Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (430)

Search Parameters:
Keywords = Clostridium perfringens

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1248 KiB  
Article
Dietary Supplementation of Zinc Oxide Quantum Dots Protective Against Clostridium perfringens Induced Negative Effects in Broilers
by Lei Shi, Qin-Jian Niu, Hao-Hua Xu, Yu-Xuan Huang, Yu-Wei Zhao, Alainaa Refaie, Lv-Hui Sun and Zhang-Chao Deng
Toxins 2025, 17(6), 272; https://doi.org/10.3390/toxins17060272 - 29 May 2025
Abstract
Clostridium perfringens is a major cause of necrotizing enteritis in chickens. This study aimed to investigate the effects of zinc oxide quantum dots (ZnO-QDs) on growth performance, redox status, and gut microbiota in broilers challenged with C. perfringens. A total of 320 [...] Read more.
Clostridium perfringens is a major cause of necrotizing enteritis in chickens. This study aimed to investigate the effects of zinc oxide quantum dots (ZnO-QDs) on growth performance, redox status, and gut microbiota in broilers challenged with C. perfringens. A total of 320 1-day-old chicks were divided into five groups: negative control (NC) without treatment; positive control (PC) infected with C. perfringens; and the other three groups (40, 80, and 120 Zn) were given ZnO-QDs at doses of 40, 80, and 120 mg/kg, respectively, under C. perfringens infection, respectively. The results show that, compared to the NC group, the PC group exhibited negative effects on growth performance, intestinal morphology, and antioxidant status in broilers. However, compared to the PC group, 120 mg Zn increased (p < 0.05) the body weight of broilers at 21 days, while 40 mg Zn reduced (p < 0.05) serum diamine oxidase activity. The intestinal macroscopic evaluation showed that the PC group had the highest lesion scores, whereas the 120 mg Zn group exhibited the lowest lesion score. Meanwhile, compared to the PC group, the 40 mg Zn group had higher (p < 0.05) CAT and GPX activities and a lower (p < 0.05) MDA concentration. Moreover, the 40 mg Zn group up-regulated (p < 0.05) the gene expression of Cathelicidin-1, IL-10, Claudin-1, and MLCK in the jejunum. Furthermore, the 120 mg Zn group increased (p < 0.05) the abundance of Blautia, Parasutterella, and Lachnospiraceae FCS020 in the cecum. In conclusion, ZnO-QDs exerted a beneficial effect on improving growth performance and overall health in broilers under C. perfringens infection, potentially by regulating redox balance and gut microbiota. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

20 pages, 2148 KiB  
Article
Evaluation of Probiotic Bacillus velezensis for the Control of Pathogens That Cause Post-Weaning Diarrhea in Piglets—Results from In Vitro Testing and an In Vivo Model Using Caenorhabditis elegans
by Pia Bilde Rasmussen, Josh Walker, Stacey Robida Stubbs, Andreea Cornelia Udrea and Chong Shen
Microorganisms 2025, 13(6), 1247; https://doi.org/10.3390/microorganisms13061247 - 28 May 2025
Viewed by 28
Abstract
We investigated the effect of probiotic Bacillus velezensis strains (LSSA01, 15AP4 and 2084) on pathogens causing post-weaning diarrhea in piglets (Enterotoxigenic Escherichia coli, Clostridium perfringens, Salmonella spp.). We studied the effect of B. velezensis and its cell-free supernatant on (1) pathogen [...] Read more.
We investigated the effect of probiotic Bacillus velezensis strains (LSSA01, 15AP4 and 2084) on pathogens causing post-weaning diarrhea in piglets (Enterotoxigenic Escherichia coli, Clostridium perfringens, Salmonella spp.). We studied the effect of B. velezensis and its cell-free supernatant on (1) pathogen growth; (2) IPEC-J2 cell cytokine and tight junction protein expression; (3) IPEC-J2 cell ‘wound’ recovery; (4) adhesion to IPEC-J2 cells and pathogen exclusion; and (5) Caenorhabditis elegans survival following pathogen exposure. Cell-free supernatant (CFS) from all strains inhibited the growth of ETEC F4 and F18 (by 36.9–53.2%; p < 0.05). One or more strains inhibited C. perfringens and Salmonella spp. (p < 0.05). Strain 2084 CFS increased IL-8 expression (+12.0% vs. control; p < 0.05; 6 h incubation), whereas LSSA01 CFS increased the expression of tight junction proteins (p < 0.05 vs. control; 6 h incubation) and accelerated 96 h ‘wound’ healing. Colony-forming units (CFUs) of all strains displayed a higher binding affinity to IPEC-J2 cells than 12 ETEC isolates, reduced adhesion of ETEC F4 and F18 and extended C. elegans survival over 30 d. The results indicate that probiotic B. velezensis strains have potential for use in the control of PWD pathogens. Full article
(This article belongs to the Special Issue Microbial Infections and Host Immunity)
Show Figures

Figure 1

16 pages, 289 KiB  
Article
Dietary Black Soldier Fly Larvae Meal and Its Impact on the Growth Performance and Gut Health of Broilers Under an Intestinal Challenge
by Yuri Katagiri Dalmoro, Guilherme Librelotto de Godoy, Jessica Cristina Agilar, Glauco Anderson Raddatz, Fernanda de Candido de Oliveira, Natieli Witt and Catarina Stefanello
Metabolites 2025, 15(6), 347; https://doi.org/10.3390/metabo15060347 - 23 May 2025
Viewed by 220
Abstract
Background/Objectives: The use of black soldier fly (BSF) larvae meal in poultry nutrition is gaining attention as a sustainable protein source with a high nutritional value, an efficient bioconversion of organic waste, and potential functional benefits for intestinal health. This study evaluated the [...] Read more.
Background/Objectives: The use of black soldier fly (BSF) larvae meal in poultry nutrition is gaining attention as a sustainable protein source with a high nutritional value, an efficient bioconversion of organic waste, and potential functional benefits for intestinal health. This study evaluated the dietary effects of including 5% BSF larvae meal on the growth performance, nutrient digestibility, and energy utilization as well as on the intestinal integrity, gene expression, lipid profile, and short-chain fatty acid (SCFA) production of broilers under an intestinal challenge. Methods: Eight hundred one-day-old male broilers were assigned to four dietary treatments with eight replicates (25 birds/pen) and reared until day 40. Birds were fed either a Basal corn–soy diet or a BSF diet (5% BSF larvae meal replacing energy- and protein-yielding ingredients). Diets were provided to a non-challenged group and a challenged group, which was orally gavaged with Eimeria spp. on day 1 and Clostridium perfringens on days 11 and 14. The growth performance was evaluated up to day 40, while the nutrient digestibility, meat lipid profile, intestinal histomorphology, and gene expression were assessed at 21 days. The SCFAs were determined at both 21 and 40 days. Results: It was observed that the intestinal challenge induced dysbiosis and negatively affected growth performance, whereas the BSF meal inclusion partially mitigated these adverse effects. Broilers fed the BSF larvae meal showed increased cecal SCFA concentrations and a lower interleukin-6 gene expression, along with higher lauric and myristic acid levels in breast muscle (p ≤ 0.05). Conclusions: The inclusion of 5% BSF larvae meal improved performance without impairing nutrient digestibility or intestinal histomorphology, while increasing cecal concentrations of butyric and acetic acids and promoting a beneficial lipid deposition. Full article
(This article belongs to the Special Issue Nutrition and Metabolism in Poultry)
23 pages, 3484 KiB  
Article
In Silico Design, Optimization, and Evaluation of a Multi-Epitope Vaccine Targeting the Clostridium perfringens Collagen Adhesin Protein
by Dhiraj Chundru, Shailes Bhattrai, Madhusudan Timilsina, Hyun Lillehoj, Zhifeng Sun, Mostafa Ghanem and Charles Li
Microorganisms 2025, 13(5), 1147; https://doi.org/10.3390/microorganisms13051147 - 16 May 2025
Viewed by 216
Abstract
Necrotic enteritis (NE), caused by pathogenic Clostridium perfringens, poses a significant threat to global poultry health, with estimated annual losses exceeding USD 6 billion. The rising incidence of NE has been associated with the reduced use of antibiotic growth promoters, underscoring the [...] Read more.
Necrotic enteritis (NE), caused by pathogenic Clostridium perfringens, poses a significant threat to global poultry health, with estimated annual losses exceeding USD 6 billion. The rising incidence of NE has been associated with the reduced use of antibiotic growth promoters, underscoring the urgent need for alternative control measures such as vaccination. Collagen adhesin protein (CNA), a key virulence factor in NE pathogenesis, represents a promising vaccine target. The US Food and Drug Administration has begun phasing out animal testing requirements for biologics and monoclonal antibody drugs. In this study, a computational multi-epitope vaccine (MEV) targeting CNA was designed by integrating predicted Cluster of Differentiation (CD)4+ helper T lymphocyte (Th), CD8+ cytotoxic T lymphocyte (CTL), and B-cell epitopes. Bioinformatics tools were used to identify immunogenic, antigenic, and non-allergenic epitopes assembled into a 115-amino-acid peptide vaccine construct. The candidate demonstrated strong stability and solubility. In silico immune simulation predicted robust immune responses, including elevated IgG and IgM antibody levels, plasma cell proliferation, Th memory formation, and CTL activation, comparable to responses elicited by a full-length CNA. These findings support the potential of the designed peptide as one of the multiple effective NE vaccine components, offering a promising alternative to antibiotic-based approaches in poultry disease management. Full article
(This article belongs to the Special Issue Poultry Pathogens and Poultry Diseases, 2nd Edition)
Show Figures

Figure 1

21 pages, 9733 KiB  
Article
Bacillus licheniformis Alleviates Clostridium perfringens-Induced Intestinal Injury in Mice Model by Modulating Inflammation, Apoptosis, and Cecal Microbial–Metabolic Responses
by Yifan Zhong, Meiting Zhang, Haocheng Xu, Xiaorong Yu, Yashi Hu, Yangyi Xu, Xiao Xiao and Caimei Yang
Animals 2025, 15(10), 1409; https://doi.org/10.3390/ani15101409 - 13 May 2025
Viewed by 277
Abstract
Bacillus licheniformis (B. licheniformis) is a probiotic known for its ability to enhance host resistance against pathogenic infections. This study aimed to evaluate the protective effects and underlying mechanisms of B. licheniformis in a mouse model challenged with Clostridium perfringens ( [...] Read more.
Bacillus licheniformis (B. licheniformis) is a probiotic known for its ability to enhance host resistance against pathogenic infections. This study aimed to evaluate the protective effects and underlying mechanisms of B. licheniformis in a mouse model challenged with Clostridium perfringens (C. perfringens). C57BL/6J mice were pretreated with B. licheniformis for 21 days before oral infection with C. perfringens. The probiotic administration significantly prevented infection-induced weight loss and immune organ enlargement. Serum cytokine analysis revealed that B. licheniformis increased anti-inflammatory IL-4 and IL-10 levels while reducing pro-inflammatory IL-1β, IL-6, and TNF-α levels. Histological analysis showed that B. licheniformis preserved intestinal morphology and inhibited epithelial cell apoptosis. Moreover, the probiotic mitigated the infection-induced decline in volatile fatty acid (VFA) production. 16S rRNA gene sequencing revealed that B. licheniformis reshaped the cecal microbiota, characterized by the increased abundance of Lachnospiraceae_NK4A136_group, Muribaculaceae, and Parabacteroides, and reduced abundance of Alistipes. Untargeted metabolomic profiling identified differential metabolites—including D-glucono-1,5-lactone, D-erythrose 4-phosphate, and D-sedoheptulose 7-phosphate—enriched in the pentose phosphate pathway, suggesting a regulatory role in redox homeostasis and host response. Collectively, these results indicate that B. licheniformis exerts protective effects against C. perfringens infection by modulating inflammation, apoptosis, microbial composition, and metabolic pathways. This work provides new insights into the application of B. licheniformis as a functional microbial feed additive in livestock disease prevention. Full article
(This article belongs to the Special Issue Feed Additives in Animal Nutrition)
Show Figures

Figure 1

21 pages, 5820 KiB  
Article
Heterologous Expression and Enzymatic Properties of β-Glucuronidase from Clostridium perfringens and Its Application in Bilirubin Transformation
by Qianlin Wu, Qing Guo, Fo Yang, Mengru Li, Yumeng Zhu, Binpeng Xu, Lu Zhao, Shanshan Zhang, Youyu Xie, Feng Li, Xiaomin Wu and Dayong Xu
Microorganisms 2025, 13(5), 1043; https://doi.org/10.3390/microorganisms13051043 - 30 Apr 2025
Viewed by 163
Abstract
β-glucuronidase is an important hydrolase, which plays an important role in drug metabolism, clinical diagnostics, and biotransformation. This study focuses on the heterologous expression, isolation, purification, and its enzymatic properties of β-glucuronidase CpGUS from Clostridium perfringens, as well as its application in [...] Read more.
β-glucuronidase is an important hydrolase, which plays an important role in drug metabolism, clinical diagnostics, and biotransformation. This study focuses on the heterologous expression, isolation, purification, and its enzymatic properties of β-glucuronidase CpGUS from Clostridium perfringens, as well as its application in the whole-cell transformation of unconjugated bilirubin from pig bile. A recombinant E. coli BL21(DE3)/pET-28a-CpGUS was constructed for the heterologous expression of CpGUS, with the majority of the expressed enzyme being soluble. Enzymatic analysis showed that CpGUS displayed optimal activity at pH 5.0 and 45 °C, and it rapidly lost activity at pH < 4.5. Metal ions, such as Mg2+ and Fe2+, enhanced CpGUS catalysis, while Zn2+, K+, Fe3+, Mn2+, Cu2+, and Na+ inhibited it. Notably, Cu2+ and Fe3+ can significantly inhibit β-glucuronidase, resulting in the complete loss of its activity. The results of the whole-cell transformation experiment show that when E.coli BL21(DE3)/ pET-28a-CpGUS at an OD600 of 10 was incubated at pH 5.0, a temperature of 45 °C, and a rotation speed of 200 rpm for 12 h, the hydrolysis rate of the conjugated bilirubin in pig bile reached 81.1%, the yield of unconjugated bilirubin was 76.8%, and the purity of unconjugated bilirubin was 98.2%. The three-dimensional structure of CpGUS was predicted using AlphaFold2 (AlphaFold v2.0, DeepMind Technologise Limited, London, UK), and p-Nitrophenyl-β-D-Glucuronide (pNPG) and conjugated bilirubin were then docked to the CpGUS protein model using SWISSDOCK. The best docked conformations of the CpGUS–pNPG and CpGUS–conjugated bilirubin complex systems were simulated by independent 500 ns molecular dynamics (MD) runs with the RSFF2C force field, and the binding dynamic and catalytic mechanism of each system were obtained. The results indicated that π-π stacking, hydrogen bonding, and hydrophobic interactions between the key residue Tyr472 and the benzene ring of pNPG molecules are crucial for its catalytic process. Similarly, for the binding and catalysis of conjugated bilirubin by CpGUS, the π-π stacking and hydrogen bonding and hydrophobic interactions between the sidechains of residues Phe368 and Tyr472 and the benzene ring of conjugated bilirubin play a synergistic role during its catalytic process. Their total binding free energy (∆Gbind) values were calculated to be as high as −65.05 ± 12.66 and −86.70 ± 17.18 kJ/mol, respectively. These results suggest that CpGUS possesses high binding and catalytic hydrolysis properties for both pNPG and conjugated bilirubin. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

11 pages, 512 KiB  
Article
Efficacy of a New Commercial Vaccine Against Clostridioides difficile and Clostridium perfringens Type A for Recurrent Swine Neonatal Diarrhea Under Field Conditions
by Ainhoa Puig Ambrós, Gabriel Peixoto Faria, Massimiliano Baratelli, Roberto Maurício Carvalho Guedes, Rodrigo Otávio Silveira Silva, Oriol Boix-Mas and Xavier Gibert
Animals 2025, 15(9), 1200; https://doi.org/10.3390/ani15091200 - 23 Apr 2025
Viewed by 323
Abstract
Neonatal diarrhea causes significant economic losses in swine production by reducing average daily weight gain (ADWG) and increasing piglet mortality, with Clostridioides difficile (CD) and Clostridium perfringens type A (CPA) being the most common causes. The aim of this study was to evaluate [...] Read more.
Neonatal diarrhea causes significant economic losses in swine production by reducing average daily weight gain (ADWG) and increasing piglet mortality, with Clostridioides difficile (CD) and Clostridium perfringens type A (CPA) being the most common causes. The aim of this study was to evaluate the efficacy of a new commercial vaccine against these agents to minimize diarrhea, pre-weaning mortality, and its negative consequences on weight performance in suckling piglets under field conditions. The study consisted of two randomized, double-blind, negative-controlled field trials (Study A and B) focusing on clinically healthy pregnant sows from commercial pig farms experiencing recurrent neonatal diarrhea. In the meta-analysis of both farms, the control group showed lower performance compared to the vaccine group (least squares means differences) for ADWG (−14.5 g/day, p < 0.001), body weight (−0.33 kg, p < 0.001), and underweight piglets at weaning (6.94%, p = 0.011). The number of piglets with diarrhea (9.76%, p < 0.001) and the percentage of piglets treated with antibiotics for diarrhea (6.09%, p = 0.016) were lower in vaccinated animals compared to controls. No significant differences in pre-weaning mortality were observed. The results of this study suggest that the new commercial vaccine against CD and CPA reduces the incidence of neonatal diarrhea and the associated use of antibiotics, while positively impacts the growth performance of suckling piglets. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

19 pages, 2386 KiB  
Article
Antimicrobial Susceptibility and Toxin Gene Profiles of Commensal Clostridium perfringens Isolates from Turkeys in Hungarian Poultry Farms (2022–2023)
by Ádám Kerek, Ábel Szabó, Franciska Barnácz, Bence Csirmaz, László Kovács and Ákos Jerzsele
Antibiotics 2025, 14(4), 413; https://doi.org/10.3390/antibiotics14040413 - 17 Apr 2025
Viewed by 426
Abstract
Background: The global spread of antimicrobial resistance (AMR) remains one of the greatest challenges of our time, necessitating collaboration among professionals in both the animal and public health sectors. One bacterial species that is developing AMR is Clostridium perfringens. It causes serious [...] Read more.
Background: The global spread of antimicrobial resistance (AMR) remains one of the greatest challenges of our time, necessitating collaboration among professionals in both the animal and public health sectors. One bacterial species that is developing AMR is Clostridium perfringens. It causes serious bacterial infections and continues to cause significant economic losses in the poultry industry. Methods: This study aimed to evaluate the antimicrobial susceptibility profiles of commensal C. perfringens strains isolated from large-scale turkey flocks in Hungary using minimum inhibitory concentration (MIC) determination. We complemented our research with polymerase chain reaction (PCR) analysis to detect the major and minor toxin genes that are characteristic of the species and to explore the potential associations between gene presence and antimicrobial resistance profiles. Results: A total of 146 commensal isolates were examined. Sensitivity to penicillin was reduced, with only 44.5% of isolates remaining susceptible, whereas 87.7% of isolates were sensitive to amoxicillin. The PCR results revealed that all isolates carried the alpha major toxin gene, 23.9% harbored the beta major toxin gene, 15.8% the beta2 minor toxin gene, 3.4% the NetB minor toxin gene, and 2.7% the epsilon major toxin gene. No statistically significant associations were observed between the presence of toxin genes and the antimicrobial susceptibility profiles of the isolates; the MIC values showed no correlation with the presence of toxin-producing genes. Conclusions: Clostridium perfringens isolates retained susceptibility to beta-lactam antibiotics, which remain the primary choice for treatment. Regular monitoring can aid in establishing temporal trends. Future studies should include larger sample sizes and employ next-generation sequencing to further investigate multidrug-resistant strains. Full article
(This article belongs to the Special Issue Antibiotics Resistance in Animals and the Environment, 2nd Edition)
Show Figures

Figure 1

19 pages, 4316 KiB  
Article
BrnQ Branched-Chain Amino Acid Transporters Influence Toxin Production by, but Not Growth of, Clostridium perfringens Type A Strain ATCC3624
by Jihong Li, Iman Mehdizadeh Gohari, Isabella Zhang and Bruce A. McClane
Toxins 2025, 17(4), 187; https://doi.org/10.3390/toxins17040187 - 8 Apr 2025
Viewed by 320
Abstract
By producing alpha toxin (PLC) and perfringolysin O (PFO), Clostridium perfringens type A strains are the most common cause of traumatic gas gangrene. C. perfringens cannot synthesize branched-chain amino acids (BCAAs), so BCAA transporters are essential for C. perfringens growth and survival. C. [...] Read more.
By producing alpha toxin (PLC) and perfringolysin O (PFO), Clostridium perfringens type A strains are the most common cause of traumatic gas gangrene. C. perfringens cannot synthesize branched-chain amino acids (BCAAs), so BCAA transporters are essential for C. perfringens growth and survival. C. perfringens type A strain ATCC3624 encodes the BrnQ1, BrnQ2, and BrnQ3 BCAA transporters. RT-PCR analyses showed that, with increasing culture time in TY broth, brnQ2 and brnQ3 expression levels remained stable but brnQ1 expression levels declined. Single null mutants unable to produce one of the BrnQ proteins grew and survived similarly as wild type. However, these mutants all showed altered PLC production, especially in the early culture stage, and those effects were reversible by complementation. Therefore, the presence of BrnQ proteins impacts toxin production levels, even though they are not necessary for growth. Interestingly, a triple mutant that was unable to produce any BrnQ protein also grew similarly as ATCC3624. Since BCAA uptake is essential for C. perfringens, this strain must produce another (still to be identified) BCAA transporter. Full article
Show Figures

Figure 1

17 pages, 1282 KiB  
Article
Static and Dynamic Assessments of a Sulfur-Triglyceride Composite for Antimicrobial Surface Applications
by Shalini K. Wijeyatunga, Perla Y. Sauceda-Oloño, Nawoda L. Kapuge Dona, Bárbara G. S. Guinati, Katelyn M. Derr, Katelyn A. Tisdale, Ashlyn D. Smith, Andrew G. Tennyson and Rhett C. Smith
Molecules 2025, 30(7), 1614; https://doi.org/10.3390/molecules30071614 - 4 Apr 2025
Viewed by 424
Abstract
Over 80 MT of elemental sulfur, a byproduct of fossil fuel desulfurization, are generated annually. This has spurred the development of high sulfur content materials (HSMs) via inverse vulcanization as a productive pathway towards sulfur utilization. In this study, we evaluate the antimicrobial [...] Read more.
Over 80 MT of elemental sulfur, a byproduct of fossil fuel desulfurization, are generated annually. This has spurred the development of high sulfur content materials (HSMs) via inverse vulcanization as a productive pathway towards sulfur utilization. In this study, we evaluate the antimicrobial performance of SunBG90, an HSM made from brown grease and sulfur, as tiles or infused into fabric squares. The static antimicrobial activity of SunBG90 tiles was assessed, revealing excellent efficacy against Gram-positive bacteria, with reductions of 96.84% for Staphylococcus aureus and 91.52% for Listeria monocytogenes. The tiles also exhibited strong antifungal activity, reducing Candida auris by 96.20% and mold (fumigatus) by 83.77%. In contrast, efficacy against Gram-negative bacteria was more variable, with moderate reductions for Escherichia coli (61.10%) and Salmonella enteritidis (62.15%), lower activity against Campylobacter jejuni and Salmonella typhi, and no effect on Clostridium perfringens. Under dynamic conditions, SunBG90-infused fabrics achieved a near-complete inhibition of L. monocytogenes (99.91%) and high reduction of E. coli (98.49%), along with a 96.24% inhibition of Candida auris. These results highlight the potential and limitations of SunBG90 for antimicrobial applications, emphasizing the need for further optimization to achieve consistent broad-spectrum activity. Full article
(This article belongs to the Special Issue Organosulfur and Organoselenium Chemistry II)
Show Figures

Figure 1

18 pages, 3848 KiB  
Article
Processing of Clostridium perfringens Enterotoxin by Intestinal Proteases
by Archana Shrestha, Jessica L. Gonzales, Juliann Beingesser, Francisco A. Uzal and Bruce A. McClane
Toxins 2025, 17(4), 170; https://doi.org/10.3390/toxins17040170 - 1 Apr 2025
Viewed by 493
Abstract
C. perfringens type F isolates are a leading cause of food poisoning and antibiotic-associated diarrhea. Type F isolate virulence requires production of C. perfringens enterotoxin [CPE], which acts by forming large pore complexes in host cell plasma membranes. During GI disease, CPE is [...] Read more.
C. perfringens type F isolates are a leading cause of food poisoning and antibiotic-associated diarrhea. Type F isolate virulence requires production of C. perfringens enterotoxin [CPE], which acts by forming large pore complexes in host cell plasma membranes. During GI disease, CPE is produced in the intestines when type F strains undergo sporulation. The toxin is then released into the intestinal lumen when the mother cell lyses at the completion of sporulation. Once present in the lumen, CPE encounters proteases. This study examined the in vitro, ex vivo, and in vivo processing of CPE by intestinal proteases and the effects of this processing on CPE activity. Results using purified trypsin or mouse intestinal contents detected the rapid cleavage of CPE to a major band of ~32 kDa and studies with Caco-2 cells showed that this processed CPE still forms large complexes and retains cytotoxic activity. When mouse small intestinal loops were challenged with CPE, the toxin caused intestinal histologic damage, despite rapid proteolytic processing of most CPE to 32 kDa within 15 min. Intestinal large CPE complexes became more stable with longer treatment times. These results indicate that CPE processing involving trypsin occurs in the intestines and the processed toxin retains enterotoxicity. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

14 pages, 7496 KiB  
Article
The Mechanistic Target of Rapamycin Mediates Clostridium perfringens-Induced Chicken Necrotic Enteritis Attenuated by Secondary Bile Acid Deoxycholic Acid
by Mohit Bansal, Tahrir Alenezi, Ying Fu, Janashrit Shrestha, Ayidh Almansour, Hong Wang, Anamika Gupta, Rohana Liyanage and Xiaolun Sun
Microorganisms 2025, 13(4), 762; https://doi.org/10.3390/microorganisms13040762 - 27 Mar 2025
Viewed by 390
Abstract
Clostridium perfringens is a prevalent gut bacterial pathogen in humans and animals. This study investigated the role of the mechanistic targets of rapamycin (mTOR) and deoxycholic acid (DCA) on C. perfringens intestinal infection. Chickens were sequentially infected with Eimeria maxima and received the [...] Read more.
Clostridium perfringens is a prevalent gut bacterial pathogen in humans and animals. This study investigated the role of the mechanistic targets of rapamycin (mTOR) and deoxycholic acid (DCA) on C. perfringens intestinal infection. Chickens were sequentially infected with Eimeria maxima and received the mTOR inhibitor rapamycin and DCA. C. perfringens-induced necrotic enteritis (NE) was evaluated using body weight gain (BWG), histopathology, bile acids, pathogen colonization, cell infiltration and death, and gene expression. The significant difference of p < 0.05 was analyzed by one-way ANOVA and multiple comparisons. Notably, rapamycin strongly reduced the subclinical and clinical NE histopathologies. DCA and DCA combined with rapamycin alleviated clinical NE and BWG loss. Rapamycin, DCA, and DCA + rapamycin attenuated bile acid reduction in NE birds, and they also reduced immune cell infiltration into the intestinal lamina propria as well as immune cell migration in vitro. At molecular levels, DCA and DCA + rapamycin reduced proinflammatory IFNγ, MMP9, IL23, and IL17 gene expression. Rapamycin, DCA, and DCA + rapamycin reduced NE-induced intestinal cell apoptosis. Together, these results suggest that mTOR signaling mediates C. perfringens-induced ileitis, and combining mTOR inhibition and DCA improves the intervention efficacy against NE ileitis and BWG loss. Full article
(This article belongs to the Special Issue Epidemiology, Prevention and Control of Foodborne Microbial Pathogens)
Show Figures

Figure 1

13 pages, 439 KiB  
Article
The Impact of Allicin on the Growth of Clostridium spp. in the Digestive Track of Quails
by Aleksandra Makuch, Monika Ziomek, Magdalena Sapała, Kamil Drabik, Justyna Batkowska, Piotr Domaradzki, Ewelina Patyra and Tomasz Grenda
Animals 2025, 15(7), 906; https://doi.org/10.3390/ani15070906 - 21 Mar 2025
Viewed by 414
Abstract
Allicin is a chemically complex bioactive compound synthesized in many varieties of garlic. The wide range of biological properties of allicin provides the basis for its potential use as an alternative to antibiotic growth promoters that are currently prohibited in farm animal breeding. [...] Read more.
Allicin is a chemically complex bioactive compound synthesized in many varieties of garlic. The wide range of biological properties of allicin provides the basis for its potential use as an alternative to antibiotic growth promoters that are currently prohibited in farm animal breeding. Among the many benefits resulting from the use of allicin in animal breeding, especially poultry, its modulating effect on intestinal microbiota, which includes the anaerobic spore-forming bacteria of the genus Clostridium spp., seems to be important. The material for this study consists of intestinal content collected from the caecums of Japanese quails (Coturnix japonica). Culture methods were used to isolate the strains, and the obtained isolates were identified based on their phenotypic characteristics. In addition, PCR methods were used for the detection of the ntnh gene-encoding non-haemagglutinin component of botulinum neurotoxins (BoNTs), the detection of individual genes responsible for the production of major toxins by Clostridium perfringens, and the amplification of conservative 16S rDNA genes. The 16S rDNA amplicons were subsequently submitted to Sanger sequencing. The obtained sequences were analyzed using the Basic Local Alignment Search Tool (BLAST). The ntnh gene was not found in the genetic material of the isolated strains. Among the isolates suspected of belonging to the Clostridium perfringens species, the plc gene determining the production of the alpha toxin was detected, which justifies the classification of the strains into toxotype A. The Sanger sequencing results confirm the presence of mainly saprophytic species in the studied material. The statistical analysis indicated a statistically significant reduction in the level of Clostridium spp., obtained by the use of an appropriate dose of allicin. The presented research results indicate the significant impact of an appropriate dose of allicin on reducing the occurrence of anaerobic intestinal microbiota, while providing important information on the potential application of this compound in animal production in the future. Full article
(This article belongs to the Special Issue Intervention Strategies to Control Foodborne Pathogens in Poultry)
Show Figures

Figure 1

19 pages, 2966 KiB  
Article
Anti-Infective Screening of Selected Nine Cannabinoids Against Clostridium perfringens and Influenza A (H5N1) Neuraminidases, and SARS-CoV-2 Main Protease and Spike Protein Interactions
by Thanet Pitakbut and Oliver Kayser
Curr. Issues Mol. Biol. 2025, 47(3), 185; https://doi.org/10.3390/cimb47030185 - 12 Mar 2025
Viewed by 826
Abstract
Recently, cannabinoids have gained scientific interest as a promising anti-infective natural product class, as reported in several studies. However, the existing knowledge is mainly limited to common cannabinoids like THC and CBD. Therefore, this study aims to fill the knowledge gap by investigating [...] Read more.
Recently, cannabinoids have gained scientific interest as a promising anti-infective natural product class, as reported in several studies. However, the existing knowledge is mainly limited to common cannabinoids like THC and CBD. Therefore, this study aims to fill the knowledge gap by investigating the anti-infective potential of nine selected cannabinoids (both common and rare cannabinoids): THC, CBD, CBC, CBE, CBF, CBG, CBL, CBN, and CBT against Clostridium perfringens and Influenza A (H5N1) neuraminidases and SARS-CoV-2 main protease and spike protein–human ACE2 interaction using a standard in vitro biochemical enzyme-binding assay. As a result, to the authors’ knowledge, this study is the first to demonstrate the most promising effect of CBG over others in its class against C. perfringens and influenza A (H5N1) neuraminidases and SARS-CoV-2 main protease and spike protein–human ACE2 interaction. In comparison to CBG, CBD and THC were the second and third most promising candidates. Meanwhile, the other derivatives, such as CBC, CBE, CBF, CBL, CBN, and CBT, showed at least one anti-infective effect. Our findings during the early drug discovery process indicate a promising anti-infective potential of cannabinoids, which can be considered for further investigation in a biological setup. Full article
(This article belongs to the Special Issue Natural Product Drug Activity and Biomedicine Application)
Show Figures

Figure 1

24 pages, 3754 KiB  
Article
Comprehensive Phenotypic Characterization and Genomic Analysis Unveil the Probiotic Potential of Bacillus velezensis K12
by Yingying Tang, Tian Li, Yihong Huang, Liangliang Wu, Xiaobo Liu, Ruichao Yue and Jianmin Yuan
Animals 2025, 15(6), 798; https://doi.org/10.3390/ani15060798 - 11 Mar 2025
Viewed by 636
Abstract
Bacillus spp. have emerged as pivotal sources of probiotic preparations, garnering considerable attention in recent years owing to their vigorous bacteriostatic activity and antimicrobial resistance. This study aimed to investigate these probiotic characteristics in depth and verify the safety of Bacillus velezensis K12, [...] Read more.
Bacillus spp. have emerged as pivotal sources of probiotic preparations, garnering considerable attention in recent years owing to their vigorous bacteriostatic activity and antimicrobial resistance. This study aimed to investigate these probiotic characteristics in depth and verify the safety of Bacillus velezensis K12, a strain isolated from broiler intestine. The K12 strain was identified as Bacillus velezensis based on its morphology and 16S rDNA sequence homology analysis. Subsequently, B. velezensis K12 was evaluated for acid resistance, bile salt resistance, gastrointestinal tolerance, drug sensitivity, and antimicrobial activity. Additionally, whole-genome sequencing technology was employed to dissect its genomic components further, aiming to explore its potential applications as a probiotic strain. B. velezensis K12 was sensitive to six antibiotics and had acid tolerance. Furthermore, it showed potent antimicrobial activity against a wide range of pathogenic bacteria, including Escherichia coli (E. coli), Staphylococcus aureus, Salmonella, Clostridium perfringens, Bacillus cereus, and Vibrio parahaemolyticus. The complete genome sequencing of B. velezensis K12 revealed a genomic length of 3,973,105 base pairs containing 4123 coding genes, among which 3973 genes were functionally annotated. The genomic analysis identified genes associated with acid and bile tolerance, adhesion, antioxidants, and secondary metabolite production, whereas no functional genes related to enterotoxins or transferable antibiotic resistance were detected, thereby confirming the probiotic properties of B. velezensis K12. B. velezensis K12 exhibits broad-spectrum bacteriostatic activity and in vitro safety, positioning it as a potential candidate strain for developing probiotic Bacillus preparations. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop