Detailed Structural Characterization of the Lipooligosaccharide from the Extracellular Membrane Vesicles of Shewanella vesiculosa HM13
Abstract
:1. Introduction
2. Results and Discussion
2.1. LOS Isolation and Chemical Analysis
2.2. Structural Characterization of the Lipid A from Cells and EMVs
2.3. De-O-acylation and de-N-acylation of the LOS from the EMVs
2.4. Possible Involvement of LOS in Interaction of P49 with EMVs and the Cells
3. Materials and Methods
3.1. Preparation of the Cells and EMVs of S. vesiculosa HM13
3.2. LOS Isolation
3.3. DOC-PAGE Analysis
3.4. Chemical Analysis
3.5. Deacylation of the LOS
3.6. Mass Spectrometry Analysis
3.7. NMR Spectroscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schwechheimer, C.; Kuehn, M.J. Outer-membrane vesicles from Gram-negative bacteria: Biogenesis and functions. Nat. Rev. Microbiol. 2015, 13, 605–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkinson, S.C. Composition and structure of bacterial lipopolysaccharides. In Surface Carbohydrates of the Procaryotic Cell; Sutherland, I.W., Ed.; Academic Press Inc.: New York, NY, USA, 1977; pp. 97–105. [Google Scholar]
- Kulp, A.; Kuehn, M.J. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 2010, 64, 163–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorby, Y.; McLean, J.; Korenevsky, A.; Rosso, K.; El-Naggar, M.Y.; Beveridge, T.J. Redox-reactive membrane vesicles produced by Shewanella. Geobiology 2008, 6, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Mashburn, L.M.; Whiteley, M. Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 2005, 437, 422–425. [Google Scholar] [CrossRef]
- Anand, D.; Chaudhuri, A. Bacterial outer membrane vesicles: New insights and applications. Mol. Membr. Biol. 2016, 33, 125–137. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; Kesavan, D.; Wan, J.; Abdelaziz, M.H.; Su, Z.; Xu, H. Bacterial outer membrane vesicles, a potential vaccine candidate in interactions with host cells based. Diagn. Pathol. 2018, 13, 95. [Google Scholar] [CrossRef] [Green Version]
- Frias, A.; Manresa, A.; de Oliveira, E.; López-Iglesias, C.; Mercadé, E. Membrane vesicles: A common feature in the extracellular matter of cold-adapted Antarctic bacteria. Microb. Ecol. 2010, 59, 476–486. [Google Scholar] [CrossRef]
- Pérez-Cruz, C.; Mercadé, E. Outer membrane vesicles from cold-adapted Antarctic bacteria. In Recent Advances in Pharmaceutical Sciences IV; Muñoz-Torrero, D., Vázquez-Carrera, M., Estelrich, J., Eds.; Research Signpost: Kerala, India, 2014; pp. 55–72. [Google Scholar]
- Chen, C.; Kawamoto, J.; Kawai, S.; Tame, A.; Kato, C.; Imai, T.; Kurihara, T. Isolation of a novel bacterial strain capable of producing abundant extracellular membrane vesicles carrying a single major cargo protein and analysis of its transport mechanism. Front. Microbiol. 2020, 10, 3001. [Google Scholar] [CrossRef]
- Kamasaka, K.; Kawamoto, J.; Chen, C.; Yokoyama, F.; Imai, T.; Ogawa, T.; Kurihara, T. Genetic characterization and functional implications of the gene cluster for selective protein transport to extracellular membrane vesicles of Shewanella vesiculosa HM13. Biochem. Biophys. Res. Commun. 2020, (article in press). [Google Scholar] [CrossRef]
- Alexander, C.; Rietschel, E.T. Bacterial lipopolysaccharides and innate immunity. J. Endotoxin Res. 2001, 7, 167–202. [Google Scholar] [CrossRef]
- Caroff, M.; Karibian, D. Structure of bacterial lipopolysaccharides. Carbohydr. Res. 2003, 338, 2431–2444. [Google Scholar] [CrossRef] [PubMed]
- Casillo, A.; Di Guida, R.; Carillo, S.; Chen, C.; Kamasaka, K.; Kawamoto, J.; Kurihara, T.; Corsaro, M.M. Structural elucidation of a novel lipooligosaccharide from the cold-adapted bacterium OMVs producer Shewanella sp. HM13. Mar. Drugs 2019, 17, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nevot, M.; Deroncelé, V.; Messner, P.; Guinea, J.; Mercadé, E. Characterization of outer membrane vesicles released by the psychrotolerant bacterium Pseudoalteromonas antarctica NF. Environ. Microbiol. 2006, 8, 1523–1533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galanos, C.; Lüderitz, O.; Westphal, O. New Method for the extraction of R Lipopolysaccharides. Eur. J. Biochem. 1969, 9, 245–249. [Google Scholar] [CrossRef]
- Silipo, A.; Leone, S.; Molinaro, A.; Sturiale, L.; Garozzo, D.; Nazarenko, E.L.; Gorshkova, R.P.; Ivanova, E.P.; Lanzetta, R.; Parrilli, M. Complete structural elucidation of a novel lipooligosaccharide from the outer membrane of the marine bacterium Shewanella pacifica. Eur. J. Org. Chem. 2005, 11, 2281–2291. [Google Scholar] [CrossRef]
- Wishart, D.S.; Knox, C.; Guo, A.C.; Eisner, R.; Young, N.; Gautam, B.; Hau, D.D.; Psychogios, N.; Dong, E.; Bouatra, S.; et al. HMDB: A knowledgebase for the human metabolome. Nucleic Acids Res. 2009, 37, 603–610. [Google Scholar] [CrossRef]
- Laemmli, U.K. Most commonly used discontinuous buffer system for SDS electrophoresis. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Tsai, C.M.; Frasch, C.E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal. Biochem. 1982, 119, 115–119. [Google Scholar] [CrossRef]
- Holst, O. De-acylation of lipopolysaccharides and isolation of oligosaccharide phosphates. In Bacterial Toxins: Methods and Protocols; Methods in Molecular Biology; Holst, O., Ed.; Humana Press: Totowa, NJ, USA, 2000; Volume 145, pp. 345–353. [Google Scholar]
- Casillo, A.; Ståhle, J.; Parrilli, E.; Sannino, F.; Mitchell, D.E.; Pieretti, G.; Gibson, M.I.; Marino, G.; Lanzetta, R.; Parrilli, M.; et al. Structural characterization of an all-aminosugar-containing capsular polysaccharide from Colwellia psychrerythraea 34H. Anton Leeuw Int. J. 2017, 110, 1377–1387. [Google Scholar] [CrossRef]
- Casillo, A.; Ziaco, M.; Lindner, B.; Parrilli, E.; Schwudke, D.; Holgado, A.; Verstrepen, L.; Sannino, F.; Beyaert, R.; Lanzetta, R.; et al. Unusual lipid A from a cold adapted bacterium: Detailed structural characterization. ChemBioChem 2017, 18, 1845–1854. [Google Scholar] [CrossRef]
- Haurat, M.F.; Aduse-Opoku, J.; Rangarajan, M.; Dorobantu, L.; Gray, M.R.; Curtis, M.A. Selective sorting of cargo proteins into bacterial membrane vesicles. J. Biol. Chem. 2011, 286, 1269–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Clarke, A.J.; Beveridge, T.J.A. major autolysin of Pseudomonas aeruginosa: Subcellular distribution, potential role in cell growth and division and secretion in surface membrane vesicles. J. Bacteriol. 1996, 178, 2479–2488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elhenawy, W.; Debelyy, M.O.; Feldman, M.F. Preferential packing of acidic glycosidases and proteases into Bacteroides outer membrane vesicles. mBio 2014, 5, e00909–e00914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Residue | H1 C1 | H2 C2 | H3 C3 | H4 C4 | H5 C5 | H6a,b C6 | H7a,b C7 | H8a,b C8 |
---|---|---|---|---|---|---|---|---|
A α-GlcNp1P | 5.65 92.0 1.73 | 3.35 55.9 | 3.91 71.5 | 3.46 71.2 | 4.21 73.3 | 3.93–4.36 70.3 | ||
B α-Glcp | 5.43 98.9 | 3.60 72.7 | 3.77 73.8 | 3.50 70.6 | 4.05 73.1 | 3.77 72.3 | ||
C α-l,d-Hepp | 5.37 98.6 | 3.90 82.3 | 4.11 70.5 | 3.82 68.5 | 3.91 75.2 | 4.07 70.5 | 3.80–3.75 64.3 | |
D α-d,d-Hepp | 5.23 101.6 | 4.09 79.6 | 4.17 71.7 | 3.84 68.4 | 4.07 74.6 | 4.35 78.1 | 4.03 71.0 | |
E α-l,d-Hepp | 5.12 103.5 | 4.08 71.3 | 3.85 72.0 | 3.87 67.7 | 3.69 73.9 | 4.06 70.5 | 3.82–3.69 64.6 | |
F α-Glcp | 5.08 102.1 | 3.62 73.1 | 3.74 74.2 | 3.50 70.8 | 4.04 73.2 | 3.82 62.1 | ||
G β-GlcNp4P | 4.89 100.8 | 3.07 57.0 | 3.80 73.6 | 3.85 74.2 3.47 | 3.76 75.5 | 3.53 63.5 | ||
H β-Glcp | 4.66 105.1 | 3.50 77.3 | 3.59 75.9 | 3.44 71.1 | 3.50 78.4 | 3.76 62.3 | ||
I α-Kdo8Np4P | n.d. | - 101.2 | 2.03–2.28 6.4 3.77 | 4.54 70.6 | 4.36 76.3 | 3.93 75.0 | 4.05 67.1 | 3.21–3.54 44.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Guida, R.; Casillo, A.; Yokoyama, F.; Kawamoto, J.; Kurihara, T.; Corsaro, M.M. Detailed Structural Characterization of the Lipooligosaccharide from the Extracellular Membrane Vesicles of Shewanella vesiculosa HM13. Mar. Drugs 2020, 18, 231. https://doi.org/10.3390/md18050231
Di Guida R, Casillo A, Yokoyama F, Kawamoto J, Kurihara T, Corsaro MM. Detailed Structural Characterization of the Lipooligosaccharide from the Extracellular Membrane Vesicles of Shewanella vesiculosa HM13. Marine Drugs. 2020; 18(5):231. https://doi.org/10.3390/md18050231
Chicago/Turabian StyleDi Guida, Rossella, Angela Casillo, Fumiaki Yokoyama, Jun Kawamoto, Tatsuo Kurihara, and Maria Michela Corsaro. 2020. "Detailed Structural Characterization of the Lipooligosaccharide from the Extracellular Membrane Vesicles of Shewanella vesiculosa HM13" Marine Drugs 18, no. 5: 231. https://doi.org/10.3390/md18050231
APA StyleDi Guida, R., Casillo, A., Yokoyama, F., Kawamoto, J., Kurihara, T., & Corsaro, M. M. (2020). Detailed Structural Characterization of the Lipooligosaccharide from the Extracellular Membrane Vesicles of Shewanella vesiculosa HM13. Marine Drugs, 18(5), 231. https://doi.org/10.3390/md18050231