Botulinum Toxin-Chitosan Nanoparticles Prevent Arrhythmia in Experimental Rat Models
Abstract
:1. Introduction
2. Results
2.1. Calcium Chloride-Induced Arrhythmia
2.2. Barium Chloride-Induced Arrhythmia
2.3. Electrical Stimulation
3. Discussion
4. Materials and Methods
4.1. Test Substances
4.2. Animals
4.3. Anesthesia
4.4. ECG Analysis
4.5. Subepicardial Injections
4.6. Assessment of the Antiarrhythmic Effect
4.7. Calcium Chloride-Induced Arrhythmia
- Group 1. Saline control (physiological saline, 0.9%);
- Group 2. Verapamil, intravenously, 2 µg/kg;
- Group 3. BoNT/A1, intravenously, 5 U/kg;
- Group 4. BoNT/A1, subepicardially, 5 U/kg;
- Group 5. Chitosan nanoparticles, subepicardially, 0.014 mg/kg;
- Group 6. BTN, subepicardially, 5 U(BoNT/A1)/kg.
4.8. Barium Chloride-Induced Arrhythmia
- Group 1. Saline control (physiological saline, 0.9%);
- Group 2. Amiodarone, 5 mg/kg;
- Groups 3 to 7. Subepicardial injection of BTN (0.5, 1, 2, 4 and 5 U(BoNT/A1)/kg).
4.9. Electrical Stimulation
4.10. Statistical Analysis
Author Contributions
Funding
Conflicts of Interest
References
- Ramirez-Castaneda, J.; Jankovic, J. Long-term efficacy, safety, and side effect profile of botulinum toxin in dystonia: A 20-year follow-up. Toxicon 2014, 90, 344–348. [Google Scholar] [CrossRef]
- Wheeler, A.; Smith, H.S. Botulinum toxins: Mechanisms of action, antinociception and clinical applications. Toxicology 2013, 306, 124–146. [Google Scholar] [CrossRef] [PubMed]
- Tsuboi, M.; Furukawa, Y.; Kurogouchi, F.; Nakajima, K.; Hirose, M.; Chiba, S. Botulinum neurotoxin A blocks cholinergic ganglionic neurotransmission in the dog heart. Jpn. J. Pharm. 2002, 89, 249–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, S.; Choi, E.K.; Zhang, Y.; Mazgalev, T.N. Botulinum toxin injection in epicardial autonomic ganglia temporarily suppresses vagally mediated atrial fibrillation. Circ. Arrhythmia Electrophysiol. 2011, 4, 560–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pokushalov, E.; Kozlov, B.; Romanov, A.; Strelnikov, A.; Bayramova, S.; Sergeevichev, D.; Bogachev-Prokophiev, A.; Zheleznev, S.; Shipulin, V.; Lomivorotov, V.V.; et al. Long-term suppression of atrial fibrillation by botulinum toxin injection into epicardial fat pads in patients undergoing cardiac surgery: One-year follow-up of a randomized pilot study. Circ. Arrhythmia Electrophysiol. 2015, 8, 1334–1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, L.W.; Scherlag, B.J.; Chang, H.Y.; Lin, Y.J.; Chen, S.A.; Po, S.S. Temporary suppression of cardiac ganglionated plexi leads to long-term suppression of atrial fibrillation: Evidence of early autonomic intervention to break the vicious cycle of “AF begets AF”. J. Am. Heart Assoc. 2016, 5, e003309. [Google Scholar] [CrossRef] [Green Version]
- Nazeri, A.; Ganapathy, A.V.; Massumi, A.; Massumi, M.; Tuzun, E.; Stainback, R.; Segura, A.M.; Elayda, M.A.; Razavi, M. Effect of botulinum toxin on inducibility and maintenance of atrial fibrillation in ovine myocardial tissue. Pacing Clin. Electrophysiol. 2017, 40, 693–702. [Google Scholar] [CrossRef]
- Bakheit, A.M. The possible adverse effects of intramuscular botulinum toxin injections and their management. Curr. Drug Saf. 2006, 1, 271–279. [Google Scholar] [CrossRef]
- Romanov, A.; Pokushalov, E.; Ponomarev, D.; Bayramova, S.; Shabanov, V.; Losik, D.; Stenin, I.; Elesin, D.; Mikheenko, I.; Strelnikov, A.; et al. Long-term suppression of atrial fibrillation by botulinum toxin injection into epicardial fat pads in patients undergoing cardiac surgery: Three-year follow-up of a randomized study. Heart Rhythm 2019, 16, 172–177. [Google Scholar] [CrossRef]
- Kumar, R.; Kukreja, R.V. The Botulinum Toxin as a Therapeutic Agent: Molecular Structure and Mechanism of Action in Motor and Sensory Systems. Semin. Neurol. 2016, 36, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Lebeda, F.J.; Cer, R.Z.; Stephens, R.M.; Mudunuri, U. Temporal characteristics of botulinum neurotoxin therapy. Expert Rev. Neurother. 2010, 10, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Rossetto, O.; Seveso, M.; Caccin, P.; Schiavo, G.; Montecucco, C. Tetanus and botulinum neurotoxins: Turning bad guys into good by research. Toxicon 2001, 39, 27–41. [Google Scholar] [CrossRef]
- Sergeevichev, D.S.; Krasilnikova, A.A.; Strelnikov, A.G.; Fomenko, V.V.; Salakhutdinov, N.F.; Romanov, A.B.; Karaskov, A.M.; Pokushalov, E.A.; Steinberg, J.S. Globular chitosan prolongs the effective duration time and decreases the acute toxicity of botulinum neurotoxin after intramuscular injection in rats. Toxicon 2018, 143, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.H.; An, X.; Dai, L.; Li, H.; Khan, A.; Ni, Y. Chitosan-based Polymer Matrix for Pharmaceutical Excipients and Drug Delivery. Curr. Med. Chem. 2019, 26, 2502–2513. [Google Scholar] [CrossRef]
- Novochizol First-In-Class Polysaccharide Nanotechnology Home Page. Available online: https://www.novochizol.ch/what/ (accessed on 21 July 2020).
- Pokushalov, E.; Kozlov, B.; Romanov, A.; Strelnikov, A.; Bayramova, S.; Sergeevichev, D.; Bogachev-Prokophiev, A.; Zheleznev, S.; Shipulin, V.; Lomivorotov, V.V.; et al. Botulinum toxin injection in epicardial fat pads can prevent recurrences of atrial fibrillation after cardiac surgery: Results of a randomized pilot study. J. Am. Coll. Cardiol. 2014, 64, 628–629. [Google Scholar] [CrossRef] [Green Version]
- Schiavo, G.; Montecucco, C. Clostridial Neurotoxins. In Bacterial Toxins: Tools in Cell Biology and Pharmacology; Aktories, K., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 169–192. [Google Scholar]
- Roy, A.; Guatimosim, S.; Prado, V.F.; Gros, R.; Prado, M.A.M. Cholinergic activity as a new target in diseases of the heart. Mol. Med. 2015, 20, 527–537. [Google Scholar] [CrossRef] [Green Version]
- Krul, S.P.J.; Berger, W.R.; Veldkamp, M.W.; Driessen, A.H.G.; Wilde, A.A.M.; Deneke, T.; de Bakker, J.M.T.; Coronel, R.; de Groot, J.R. Treatment of Atrial and Ventricular Arrhythmias through Autonomic Modulation. JACC Clin. Electrophysiol. 2015, 1, 496–508. [Google Scholar] [CrossRef]
- Katritsis, D.G.; Pokushalov, E.; Romanov, A.; Giazitzoglou, E.; Siontis, G.C.M.; Po, S.S.; Camm, A.J.; Ioannidis, J.P.A. Autonomic denervation added to pulmonary vein isolation for paroxysmal atrial fibrillation: A randomized clinical trial. J. Am. Coll. Cardiol. 2013, 62, 2318–2325. [Google Scholar] [CrossRef] [Green Version]
- Parwani, P.; Abbas, M.; Filiberti, A.; Fleming, C.; Hu, Y.; Garabelli, P.; Mcunu, A.; Peyton, M.; Po, S.S. Low-level vagus nerve stimulation suppresses post-operative atrial fibrillation and inflammation: A randomized study. JACC Clin. Electrophysiol. 2017, 3, 929–938. [Google Scholar] [CrossRef]
- Dickson, E.C.; Shevky, R. Botulism. Studies on the manner in which the toxin of clostridium botulinum acts upon the body: The effect upon the autonomic nervous system. J. Exp. Med. 1923, 37, 711–731. [Google Scholar] [CrossRef] [Green Version]
- Mehnert, U.; de Kort, L.M.; Wöllner, J.; Kozomara, M.; van Koeveringe, G.A.; Kessler, T.M. Effects of onabotulinumtoxinA on cardiac function following intradetrusor injections. Exp. Neurol. 2016, 285, 167–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lomivorotov, V.V.; Efremov, S.M.; Pokushalov, E.A.; Karaskov, A.M. New-onset atrial fibrillation after cardiac surgery: Pathophysiology, prophylaxis, and treatment. J. Cardiothorac. Vasc. Anesth. 2016, 30, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Lomivorotov, V.V.; Efremov, S.M.; Pokushalov, E.A.; Romanov, A.B.; Ponomarev, D.N.; Cherniavsky, A.M.; Shilova, A.N.; Karaskov, A.M.; Lomivorotov, V.N. Randomized trial of fish oil infusion to prevent atrial fibrillation after cardiac surgery: Data from an implantable continuous cardiac monitor. J. Cardiothorac. Vasc. Anesth. 2014, 28, 1278–1284. [Google Scholar] [CrossRef] [PubMed]
- Cheung, R.C.F.; Ng, T.B.; Wong, J.H.; Chan, W.Y. Chitosan: An update on potential biomedical and pharmaceutical applications. Mar. Drugs 2015, 13, 5156–5186. [Google Scholar] [CrossRef]
- Kato, Y.; Onishi, H.; Machida, Y. Application of chitin and chitosan derivatives in the pharmaceutical field. Curr. Pharm. Biotechnol. 2003, 4, 303–309. [Google Scholar] [CrossRef]
- Krasilnikova, A.A.; Sergeevichev, D.S.; Fomenko, V.V.; Korobeynikov, A.A.; Vasilyeva, M.B.; Yunoshev, A.S.; Karaskov, A.M.; Pokushalov, E.A. Globular chitosan treatment of bovine jugular veins: Evidence of anticalcification efficacy in the subcutaneous rat model. Cardiovasc. Pathol. 2018, 32, 1–7. [Google Scholar] [CrossRef]
- Chorro, F.J.; Such-Belenguer, L.; López-Merino, V. Animal models of cardiovascular disease. Rev. Esp. Cardiol. 2009, 62, 69–84. [Google Scholar] [CrossRef]
- Barzu, T.; Dam, D.T.; Cuparencu, B.; Komendat, M.; Szasz, E. An analysis of calcium chloride-induced arrhythmias in rats. Agressologie 1978, 19, 293–298. [Google Scholar]
- Czopek, A.; Byrtus, H.; Zagorska, A.; Siwek, A.; Kazek, G.; Bednarski, M.; Sapa, J.; Pawlowski, M. Design, synthesis, anticonvulsant, and antiarrhythmic properties of novel N-Mannich base and amide derivatives of b-tetralinohydantoin. Pharm. Rep. 2016, 68, 886–893. [Google Scholar] [CrossRef]
- Pugsley, M.K.; Hayes, E.S.; Wang, W.Q.; Walker, M.J.A. Ventricular arrhythmia incidence in the rat is reduced by naloxone. Pharm. Res. 2015, 97, 64–69. [Google Scholar] [CrossRef]
- Chevalier, P.; Tabib, A.; Meyronnet, D.; Chalabreysse, L.; Restier, L.; Ludman, V.; Alies, A.; Adeleine, P.; Thivolet, F.; Burri, H.; et al. Quantitative study of nerves of the human left atrium. Heart Rhythm 2005, 2, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.Y.; Li, H.; Wachsmann-Hogiu, S.; Chen, L.S.; Chen, P.S.; Fishbein, M.C. Autonomic innervation and segmental muscular disconnections at the human pulmonary vein-atrial junction. Implications for catheter ablation of atrial-pulmonary vein junction. J. Am. Coll. Cardiol. 2006, 48, 132–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batulevicius, D.; Pauziene, N.; Pauza, D.H. Architecture and age-related analysis of the neuronal number of the guinea pig intrinsic cardiac nerve plexus. Ann. Anat. Anat. Anz. 2005, 187, 225–243. [Google Scholar] [CrossRef] [PubMed]
- Kawano, H.; Okada, R.; Yano, K. Histological study on the distribution of autonomic nerves in the human heart. Heart Vessel. 2003, 18, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Pauza, D.H.; Skripka, V.; Pauziene, N.; Stropus, R. Morphology, distribution, and variability of the epicardiac neural ganglionated subplexuses in the human heart. Anat. Rec. 2000, 259, 353–382. [Google Scholar] [CrossRef]
- Rysevaite, K.; Saburkina, I.; Pauziene, N.; Noujaim, S.F.; Jalife, J.; Pauza, D.H. Morphologic pattern of the intrinsic ganglionated nerve plexus in mouse heart. Heart Rhythm 2011, 8, 448–454. [Google Scholar] [CrossRef] [Green Version]
- Rysevaite, K.; Saburkina, I.; Pauziene, N.; Vaitkevicius, R.; Noujaim, S.F.; Jalife, J.; Pauza, D.H. Immunohistochemical characterization of the intrinsic cardiac neural plexus in whole-mount mouse heart preparations. Heart Rhythm 2011, 8, 731–738. [Google Scholar] [CrossRef] [Green Version]
- Saburkina, I.; Rysevaite, K.; Pauziene, N.; Mischke, K.; Schauerte, P.; Jalife, J.; Pauza, D.H. Epicardial neural ganglionated plexus of ovine heart: Anatomic basis for experimental cardiac electrophysiology and nerve protective cardiac surgery. Heart Rhythm 2010, 7, 942–950. [Google Scholar] [CrossRef] [Green Version]
- Ulphani, J.S.; Cain, J.H.; Inderyas, F.; Gordon, D.; Gikas, P.V.; Shade, G.; Mayor, D.; Arora, R.; Kadish, A.H.; Goldberger, J.J. Quantitative analysis of parasympathetic innervation of the porcine heart. Heart Rhythm 2010, 7, 1113–1119. [Google Scholar] [CrossRef]
- Buckley, U.; Rajendran, P.S.; Shivkumar, K. Ganglionated plexus ablation for atrial fibrillation: Just because we can, does that mean we should? Heart Rhythm 2017, 14, 133–134. [Google Scholar] [CrossRef]
- Lo, L.W.; Scherlag, B.J.; Chang, H.Y.; Lin, Y.J.; Chen, S.A.; Po, S.S. Paradoxical long-term proarrhythmic effects after ablating the head station ganglionated plexi of the vagal innervation to the heart. Heart Rhythm 2013, 10, 751–757. [Google Scholar] [CrossRef] [PubMed]
- Aranki, S.F.; Shaw, D.P.; Adams, D.H.; Rizzo, R.J.; Couper, G.S.; VanderVliet, M.; Collins, J.J.; Cohn, L.H.; Burstin, H.R. Predictors of atrial fibrillation after coronary artery surgery: Current trends and impact on hospital resources. Circulation 1996, 94, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Rostagno, C.; Blanzola, C.; Pinelli, F.; Rossi, A.; Carone, E.; Stefano, P.L. Atrial fibrillation after isolated coronary surgery. Incidence, long term effects and relation with operative technique. Heart Lung Vessel. 2014, 6, 171–179. [Google Scholar] [PubMed]
- Curtis, M.J.; Hancox, J.C.; Farkas, A.; Wainwright, C.L.; Stables, C.L.; Saint, D.A.; Clements-Jewery, H.; Lambiase, P.D.; Billman, G.E.; Janse, M.J.; et al. The Lambeth conventions (II): Guidelines for the study of animal and human ventricular and supraventricular arrhythmias. Pharm. Ther. 2013, 139, 213–248. [Google Scholar] [CrossRef] [PubMed]
Test Substances | Sinus Rhythm | Lethal VF | PVC *, Bigeminy, Not VF | The Incidence of VF, p (vs. Saline Control, Fisher’s Exact Test) |
---|---|---|---|---|
Saline control | 0 | 10 | 0 | |
Verapamil | 8 | 2 | 0 | <0.001 |
BoNT/A1, i.v. | 0 | 10 | 0 | |
BoNT/A1, subepicardially | 0 | 10 | 0 | |
globular chitosan, subepicardially | 0 | 10 | 0 | |
BTN, subepicardially | 3 | 5 | 2 | <0.05 |
Test Substances | Sinus Rhythm | Arrhythmia (PVC, Bigeminy) | p (vs. Saline Control, Fisher’s Exact Test, Two-Tailed) |
---|---|---|---|
Saline control | 0 | 10 | |
amiodarone | 10 | 0 | <0.001 |
BTN, subepicardially | |||
0.5 U(BoNT/A1)/kg | 8 | 2 | <0.001 |
1 U(BoNT/A1)/kg | 4 | 6 | <0.05 |
2 U(BoNT/A1)/kg | 5 | 5 | <0.05 |
4 U(BoNT/A1)/kg | 8 | 2 | <0.001 |
5 U(BoNT/A1)/kg | 8 | 2 | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sergeevichev, D.; Fomenko, V.; Strelnikov, A.; Dokuchaeva, A.; Vasilieva, M.; Chepeleva, E.; Rusakova, Y.; Artemenko, S.; Romanov, A.; Salakhutdinov, N.; et al. Botulinum Toxin-Chitosan Nanoparticles Prevent Arrhythmia in Experimental Rat Models. Mar. Drugs 2020, 18, 410. https://doi.org/10.3390/md18080410
Sergeevichev D, Fomenko V, Strelnikov A, Dokuchaeva A, Vasilieva M, Chepeleva E, Rusakova Y, Artemenko S, Romanov A, Salakhutdinov N, et al. Botulinum Toxin-Chitosan Nanoparticles Prevent Arrhythmia in Experimental Rat Models. Marine Drugs. 2020; 18(8):410. https://doi.org/10.3390/md18080410
Chicago/Turabian StyleSergeevichev, David, Vladislav Fomenko, Artem Strelnikov, Anna Dokuchaeva, Maria Vasilieva, Elena Chepeleva, Yanina Rusakova, Sergey Artemenko, Alexander Romanov, Nariman Salakhutdinov, and et al. 2020. "Botulinum Toxin-Chitosan Nanoparticles Prevent Arrhythmia in Experimental Rat Models" Marine Drugs 18, no. 8: 410. https://doi.org/10.3390/md18080410
APA StyleSergeevichev, D., Fomenko, V., Strelnikov, A., Dokuchaeva, A., Vasilieva, M., Chepeleva, E., Rusakova, Y., Artemenko, S., Romanov, A., Salakhutdinov, N., & Chernyavskiy, A. (2020). Botulinum Toxin-Chitosan Nanoparticles Prevent Arrhythmia in Experimental Rat Models. Marine Drugs, 18(8), 410. https://doi.org/10.3390/md18080410