Effects of Chitosan on Clostridium perfringens and Application in the Preservation of Pork Sausage
Abstract
:1. Introduction
2. Result and Discussion
2.1. Antibacterial Activity of Chitosan Against C. perfringens
2.2. Effect of Chitosan on Decimal Reduction Time of C. perfringens Spores
2.3. Applications of Chitosan in Pork Sausage
2.4. Color and Color Difference Measurement
2.5. Volatile Basic Nitrogen (VBN)
3. Material and Methods
3.1. Bacterial Strains and Chemicals
3.2. DD95 Chitosan Preparation
3.3. Culture Conditions
3.4. Spore Preparation
3.5. Antibacterial Test
3.6. Measurement of Heat Resistance of C. perfringens Spores
3.7. Application of DD95 Chitosan to Pork Sausage
3.8. Application of DD95 Chitosan and Nitrite for Pork Sausage
3.9. Color and Color Difference Measurement
3.10. Volatile Basic Nitrogen
3.11. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- D’Ostuni, V.; Tristezza, M.; De Giorgi, M.G.; Rampino, P.; Grieco, F.; Perrotta, C. Occurrence of Listeria monocytogenes and Salmonella spp. in meat processed products from industrial plants in Southern Italy. Food Control 2016, 62, 104–109. [Google Scholar] [CrossRef]
- Lee, S.; Lee, H.; Kim, S.; Lee, J.; Ha, J.; Choi, Y.; Oh, H.; Choi, K.-H.; Yoon, Y. Microbiological safety of processed meat products formulated with low nitrite concentration—A review. Asian Australas. J. Anim. Sci. 2018, 31, 1073–1077. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Capillas, C.; Herrero, A.M. Impact of biogenic amines on food quality and safety. Foods 2019, 8, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craven, S.; Stern, N.; Bailey, J.; Cox, N. Incidence of Clostridium perfringens in broiler chickens and their environment during production and processing. Avian Dis 2001, 45, 887–896. [Google Scholar] [CrossRef]
- Palmer, J.; Flint, S.; Brooks, J. Bacterial cell attachment, the beginning of a biofilm. J. Ind. Microbiol. Biotechnol. 2007, 34, 577–588. [Google Scholar] [CrossRef]
- Chang, S.-H.; Lin, H.-T.V.; Wu, G.-J.; Tsai, G.J. pH Effects on solubility, zeta potential, and correlation between antibacterial activity and molecular weight of chitosan. Carbohydr. Polym. 2015, 134, 74–81. [Google Scholar] [CrossRef]
- Hosseinnejad, M.; Jafari, S.M. Evaluation of different factors affecting antimicrobial properties of chitosan. Int. J. Biol. Macromol. 2016, 85, 467–475. [Google Scholar] [CrossRef]
- Li, Q.; Tan, W.; Zhang, C.; Gu, G.; Guo, Z. Synthesis of water soluble chitosan derivatives with halogeno-1,2,3-triazole and their antifungal activity. Int. J. Biol. Macromol. 2016, 91, 623–629. [Google Scholar] [CrossRef]
- Marpu, S.B.; Benton, E.N. Shining light on chitosan: A review on the usage of chitosan for photonics and nanomaterials research. Int. J. Mol. Sci. 2018, 19, 1795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, A.; Perelman, M.; Hinchcliffe, M. Chitosan: A promising safe and immune-enhancing adjuvant for intranasal vaccines. Hum. Vaccines Immunother. 2014, 10, 797–807. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.-H.; Lin, Y.-Y.; Wu, G.-J.; Huang, C.-H.; Tsai, G.J. Effect of chitosan molecular weight on anti-inflammatory activity in the RAW 264.7 macrophage model. Int. J. Biol. Macromol. 2019, 131, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Li, F.; Fang, Y.; Yang, W.; An, X.; Zhao, L.; Xin, Z.; Cao, L.; Hu, Q. Cytotoxicity and apoptotic effects of tea polyphenol-loaded chitosan nanoparticles on human hepatoma HepG2 cells. Mater. Sci. Eng. C 2014, 36, 7–13. [Google Scholar] [CrossRef]
- El Ghaouth, A.; Arul, J.; Grenier, J.; Asselin, A. Antifungal activity of chitosan on two postharvest pathogens of strawberry fruits. Phytopathology 1992, 82, 398–402. [Google Scholar] [CrossRef]
- Knorr, D. Use of chitinous polymers in food: A challenge for food research and development. Food Technol. (USA) 1984, 38, 85–97. [Google Scholar]
- Muzzarelli, R. Enzymatic synthesis of chitin and chitosan. Occurrence of chitin. Chitin 1977, 5–17. [Google Scholar]
- Tsai, G.-J.; Tsai, M.-T.; Lee, J.-M.; Zhong, M.-Z. Effects of chitosan and a low-molecular-weight chitosan on Bacillus cereus and application in the preservation of cooked rice. J. Food Prot. 2006, 69, 2168–2175. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Kang, J.; Shih, Y.; Lo, Y.; Wang, C. Cholesterol-3-beta, 5-alpha, 6-beta-triol induced genotoxicity through reactive oxygen species formation. Food Chem. Toxicol. 2005, 43, 617–622. [Google Scholar] [CrossRef]
- Tsai, G.-J.; Zhang, S.-L.; Shieh, P.-L. Antimicrobial activity of a low-molecular-weight chitosan obtained from cellulase digestion of chitosan. J. Food Prot. 2004, 67, 396–398. [Google Scholar] [CrossRef]
- Limbo, S.; Torri, L.; Sinelli, N.; Franzetti, L.; Casiraghi, E. Evaluation and predictive modeling of shelf life of minced beef stored in high-oxygen modified atmosphere packaging at different temperatures. Meat Sci. 2010, 84, 129–136. [Google Scholar] [CrossRef]
- Grass, J.E.; Gould, L.H.; Mahon, B.E. Epidemiology of Foodborne Disease Outbreaks Caused by Clostridium perfringens, United States, 1998–2010. Foodborne Pathog. Dis. 2013, 10, 131–136. [Google Scholar] [CrossRef] [Green Version]
- Juneja, V.K.; Gonzales-Barron, U.; Butler, F.; Yadav, A.S.; Friedman, M. Predictive thermal inactivation model for the combined effect of temperature, cinnamaldehyde and carvacrol on starvation-stressed multiple Salmonella serotypes in ground chicken. Int. J. Food Microbiol. 2013, 165, 184–199. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.S.; Kim, T.K.; Jeon, K.H.; Park, J.D.; Kim, H.W.; Hwang, K.E.; Kim, Y.B. Effects of Pre-Converted Nitrite from Red Beet and Ascorbic Acid on Quality Characteristics in Meat Emulsions. Korean J. Food Sci. Anim. Resour. 2017, 37, 288–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Yang, H.J.; Shi, H.Z.; Zhou, J.; Bai, R.S.; Zhang, M.Y.; Jin, T. Nitrate and Nitrite Promote Formation of Tobacco-Specific Nitrosamines via Nitrogen Oxides Intermediates during Postcured Storage under Warm Temperature. J. Chem. 2017, 2017, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Dutra, M.P.; Aleixo, G.D.; Ramos, A.D.S.; Silva, M.H.L.; Pereira, M.T.; Piccoli, R.H.; Ramos, E.M. Use of gamma radiation on control of Clostridium botulinum in mortadella formulated with different nitrite levels. Radiat. Phys. Chem. 2016, 119, 125–129. [Google Scholar] [CrossRef]
- Kanner, J.; Shpaizer, A.; Nelgas, L.; Tirosh, O. S-Nitroso-N-acetylcysteine (NAC-SNO) as an Antioxidant in Cured Meat and Stomach Medium. J. Agric. Food Chem. 2019, 67, 10930–10936. [Google Scholar] [CrossRef] [PubMed]
- Woods, L.F.; Wood, J. A note on the effect of nitrite inhibition on the metabolism of Clostridium botulinum. J. Appl. Bacteriol. 1982, 52, 109–110. [Google Scholar] [CrossRef]
- Woods, L.F.; Wood, J.M.; Gibbs, P.A. The involvement of nitric oxide in the inhibition of the phosphoroclastic system in Clostridium sporogenes by sodium nitrite. Microbiology 1981, 125, 399–406. [Google Scholar] [CrossRef] [Green Version]
- Burke, A.; Yilmaz, E.; Hasirci, N.; Yilmaz, O. Iron (III) ion removal from solution through adsorption on chitosan. J. Appl. Polym. Sci. 2002, 84, 1185–1192. [Google Scholar] [CrossRef]
- Yong, H.I.; Han, M.; Kim, H.-J.; Suh, J.-Y.; Jo, C. Mechanism underlying green discolouration of myoglobin induced by atmospheric pressure plasma. Sci. Rep. 2018, 8, 9790. [Google Scholar] [CrossRef]
- Chang, S.-H.; Wu, C.-H.; Tsai, G.-J. Effects of chitosan molecular weight on its antioxidant and antimutagenic properties. Carbohydr. Polym. 2018, 181, 1026–1032. [Google Scholar] [CrossRef]
- Yong, H.I.; Park, J.; Kim, H.J.; Jung, S.; Park, S.; Lee, H.J.; Choe, W.; Jo, C. An innovative curing process with plasma-treated water for production of loin ham and for its quality and safety. Plasma Process Polym. 2018, 15. [Google Scholar] [CrossRef]
- Deda, M.S.; Bloukas, J.G.; Fista, G.A. Effect of tomato paste and nitrite level on processing and quality characteristics of frankfurters. Meat Sci. 2007, 76, 501–508. [Google Scholar] [CrossRef]
- Krause, B.L.; Sebranek, J.G.; Rust, R.E.; Mendonca, A. Incubation of curing brines for the production of ready-to-eat, uncured, no-nitrite-or-nitrate-added, ground, cooked and sliced ham. Meat Sci. 2011, 89, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Tôei, K.; Kohara, T. A conductometric method for colloid titrations. Anal. Chim. Acta 1976, 83, 59–65. [Google Scholar] [CrossRef]
- Tsai, M.L.; Bai, S.W.; Chen, R.H. Cavitation effects versus stretch effects resulted in different size and polydispersity of ionotropic gelation chitosan–sodium tripolyphosphate nanoparticle. Carbohydr. Polym. 2008, 71, 448–457. [Google Scholar] [CrossRef]
- Miwa, N.; Masuda, T.; Kwamura, A.; Terai, K.; Akiyama, M. Survival and growth of enterotoxin-positive and enterotoxin-negative Clostridium perfringens in laboratory media. Int. J. Food Microbiol. 2002, 72, 233–238. [Google Scholar] [CrossRef]
- Jang, S.I.; Lillehoj, H.S.; Lee, S.H.; Lee, K.W.; Lillehoj, E.P.; Hong, Y.H.; An, D.J.; Jeoung, H.Y.; Chun, J.E. Relative Disease Susceptibility and Clostridial Toxin Antibody Responses in Three Commercial Broiler Lines Coinfected with Clostridium perfringens and Eimeria maxima Using an Experimental Model of Necrotic Enteritis. Avian Dis. 2013, 57, 684–687. [Google Scholar] [CrossRef]
- Lee, S.H.; Choe, J.; Shin, D.J.; Yong, H.I.; Choi, Y.; Yoon, Y.; Jo, C. Combined effect of high pressure and vinegar addition on the control of Clostridium perfringens and quality in nitrite-free emulsion-type sausage. Innov. Food Sci. Emerg. 2019, 52, 429–437. [Google Scholar] [CrossRef]
- Saito, K.; Ahhmed, A.M.; Kawahara, S.; Sugimoto, Y.; Aoki, T.; Muguruma, M. Evaluation of the performance of osmotic dehydration sheets on freshness parameters in cold-stored beef biceps femoris muscle. Meat Sci. 2009, 82, 260–265. [Google Scholar] [CrossRef]
- Conway, E.J. Microdiffusion Analysis and Volumetric Error, 4th ed.; Crosby Lockwood: London, UK, 1947. [Google Scholar]
Heating Treatment (°C) | DD95 Conc. (ppm) | CCRC 10,648 * | CCRC 13,019 |
---|---|---|---|
80 | 0 | 41.15 | 40.98 |
80 | 250 | 39.52 | 39.21 |
100 | 0 | 6.46 | 4.64 |
100 | 250 | 3.78 | 3.26 |
Assay | Group a | Nitrite Concentration (ppm) | Values of Pork Sausage after Following Hours of Storage b,c | ||||
---|---|---|---|---|---|---|---|
0 | 12 | 24 | 36 | 48 | |||
L | Without DD95 | 0 | B42.2 ± 1.8a | A47.5 ± 1.6a | AB44.5 ± 2.3bc | AB46.1 ± 3.3a | AB45.4 ± 3.3a |
40 | A45.6 ± 2.1a | A48.9 ± 4.9a | A47.2 ± 2.2abc | A46.4 ± 2.2a | A46.2 ± 1.6a | ||
80 | A45.6 ± 2.1a | A44.9 ± 4.9a | A45.2 ± 5.0bc | A46.4 ± 2.2a | A46.2 ± 3.6a | ||
120 | B44.3 ± 1.7a | AB46.5 ± 1.5a | B43.0 ± 1.5bc | AB46.1 ± 3.5a | A48.6 ± 2.1a | ||
DD95 | 0 | B46.6 ± 0.7a | AB47.4 ± 1.6a | A50.6 ± 1.5c | AB48.2 ± 3.1a | A50.6 ± 2.2a | |
40 | A48.6 ± 4.4a | A49.6 ± 2.4a | A45.0 ± 2.1bc | A46.2 ± 0.7a | A46.4 ± 1.6a | ||
80 | A48.8 ± 6.3a | A49.8 ± 3.3a | A48.8 ± 2.8ab | A47.9 ± 1.3a | A49.3 ± 0.9a | ||
120 | A48.0 ± 2.5a | A46.9 ± 1.9a | A46.7 ± 2.1abc | A44.4 ± 1.2a | A48.5 ± 4.8a | ||
a | Without DD95 | 0 | A7.2 ± 0.5a | AB6.60 ± 1.5ab | C3.4 ± 0.8d | BC3.7 ± 3.1d | C2.8 ± 0.5e |
40 | AB7.0 ± 0.3a | A7.44 ± 1.2a | A8.1 ± 0.5ab | BC5.8 ± 1.2cd | C5.3 ± 0.5d | ||
80 | A7.0 ± 0.5a | A7.22 ± 1.4a | A7.0 ± 1.4b | A7.2 ± 1.0abc | A6.0 ± 0.7c | ||
120 | AB6.6 ± 1.1a | AB6.84 ± 1.3a | A8.4 ± 0.5ab | B6.5 ± 1.1bc | AB6.5 ± 0.5bc | ||
DD95 | 0 | A6.5 ± 0.5a | A6.26 ± 0.0ab | AB5.4 ± 1.2c | AB5.2 ± 0.7cd | B4.4 ± 0.5d | |
40 | B6.1 ± 1.9a | AB6.95 ± 1.6a | A8.7 ± 0.5a | A8.6 ± 0.4ab | AB7.7 ± 1.2bc | ||
80 | B6.4 ± 1.8a | B6.42 ± 0.4ab | A8.0 ± 0.4ab | A8.3 ± 0.5ab | A8.0 ± 1.2ab | ||
120 | B6.7 ± 0.6a | B6.61 ± 0.3b | A8.3 ± 0.8ab | A9.3 ± 0.4a | A9.4 ± 0.8a | ||
b | Without DD95 | 0 | A8.3 ± 0.5b | A9.48 ± 0.7a | A8.1 ± 0.3a | A8.4 ± 1.3b | A8.5 ± 0.7b |
40 | A9.4 ± 0.5ab | A9.42 ± 0.9a | A10.2 ± 0.5a | A9.4 ± 0.7ab | A9.3 ± 0.4a | ||
80 | A9.6 ± 0.8a | A9.18 ± 0.4a | A9.4 ± 0.8a | A9.2 ± 0.4ab | A9.3 ± 0.9ab | ||
120 | A9.3 ± 0.5ab | A9.64 ± 0.4a | A9.7 ± 0.6a | A9.7 ± 0.3ab | A10.0 ± 0.8a | ||
DD95 | 0 | A9.1 ± 0.5ab | A9.21 ± 0.4a | A9.8 ± 0.3a | A9.2 ± 0.8ab | A9.5 ± 0.9ab | |
40 | A9.8 ± 1.0a | A9.80 ± 0.2a | A9.8 ± 0.3a | A9.8 ± 0.4a | A8.9 ± 0.6ab | ||
80 | A9.2 ± 0.7ab | A10.2 ± 1.2a | A10.0 ± 1.1a | A9.7 ± 0.46ab | A9.9 ± 0.2a | ||
120 | A9.3 ± 0.6ab | A8.96 ± 0.4a | A9.7 ± 0.6a | A9.1 ± 0.7ab | A9.8 ± 0.9ab |
Assay | Group a | Nitrite Concentration (ppm) | Values of Pork Sausage after Following Days of Storage b,c | |||
---|---|---|---|---|---|---|
0 | 3 | 6 | 10 | |||
L | Without DD95 | 0 | B42.2 ± 1.8a | AB45.3 ± 2.3abc | A47.0 ± 1.5a | A48.0 ± 1.0a |
40 | A45.6 ± 2.1a | A42.8 ± 1.1c | A45.9 ± 2.9a | A47.5 ± 4.3a | ||
80 | A45.6 ± 2.1a | A44.5 ± 3.0bc | A48.3 ± 2.1a | A45.2 ± 1.4a | ||
120 | B44.3 ± 1.7a | A46.3 ± 2.1abc | A47.5 ± 2.7a | A44.3 ± 1.7a | ||
DD95 | 0 | A46.6 ± 0.7a | A48.6 ± 1.8ab | A45.7 ± 3.5a | A47.1 ± 2.1a | |
40 | A48.6 ± 4.4a | A47.2 ± 4.2ab | A49.2 ± 1.6a | A45.3 ± 3.7a | ||
80 | A48.8 ± 6.3a | A49.6 ± 2.4a | A49.8 ± 3.2a | A48.8 ± 1.7a | ||
120 | A47.9 ± 2.5a | A46.0 ± 2.6abc | A48.0 ± 1.8a | A45.5 ± 2.4a | ||
a | Without DD95 | 0 | A7.18 ± 0.5a | A6.9 ± 0.4abc | AB6.2 ± 1.9a | B4.3 ± 1.6d |
40 | AB6.95 ± 0.3a | A7.3 ± 0.9a | AB6.8 ± 0.7a | B5.3 ± 2.2cd | ||
80 | A6.95 ± 0.5a | A7.5 ± 0.4ab | A7.7 ± 0.1a | A8.0 ± 0.8ab | ||
120 | A6.62 ± 1.1a | A6.4 ± 0.7abc | A6.0 ± 1.6a | A7.8 ± 1.4abc | ||
DD95 | 0 | A6.46 ± 0.5a | A6.4 ± 0.2abc | A6.2 ± 0.4a | A5.7 ± 1.2bcd | |
40 | A7.10 ± 1.9a | A7.5 ± 2.3bc | A7.6 ± 1.3b | A8.7 ± 1.7a | ||
80 | A7.37 ± 1.8a | A7.2 ± 1.5bc | A7.3 ± 0.6b | A7.9 ± 0.8bcd | ||
120 | A7.66 ± 0.6a | A8.0 ± 1.6c | A7.0 ± 0.3b | A7.9 ± 0.1d | ||
b | Without DD95 | 0 | A8.25 ± 0.5a | A8.9 ± 0.6b | A9.3 ± 1.3a | A9.0 ± 0.5c |
40 | B9.38 ± 0.5a | B9.1 ± 0.3ab | B9.1 ± 0.7a | A10.5 ± 0.4a | ||
80 | A9.58 ± 0.8a | A9.5 ± 0.3ab | A10.4 ± 0.5a | A10.2 ± 0.6a | ||
120 | A9.27 ± 0.5a | A10.0 ± 0.5a | A10.0 ± 0.9a | A9.8 ± 0.3abc | ||
DD95 | 0 | A9.10 ± 0.5a | A9.6 ± 0.6ab | A8.9 ± 1.3a | A9.1 ± 0.4c | |
40 | A9.76 ± 1.1a | A9.4 ± 0.9ab | A9.7 ± 0.5a | A10.1 ± 0.2ab | ||
80 | A9.17 ± 0.7a | A9.5 ± 0.7ab | A9.8 ± 1.0a | A9.3 ± 0.4bc | ||
120 | A9.26 ± 0.6a | A8.9 ± 0.5b | A9.5 ± 0.9a | A9.3 ± 0.6bc |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, S.-H.; Chen, C.-H.; Tsai, G.-J. Effects of Chitosan on Clostridium perfringens and Application in the Preservation of Pork Sausage. Mar. Drugs 2020, 18, 70. https://doi.org/10.3390/md18020070
Chang S-H, Chen C-H, Tsai G-J. Effects of Chitosan on Clostridium perfringens and Application in the Preservation of Pork Sausage. Marine Drugs. 2020; 18(2):70. https://doi.org/10.3390/md18020070
Chicago/Turabian StyleChang, Shun-Hsien, Ching-Hung Chen, and Guo-Jane Tsai. 2020. "Effects of Chitosan on Clostridium perfringens and Application in the Preservation of Pork Sausage" Marine Drugs 18, no. 2: 70. https://doi.org/10.3390/md18020070
APA StyleChang, S.-H., Chen, C.-H., & Tsai, G.-J. (2020). Effects of Chitosan on Clostridium perfringens and Application in the Preservation of Pork Sausage. Marine Drugs, 18(2), 70. https://doi.org/10.3390/md18020070