BV2 microglia cells. Food Chem. Toxicol. 2011, 49, 1745–1752. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, M.; Nisgitani, Y.; Tanoue, T.; Matoba, Y.; Ojima, T.; Hashimoto, T.; Kanazawa, K. Quantification and localization of fucoidan in Laminaria japonica using a novel antibody. Biosci. Biotechnol. Biochem. 2009, 73, 335–338. [Google Scholar] [CrossRef] [PubMed]
Uric Acid (μmol/L) | Creatinine (μmol/L) | Urea Nitrogen (mmol/L) | GOT (U/gprot) | GPT (U/gprot) | |
---|---|---|---|---|---|
vehicle | 307.00 ± 56.61 * | 74.83 ± 3.53 * | 24.85 ± 1.17 * | 67.81 ± 3.64 * | 24.52 ± 2.3 * |
adenine | 737.22 ± 98.65 | 169.08 ± 6.61 | 42.11 ± 4.05 | 197.10 ± 16.56 | 78.87 ± 5.70 |
adenine/allopurinol | 325.92 ± 43.46 * | 79.99 ± 10.21 * | 38.02 ± 3.21 | 65.68 ± 6.65 * | 34.70 ± 3.31 * |
adenine/FL100 | 373.66 ± 49.71 * | 83.79 ± 8.68 * | 26.96 ± 2.33 * | 68.13 ± 8.50 * | 29.53 ± 3.49 * |
adenine/FL150 | 325.36 ± 67.46 * | 76.76 ± 7.95 * | 23.40 ± 2.40 * | 67.75 ± 4.85 * | 25.22 ± 2.05 * |
adenine/FL200 | 368.41 ± 48.65 * | 91.18 ± 8.74 * | 25.73 ± 1.97 * | 69.79 ± 10.48 * | 30.53 ± 3.16 * |
Week 0 | Week 1 | Week 2 | Week 3 | Week 4 | |||
---|---|---|---|---|---|---|---|
Body Weight (g) | Relative Weight (mg/g) | ||||||
Liver | Kidney | ||||||
vehicle | 28.93 ± 2.69 | 36.75 ± 2.05 * | 42.10 ± 1.73 * | 43.10 ± 2.23 * | 44.70 ± 2.95 * | 5.38 ± 0.29 * | 1.50 ± 0.18 * |
adenine | 28.57 ± 2.17 | 31.11 ± 1.91 | 29.56 ± 2.35 | 30.00 ± 3.42 | 30.28 ± 3.09 | 5.90 ± 0.39 | 2.16 ± 0.21 |
adenine/allopurinol | 28.93 ± 1.31 | 31.44 ± 1.88 | 31.40 ± 4.14 | 34.16 ± 4.32 | 34.50 ± 3.13 | 4.99 ± 0.10 * | 1.56 ± 0.21 * |
adenine/FL100 | 28.96 ± 1.30 | 31.88 ± 1.40 | 33.07 ± 3.91 | 33.25 ± 3.15 | 31.95 ± 3.90 | 5.67 ± 0.22 | 1.77 ± 0.18 * |
adenine/FL150 | 28.87 ± 1.35 | 32.18 ± 1.84 | 33.99 ± 2.76 | 34.67 ± 3.57 | 31.38 ± 3.25 | 5.08 ± 0.22 * | 1.50 ± 0.10 * |
adenine/FL200 | 28.63 ± 2.69 | 30.75 ± 2.05 | 33.81 ± 1.73 | 33.10 ± 2.23 | 32.70 ± 2.95 | 5.21 ± 0.20 * | 1.52 ± 0.20 * |
SOD (U/gprot) | CAT (U/gprot) | MDA (nmol/100 mgprot) | ||||
---|---|---|---|---|---|---|
Liver | Kidney | Liver | Kidney | Liver | Kidney | |
vehicle | 211.20 ± 11.25 * | 143.75 ± 7.60 * | 17.96 ± 1.40 * | 20.41 ± 1.53 * | 69.00 ± 8.33 * | 32.06 ± 4.03 * |
adenine | 143.31 ± 14.90 | 115.91 ± 6.33 | 12.72 ± 1.55 | 16.62 ± 1.21 | 114.03 ± 26.22 | 77.11 ± 6.05 |
adenine/allopurinol | 153.12 ± 10.30 | 146.11 ± 23.37 * | 14.90 ± 1.35 | 22.49 ± 1.61 * | 67.10 ± 14.19 * | 49.36 ± 7.09 * |
adenine/FL100 | 199.74 ± 12.65 * | 144.41 ± 16.09 * | 14.03 ± 1.24 | 20.54 ± 1.38 * | 81.04 ± 15.41 * | 35.19 ± 9.01 * |
adenine/FL150 | 218.51 ± 25.10 * | 154.07 ± 15.53 * | 17.81 ± 0.95 * | 21.04 ± 1.57 * | 62.16 ± 21.20 * | 29.22 ± 3.16 * |
adenine/FL200 | 170.01 ± 11.35 | 136.83 ± 7.73 * | 13.78 ± 1.12 | 18.45 ± 2.41 | 89.23 ± 11.12 | 35.21 ± 12.01 * |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Liu, H.; Luo, P.; Li, Y. Production Inhibition and Excretion Promotion of Urate by Fucoidan from Laminaria japonica in Adenine-Induced Hyperuricemic Mice. Mar. Drugs 2018, 16, 472. https://doi.org/10.3390/md16120472
Zhang D, Liu H, Luo P, Li Y. Production Inhibition and Excretion Promotion of Urate by Fucoidan from Laminaria japonica in Adenine-Induced Hyperuricemic Mice. Marine Drugs. 2018; 16(12):472. https://doi.org/10.3390/md16120472
Chicago/Turabian StyleZhang, Dayan, Huazhong Liu, Ping Luo, and Yanqun Li. 2018. "Production Inhibition and Excretion Promotion of Urate by Fucoidan from Laminaria japonica in Adenine-Induced Hyperuricemic Mice" Marine Drugs 16, no. 12: 472. https://doi.org/10.3390/md16120472
APA StyleZhang, D., Liu, H., Luo, P., & Li, Y. (2018). Production Inhibition and Excretion Promotion of Urate by Fucoidan from Laminaria japonica in Adenine-Induced Hyperuricemic Mice. Marine Drugs, 16(12), 472. https://doi.org/10.3390/md16120472