Halosmysin A, a Novel 14-Membered Macrodiolide Isolated from the Marine-Algae-Derived Fungus Halosphaeriaceae sp.
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Fungal Material
3.3. Culturing and Isolation of Metabolites
3.4. Alkaline Hydrolysis of 1
3.5. Assay for Cytotoxicity
3.6. The Origin of the Cell Lines
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nicoletti, R.; Vinale, F. Bioactive Compounds from Marine-Derived Aspergillus, Penicillium, Talaromyces and Trichoderma Species. Mar. Drugs 2018, 16, 408. [Google Scholar] [CrossRef] [Green Version]
- Imhoff, J.F. Natural Products from Marine Fungi—Still an Underrepresented Resource. Mar. Drugs 2016, 14, 19. [Google Scholar] [CrossRef]
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2017, 34, 235–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blunt, J.W.; Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural 369 products. Nat. Prod. Rep. 2018, 35, 8–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, T.; Kitada, H.; Kajimoto, T.; Numata, A.; Tanaka, R. The relationship between the CD Cotton effect and the absolute configuration of FD-838 and its seven stereoisomers. J. Org. Chem. 2010, 75, 4146–4153. [Google Scholar] [CrossRef] [PubMed]
- MacMillan, J.; Simpson, T.J. Fungal Products. Part V. The absolute stereochemistry of colletodiol and the structures of related metabolites of Colletotrichum capsici. J. Chem. Soc. Perkin Trans. 1 1973, 1487–1493. [Google Scholar] [CrossRef]
- Ronald, R.C.; Gurusiddaiah, S. Grahamimycin A1: A novel dilactone antibiotic from Cytospora. Tetrahedron Lett. 1980, 21, 681–684. [Google Scholar] [CrossRef]
- Gurusiddaiah, S.; Ronald, R.C. Grahamimycins: Antibiotics from Cytospora sp. Ehrenb. W.F.P.L. 13A. Antimicrob. Agents Chemother. 1981, 19, 681–684. [Google Scholar] [CrossRef] [Green Version]
- Hanson, K.; O’neill, J.A.; Simpson, T.J.; Willis, C.L. Bartanol and bartallol, novel macrodiolides from Cytospora sp. ATCC 20502. J. Chem. Soc. Perkin Trans. 1 1994, 2493–2497. [Google Scholar] [CrossRef]
- Höller, U.; König, G.M.; Wright, A.D. A new tyrosine kinase inhibitor from a marine isolate of Ulocladium botrytis and new metabolites from the marine fungi Asteromyces cruciatus and Varicosporina ramulosa. Eur. J. Org. Chem. 1999, 2949–2955. [Google Scholar] [CrossRef]
- Grabley, S.; Hammann, P.; Thiericke, R.; Wink, J. Secondary metabolites by Chemical screening. 21 Clonostachydiol, a novel anthelmintic macrolide from the fungus Clonostachys cylindrospora (strain FH-A 6607). J. Antibiot. 1992, 46, 343–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, G.; Mitova, M.I.; Ellis, G.; van der Sar, S.; Phipps, R.K.; Blunt, J.W.; Cummings, N.J.; Cole, A.L.J.; Munro, M.H.G. Bioactivity profiling using HPLC/microtiter-plate analysis: Application to a New Zealand marine alga-derived fungus, Gliocladium sp. J. Nat. Prod. 2006, 69, 1007–1010. [Google Scholar] [CrossRef] [PubMed]
- Ojima, K.; Yangchum, A.; Laksanacharoen, P.; Tasanathai, K.; Tanakitpipattana, D.; Tokuyama, H.; Isaka, M. Cordybislactone, a stereoisomer of the 14-membered bislactoneclonostachydiol, from the hopper pathogenic fungus Cordyceps sp. BCC 49294: Revision of the absolute configuration of clonostachydiol. J. Antibiot. 2018, 71, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Isaka, M.; Yangchum, A.; Auncharoen, P.; Srichomthong, K.; Srikitikulchai, P. Ring B aromatic norpimarane glucoside from a Xylaria sp. J. Nat. Prod. 2011, 74, 300–302. [Google Scholar] [CrossRef]
- Han, J.; Su, Y.; Xu, Y.; Huo, X.; She, X. Asymmetric total synthesis and revision of the absolute configuration of 4-Keto-clonostachydiol. J. Org. Chem. 2009, 74, 3930–3932. [Google Scholar] [CrossRef] [PubMed]
- Berg, A.; Notni, J.; Dorfelt, H.; Grafe, U. Acremonol and acremodiol, new fungal bislactones. J. Antibiot. 2002, 55, 660–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.T.; Wei, Y.J.; Ge, H.M.; Tan, R.X. Acaulide, an osteogenic macrodiolide from Acaulium sp. H-JQSF, an isopod-associated fungus. Org. Lett. 2018, 20, 1007–1010. [Google Scholar] [CrossRef]
- Amstutz, R.; Hungerbühler, E.; Seebach, D. Revidierte struktur des makrodiolids colletodiol. Helv. Chim. Acta 1981, 6, 1796–1799. [Google Scholar] [CrossRef]
- Khomane, N.B.; Kumar, R.N.; Mali, P.R.; Shirsat, P.K.; Meshram, H.M. Formal synthesis of 14-membered unsymmetrical bis-macrolactone, (–)-colletodiol. Tetrahedron Lett. 2017, 58, 4687–4690. [Google Scholar] [CrossRef]
- Rao, A.V.R.; Murthy, V.S.; Sharma, G.V.M. Studies directed towards the synthesis of clonostachydiol-Part I. Tetrahedron Lett. 1995, 36, 139–142. [Google Scholar] [CrossRef]
- Rao, A.V.R.; Murthy, V.S.; Sharma, G.V.M. The first synthesis and determination of absolute stereochemistry of clonostachydiol-Part II. Tetrahedron Lett. 1995, 36, 143–146. [Google Scholar] [CrossRef]
- Yadav, J.S.; Swamy, T.; Subba Reddy, B.V. A stereoselective approach for the total synthesis of clonostachydiol. Synlett 2008, 2773–2776. [Google Scholar] [CrossRef]
- Ramulu, U.; Ramesh, D.; Rajaram, S.; Reddy, S.P.; Venkatesham, K.; Venkateswarlu, Y. Stereoselective total synthesis of clonostachydiol. Tetrahedron Asymmetry 2012, 23, 117–123. [Google Scholar] [CrossRef]
- Chu, M.; Mierzwa, R.; Truumees, I.; Gentile, F.; Patel, M.; Gullo, V.; Chan, T.-M.; Puar, M.S. Two novel diketopiperazines isolated from the fungus Tolypocladium sp. Tetrahedron Lett. 1993, 34, 7537–7540. [Google Scholar] [CrossRef]
- Usami, Y.; Aoki, S.; Hara, T.; Numata, A. New dioxopiperazine metabolites from a Fusarium species separated from a marine alga. J. Antibiot. 2002, 55, 655–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guimaraes, D.O.; Borges, W.S.; Vieira, N.J.; de Oliveira, L.F.; da Silva, C.H.T.P.; Lopes, N.P.; Dias, L.G.; Duran-Patron, R.; ColladoI., G.; Pupo, M.T. Diketopiperazines produced by endophytic fungi found in association with two Asteraceae species. Phytochemisry 2010, 71, 1423–1429. [Google Scholar] [CrossRef] [PubMed]
- Salvatore, M.M.; Nicoletti, R.; DellaGreca, M.; Andolfi, A. Occurrence and properties of thiosilvatins. Mar. Drugs 2019, 17, 664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, T.J.; Stevenson, G.I. Studies of polyketide chain-assembly processes: Origins of the hydrogen and oxygen atoms in colletodiol. J. Chem. Soc. Chem. Commun. 1985, 1822–1824. [Google Scholar] [CrossRef]
- O’neill, J.A.; Simpson, T.J.; Willis, C.L. Biosynthesis of colletodiol and related polyketide macrodiolides in Cytospora sp. ATCC 20502: Synthesis and metabolism of advanced intermediates. J. Chem. Soc. Chem. Commun. 1993, 738–740. [Google Scholar] [CrossRef]
Position | δH a | J/Hz | δC | Position | δH a | J/Hz | δC | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
2 | 165.6 | (s) | 1’ (NH) | 5.73 | s | ||||||
3 | 5.64 | d | 16.2 (4) | 125.3 | (d) | 2’ | 165.7 | (s) | |||
4 | 6.78 | ddd | 16.2 (3), 10.2 (5β), 6.0 (5α) | 143.5 | (d) | 3’ | 68.6 | (s) | |||
5α | 2.48 | ddd | 13.2 (5β), 6.0 (4), 1.2 (6) | 39.0 | (t) | 4’ (NH) | 5.95 | s | |||
5β | 2.23 | ddd | 13.2 (5α), 13.2 (6), 10.2 (4) | 5’ | 170.9 | (s) | |||||
6 | 5.30 | dqd | 13.2 (5β), 6.0 (15), 1.2 (5α) | 69.9 | (d) | 6’ | 63.7 | (s) | |||
8 | 168.9 | (s) | 7’A | 2.83 | d | 14.4 (7’B) | 33.0 | (t) | |||
9 | 3.38 | d | 3.0 (10) | 51.9 | (d) | 7’B | 3.88 | d | 14.4 (7’A) | ||
10 | 4.57 | d | 3.0 (9) | 51.0 | (d) | 8’ | 125.5 | (s) | |||
11 | 208.2 | (s) | 9’ | 6.83 | d | 9.0 (10’) | 131.7 | (d) | |||
12 | 4.55 | d | 7.8 (13α) | 75.6 | (d) | 10’ | 7.10 | d | 9.0 (9’) | 115.2 | (d) |
13α | 1.96 | ddd | 14.4 (13β), 7.8 (12), 3.0 (14) | 37.4 | (t) | 11’ | 158.5 | (s) | |||
13β | 2.64 | ddd | 14.4 (13α), 12.0 (14), 1.2 (12) | 12’ | 4.47 | d | 7.2 (13’) | 64.8 | (t) | ||
14 | 5.23 | dqd | 12.0 (13β), 6.0 (16), 3.0 (13α) | 65.5 | (d) | 13’ | 5.47 | br t | 7.2 (12’) | 119.5 | (d) |
15 | 1.44 | d | 6.0 (6) | 20.9 | (q) | 14’ | 138.4 | (s) | |||
16 | 1.26 | d | 6.0 (14) | 20.2 | (q) | 15’ | 1.79 | s | 25.8 | (q) | |
12-OH | Not observed | 16’ | 1.74 | s | 18.2 | (q) | |||||
S-CH3 | 2.25 | s | 13.0 | (q) |
Compounds | Cell Line P388 | Cell Line HL-60 | Cell Line L1210 |
---|---|---|---|
IC50 (μM) a | IC50 (μM) a | IC50 (μM) a | |
1 | 6.8 ± 1.1 | 2.2 ± 3.1 | 11.7 ± 2.8 |
2 | >300 | >300 | >300 |
DMSO (control) | >300 | >300 | >300 |
5-fluorouracil b | 3.9 ± 1.8 | 0.2 ± 2.5 | 0.2 ± 1.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamada, T.; Kogure, H.; Kataoka, M.; Kikuchi, T.; Hirano, T. Halosmysin A, a Novel 14-Membered Macrodiolide Isolated from the Marine-Algae-Derived Fungus Halosphaeriaceae sp. Mar. Drugs 2020, 18, 320. https://doi.org/10.3390/md18060320
Yamada T, Kogure H, Kataoka M, Kikuchi T, Hirano T. Halosmysin A, a Novel 14-Membered Macrodiolide Isolated from the Marine-Algae-Derived Fungus Halosphaeriaceae sp. Marine Drugs. 2020; 18(6):320. https://doi.org/10.3390/md18060320
Chicago/Turabian StyleYamada, Takeshi, Haruka Kogure, Minami Kataoka, Takashi Kikuchi, and Tomoya Hirano. 2020. "Halosmysin A, a Novel 14-Membered Macrodiolide Isolated from the Marine-Algae-Derived Fungus Halosphaeriaceae sp." Marine Drugs 18, no. 6: 320. https://doi.org/10.3390/md18060320
APA StyleYamada, T., Kogure, H., Kataoka, M., Kikuchi, T., & Hirano, T. (2020). Halosmysin A, a Novel 14-Membered Macrodiolide Isolated from the Marine-Algae-Derived Fungus Halosphaeriaceae sp. Marine Drugs, 18(6), 320. https://doi.org/10.3390/md18060320