Advances in Technologies for Highly Active Omega-3 Fatty Acids from Krill Oil: Clinical Applications
Abstract
:1. Introduction
2. Krill Oil Composition
2.1. Lipid Fraction
2.2. Fatty Acid Composition
2.3. Astaxanthin
2.4. Sterols
2.5. Vitamins
2.6. Flavonoids
2.7. Minerals
3. Mechanism of Action
4. Krill Oil Extraction Technologies
4.1. Conventional Extraction Techniques
4.2. Unconventional Extraction Techniques
5. Bioavailability and Bioaccessibility of Krill Oil Omega-3
6. Krill and Metabolic Disorders
7. Krill and Inflammatory Bowel Diseases and Gut Microbiota
8. Inflammation
Arthritic Diseases
9. Neuroprotection
9.1. Neurodegeneration and Alzheimer Disease
9.2. Depression
10. Cancer
11. Exercise Performance
12. Discussion and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nicol, S.; Endo, Y. Krill fisheries: Development, management and ecosystem implications. Aquat. Living Resour. 1999, 12, 105–120. [Google Scholar] [CrossRef]
- Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR). Krill Fisheries and Sustainability. Available online: https://www.ccamlr.org/en/fisheries/krill-fisheries-and-sustainability (accessed on 23 May 2021).
- Nicol, S.; Foster, J.; Kawaguchi, S. The fishery for Antarctic krill—Recent developments. Fish Fish. 2011, 13, 30–40. [Google Scholar] [CrossRef]
- Cicero, A.F.; Colletti, A. Krill oil: Evidence of a new source of polyunsaturated fatty acids with high bioavailability. Clin. Lipidol. 2015, 10, 1–4. [Google Scholar] [CrossRef]
- Grantham, G.J. The Southern Ocean: The Utilization of Krill; Southern Ocean Fisheries Survey Programme GLO/SO/7/3; Food and Agriculture Organization: Rome, Italy, 1977; pp. 1–61. [Google Scholar]
- Ramprasath, V.R.; Eyal, I.; Zchut, S.; Jones, P.J. Enhanced increase of omega-3 index in healthy individuals with response to 4-week n-3 fatty acid supplementation from krill oil versus fish oil. Lipids Health Dis. 2013, 12, 178. [Google Scholar] [CrossRef] [Green Version]
- Cicero, A.F.G.; Ertek, S.; Borghi, C. Omega-3 polyunsaturated fatty acids: Their potential role in blood pressure prevention and management. Curr. Vasc. Pharmacol. 2009, 7, 330–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cicero, A.F.G.; De Sando, V.; Parini, A.; Borghi, C. Polyunsaturated fatty acids application in internal medicine: Beyond the established cardiovascular effects. Arch. Med. Sci. 2012, 8, 784–793. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.-S.; Hu, X.-J.; Zhao, Y.-M.; Yang, J.; Li, D. Intake of fish and marine n-3 polyunsaturated fatty acids and risk of breast cancer: Meta-analysis of data from 21 independent prospective cohort studies. BMJ 2013, 346, f3706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saravanan, P.; Davidson, N.C.; Schmidt, E.B.; Calder, P. Cardiovascular effects of marine omega-3 fatty acids. Lancet 2010, 376, 540–550. [Google Scholar] [CrossRef]
- Laslett, L.L.; Antony, B.; Wluka, A.E.; Hill, C.; March, L.; Keen, H.I.; Otahal, P.; Cicuttini, F.M.; Jones, G. KARAOKE: Krill oil versus placebo in the treatment of knee osteoarthritis: Protocol for a randomised controlled trial. Trials 2020, 21, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulven, S.M.; Kirkhus, B.; Lamglait, A.; Basu, S.; Elind, E.; Haider, T.; Berge, K.; Vik, H.; Pedersen, J.I. Metabolic Effects of Krill Oil are Essentially Similar to Those of Fish Oil but at Lower Dose of EPA and DHA, in Healthy Volunteers. Lipids 2010, 46, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.G.; Yang, I.; Lee, H.S.; Lee, J.-Y.; Kim, K. Lipid-modifying effects of krill oil vs fish oil: A network meta-analysis. Nutr. Rev. 2020, 78, 699–708. [Google Scholar] [CrossRef]
- Ulven, S.M.; Holven, K.B. Comparison of bioavailability of krill oil versus fish oil and health effect. Vasc. Health Risk Manag. 2015, 11, 511–524. [Google Scholar] [CrossRef] [Green Version]
- Ahmmed, M.K.; Ahmmed, F.; Tian, H.; Carne, A.; Bekhit, A.E. Marine omega-3 (n-3) phospholipids: A comprehensive review of their properties, sources, bioavailability, and relation to brain health. Compr. Rev. Food Sci. Food Saf. 2019, 19, 64–123. [Google Scholar] [CrossRef] [Green Version]
- Phleger, C.F.; Nelson, M.M.; Mooney, B.D.; Nichols, P.D. Interannual and between species comparison of the lipids, fatty acids and sterols of Antarctic krill from the US AMLR Elephant Island survey area. Comp. Biochem. Physiol. Part B 2002, 131, 733–747. [Google Scholar] [CrossRef]
- Xie, D.; Gong, M.; Wei, W.; Jin, J.; Wang, X.; Wang, X.; Jin, Q. Antarctic Krill (Euphausia superba) Oil: A Comprehensive Review of Chemical Composition, Extraction Technologies, Health Benefits, and Current Applications. Compr. Rev. Food Sci. Food Saf. 2019, 18, 514–534. [Google Scholar] [CrossRef] [Green Version]
- Gang, K.-Q.; Wu, Z.-X.; Zhou, D.-Y.; Zhao, Q.; Zhou, X.; Lv, D.-D.; Rakariyatham, K.; Liu, X.-Y.; Shahidi, F. Effects of hot air drying process on lipid quality of whelks Neptunea arthritica cumingi Crosse and Neverita didyma. J. Food Sci. Technol. 2019, 56, 4166–4176. [Google Scholar] [CrossRef]
- Bottino, N.R. Lipid composition of two species of antarctic krill: Euphausia superba and E. crystallorophias. Comp. Biochem. Physiol. Part B 1975, 50, 479–484. [Google Scholar] [CrossRef]
- Han, X.; Liu, D. Detection and analysis of 17 steroid hormones by ultra-high-performance liquid chromatography-electrospray ionization mass spectrometry (UHPLC-MS) in different sex and maturity stages of Antarctic krill (Euphausia superba Dana). PLoS ONE 2019, 14, e0213398. [Google Scholar] [CrossRef] [Green Version]
- Xie, D.; Jin, J.; Sun, J.; Liang, L.; Wang, X.; Zhang, W.; Wang, X.; Jin, Q. Comparison of solvents for extraction of krill oil from krill meal: Lipid yield, phospholipids content, fatty acids composition and minor components. Food Chem. 2017, 233, 434–441. [Google Scholar] [CrossRef]
- Lim, C.W.; Kim, B.H.; Kim, I.-H.; Lee, M.-W. Modeling and optimization of phospholipase A1-catalyzed hydrolysis of phosphatidylcholine using response surface methodology for lysophosphatidylcholine production. Biotechnol. Prog. 2014, 31, 35–41. [Google Scholar] [CrossRef]
- Burri, L.; Johnsen, L. Krill Products: An Overview of Animal Studies. Nutrients 2015, 7, 3300–3321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, A. The biochemical composition of krill, Euphausia superba Dana, from South Georgia. J. Exp. Mar. Biol. Ecol. 1980, 43, 221–236. [Google Scholar] [CrossRef]
- WHO, Food and Agriculture Organization of the United Nations. Codex Standard for Fish Oils. Codex Alimentarius Commission; Codex Standard 329-2017; WHO: Geneva, Switzerland; Food and Agriculture Organization of the United Nations: Quebec, QC, Canada, 2017. [Google Scholar]
- Paluchova, V.; Vik, A.; Cajka, T.; Brezinova, M.; Brejchova, K.; Bugajev, V.; Draberova, L.; Draber, P.; Buresova, J.; Kroupova, P.; et al. Triacylglycerol-Rich Oils of Marine Origin are Optimal Nutrients for Induction of Polyunsaturated Docosahexaenoic Acid Ester of Hydroxy Linoleic Acid (13-DHAHLA) with Anti-Inflammatory Properties in Mice. Mol. Nutr. Food Res. 2020, 64, e1901238. [Google Scholar] [CrossRef] [PubMed]
- Kołakowska, A. The influence of sex and maturity stage of krill (Euphausia superba Dana) upon the content and composition of its lipid. Pol. Polar Res. 1991, 12, 73–78. [Google Scholar]
- Li, D.-M.; Zhou, D.-Y.; Zhu, B.-W.; Chi, Y.-L.; Sun, L.-M.; Dong, X.-P.; Qin, L.; Qiao, W.-Z.; Murata, Y. Effects of krill oil intake on plasma cholesterol and glucose levels in rats fed a high-cholesterol diet. J. Sci. Food Agric. 2013, 93, 2669–2675. [Google Scholar] [CrossRef] [PubMed]
- Siriwardhana, N.; Kalupahana, N.S.; Moustaid-Moussa, N. Health benefits of n-3 polyunsaturated fatty acids: Eicosapentaenoic acid and docosahexaenoic acid. Adv. Food Nutr. Res. 2012, 65, 211–222. [Google Scholar]
- Skubic, C.; Vovk, I.; Rozman, D.; Križman, M. Simplified LC-MS Method for Analysis of Sterols in Biological Samples. Molecules 2020, 25, 4116. [Google Scholar] [CrossRef]
- Tocher, D.R.; Betancor, M.B.; Sprague, M.; Olsen, R.E.; A Napier, J. Omega-3 Long-Chain Polyunsaturated Fatty Acids, EPA and DHA: Bridging the Gap between Supply and Demand. Nutrients 2019, 11, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, N.W.; Huang, P.C. Effects of the ratio of polyunsaturated and monounsaturated fatty acid to saturated fatty acid on rat plasma and liver lipid concentrations. Lipids 1998, 33, 481–487. [Google Scholar] [CrossRef]
- Rincón-Cervera, M.Á.; González-Barriga, V.; Romero, J.; Rojas, R.; López-Arana, S. Quantification and Distribution of Omega-3 Fatty Acids in South Pacific Fish and Shellfish Species. Foods 2020, 9, 233. [Google Scholar] [CrossRef] [Green Version]
- Murru, E.; Banni, S.; Carta, G. Nutritional Properties of Dietary Omega-3-Enriched Phospholipids. BioMed Res. Int. 2013, 2013, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuchardt, J.P.; Schneider, I.; Meyer, H.; Neubronner, J.; Von Schacky, C.; Hahn, A. Incorporation of EPA and DHA into plasma phospholipids in response to different omega-3 fatty acid formulations—A comparative bioavailability study of fish oil vs. krill oil. Lipids Health Dis. 2011, 10, 145. [Google Scholar] [CrossRef] [Green Version]
- Šimat, V.; ElAbed, N.; Kulawik, P.; Ceylan, Z.; Jamroz, E.; Yazgan, H.; Čagalj, M.; Regenstein, J.M.; Özogul, F. Recent Advances in Marine-Based Nutraceuticals and Their Health Benefits. Mar. Drugs 2020, 18, 627. [Google Scholar] [CrossRef] [PubMed]
- Takaichi, S.; Matsui, K.; Nakamura, M.; Muramatsu, M.; Hanada, S. Fatty acids of astaxanthin esters in krill determined by mild mass spectrometry. Comp. Biochem. Physiol. Part B 2003, 136, 317–322. [Google Scholar] [CrossRef]
- Sun, W.; Shi, B.; Xue, C.; Jiang, X. The comparison of krill oil extracted through ethanol–hexane method and subcritical method. Food Sci. Nutr. 2019, 7, 700–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molino, A.; Rimauro, J.; Casella, P.; Cerbone, A.; Larocca, V.; Chianese, S.; Karatza, D.; Mehariya, S.; Ferraro, A.; Hristoforou, E.; et al. Extraction of astaxanthin from microalga Haematococcus pluvialis in red phase by using generally recognized as safe solvents and accelerated extraction. J. Biotechnol. 2018, 283, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Grynbaum, M.D.; Hentschel, P.; Putzbach, K.; Rehbein, J.; Krucker, M.; Nicholson, G.; Albert, K. Unambiguous detection of astaxanthin and astaxanthin fatty acid esters in krill (Euphausia superba Dana). J. Sep. Sci. 2005, 28, 1685–1693. [Google Scholar] [CrossRef]
- Alessandri, J.M.; Goustard, B.; Guesnet, P.; Durand, G. Docosahexaenoic acid concentrations in retinal phospholipids of piglets fed an infant formula enriched with long-chain polyunsaturated fatty acids: Effects of egg phospholipids and fish oils with different ratios of eicosapentaenoic acid to docosahexaenoic acid. Am. J. Clin. Nutr. 1998, 67, 377–385. [Google Scholar] [CrossRef]
- Araujo, P.; Zhu, H.; Breivik, J.F.; Hjelle, J.I.; Zeng, Y. Determination and Structural Elucidation of Triacylglycerols in Krill Oil by Chromatographic Techniques. Lipids 2013, 49, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Souchet, N.; Laplante, S. Seasonal and geographical variations of sterol composition in snow crab hepatopancreas and pelagic fish viscera from Eastern Quebec. Comp. Biochem. Physiol. Part B 2007, 147, 378–386. [Google Scholar] [CrossRef]
- Bruheim, I.; Cameron, J. Flowable Concentrated Phospholipid Krill Oil Composition. U.S. Patent 20170020928 Al, 26 January 2017. [Google Scholar]
- Dunlap, W.C.; Fujisawa, A.; Yamamoto, Y.; Moylan, T.J.; Sidell, B.D. Notothenioid fish, krill and phytoplankton from Antarctica contain a vitamin E constituent (α-tocomonoenol) functionally associated with cold-water adaptation. Comp. Biochem. Physiol. Part B 2002, 133, 299–305. [Google Scholar] [CrossRef]
- Sampalis, F.; Bunea, R.; Pelland, M.F.; Kowalski, O.; Duguet, N.; Dupuis, S. Evaluation of the effects of Neptune Krill Oil on the management of premenstrual syndrome and dysmenorrhea. Altern. Med. Rev. 2003, 8, 171–179. [Google Scholar] [PubMed]
- Peng, Y.; Ji, W.; Zhang, D.; Ji, H.; Liu, S. Composition and content analysis of fluoride in inorganic salts of the integument of Antarctic krill (Euphausia superba). Sci. Rep. 2019, 9, 7853. [Google Scholar] [CrossRef] [PubMed]
- Dawson, M.I.; Xia, Z. The retinoid X receptors and their ligands. Biochim. Biophys. Acta 2012, 1821, 21–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Nakajima, T.; Gonzalez, F.J.; Tanaka, N. PPARs as Metabolic Regulators in the Liver: Lessons from Liver-Specific PPAR-Null Mice. Int. J. Mol. Sci. 2020, 21, 2061. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Wang, D.; Zhao, W.; Xu, L. Deciphering the Roles of PPARgamma in Adipocytes via Dynamic Change of Transcription Complex. Front. Endocrinol. 2018, 9, 473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youssef, J.; Badr, M. Role of Peroxisome Proliferator-Activated Receptors in Inflammation Control. J. Biomed. Biotechnol. 2004, 2004, 156–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Chen, R.; Yang, T.; Xu, N.; Chen, J.; Gao, Y.; Stetler, R.A. Fatty acid transporting proteins: Roles in brain development, aging, and stroke. Prostaglandins Leukot. Essent. Fat. Acids 2018, 136, 35–45. [Google Scholar] [CrossRef]
- Marechal, L.; Laviolette, M.; Rodrigue-Way, A.; Sow, B.; Brochu, M.; Caron, V.; Tremblay, A. The CD36-PPARgamma Pathway in Metabolic Disorders. Int. J. Mol. Sci. 2018, 19, 1529. [Google Scholar] [CrossRef] [Green Version]
- Monsalve, F.A.; Pyarasani, R.D.; Delgado-Lopez, F.; Moore-Carrasco, R. Peroxisome Proliferator-Activated Receptor Targets for the Treatment of Metabolic Diseases. Mediat. Inflamm. 2013, 2013, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Korbecki, J.; Bobiński, R.; Dutka, M. Self-regulation of the inflammatory response by peroxisome proliferator-activated receptors. Inflamm. Res. 2019, 68, 443–458. [Google Scholar] [CrossRef] [Green Version]
- Son, S.-E.; Kim, N.-J.; Im, D.-S. Development of Free Fatty Acid Receptor 4 (FFA4/GPR120) Agonists in Health Science. Biomol. Ther. 2021, 29, 22–30. [Google Scholar] [CrossRef]
- Si, T.-L.; Liu, Q.; Ren, Y.-F.; Li, H.; Xu, X.-Y.; Li, E.-H.; Pan, S.-Y.; Zhang, J.-L.; Wang, K.-X. Enhanced anti-inflammatory effects of DHA and quercetin in lipopolysaccharide-induced RAW264.7 macrophages by inhibiting NF-κB and MAPK activation. Mol. Med. Rep. 2016, 14, 499–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, D.Y.; Talukdar, S.; Bae, E.J.; Imamura, T.; Morinaga, H.; Fan, W.Q.; Li, P.; Lu, W.J.; Watkins, S.M.; Olefsky, J.M. GPR120 Is an Omega-3 Fatty Acid Receptor Mediating Potent Anti-inflammatory and Insulin-Sensitizing Effects. Cell 2010, 142, 687–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-kappaB signaling in inflammation. Signal Transduct. Target Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calder, P.C. Omega-3 polyunsaturated fatty acids and inflammatory processes: Nutrition or pharmacology? Br. J. Clin. Pharmacol. 2013, 75, 645–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Encarnacion, M.M.D.; Warner, G.M.; Cheng, J.; Gray, C.E.; Nath, K.A.; Grande, J.P. n-3 Fatty acids block TNF-α-stimulated MCP-1 expression in rat mesangial cells. Am. J. Physiol. Physiol. 2011, 300, F1142–F1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Huang, F. N-3 Polyunsaturated Fatty Acids and Inflammation in Obesity: Local Effect and Systemic Benefit. BioMed Res. Int. 2015, 2015, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magee, P.; Pearson, S.; Whittingham-Dowd, J.; Allen, J. PPARgamma as a molecular target of EPA anti-inflammatory activity during TNF-alpha-impaired skeletal muscle cell differentiation. J. Nutr. Biochem. 2012, 23, 1440–1448. [Google Scholar] [CrossRef]
- Mosser, D.M.; Zhang, X. Interleukin-10: New perspectives on an old cytokine. Immunol. Rev. 2008, 226, 205–218. [Google Scholar] [CrossRef]
- Tiedge, M.; Lortz, S.; Munday, R.; Lenzen, S. Complementary action of antioxidant enzymes in the protection of bioengineered insulin-producing RINm5F cells against the toxicity of reactive oxygen species. Diabetes 1998, 47, 1578–1585. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Tao, J.; Xie, X. Astaxanthin Promotes Nrf2/ARE Signaling to Inhibit HG-Induced Renal Fibrosis in GMCs. Mar. Drugs 2018, 16, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landon, R.; Gueguen, V.; Petite, H.; Letourneur, D.; Pavon-Djavid, G.; Anagnostou, F. Impact of Astaxanthin on Diabetes Pathogenesis and Chronic Complications. Mar. Drugs 2020, 18, 357. [Google Scholar] [CrossRef]
- Solinas, G.; Becattini, B. JNK at the crossroad of obesity, insulin resistance, and cell stress response. Mol. Metab. 2017, 6, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Wang, Y.; Guo, N.; Huang, P.; Mi, Y. Effects of Astaxanthin on Inflammation and Insulin Resistance in a Mouse Model of Gestational Diabetes Mellitus. Dose-Response 2020, 18, 1559325820926765. [Google Scholar] [CrossRef]
- Katevas, D.S.; Toro Guerra, R.R.; Chiong Lay, M. Solvent-Free Process for Obtaining Phospholipids and Neutral Enriched Krill Oils. U.S. Patent 8865236 B2, 6 March 2014. [Google Scholar]
- Beaudoin, A.; Martin, G. Method of Extracting Lipids from Marine and Aquatic Animal Tissues. U.S. Patent 6800299 B1, 5 October 2004. [Google Scholar]
- Yoshitomi, B.; Shigematsu, Y. Process for Making Dried Powdery and Granular Krill. U.S. Patent 20030113432 A1, 16 June 2003. [Google Scholar]
- Xie, D.; Mu, H.; Tang, T.; Wang, X.; Wei, W.; Jin, J.; Wang, X.; Jin, Q. Production of three types of krill oils from krill meal by a three-step solvent extraction procedure. Food Chem. 2018, 248, 279–286. [Google Scholar] [CrossRef]
- Ronen, L.; Ran, N.; Ben-Dror, G. Krill Oil Preparations with Optimal Mineral and Metal Composition, Low Impurities and Low and Stable TMA Levels. US Patent 20170354694 Al, 14 December 2017. [Google Scholar]
- Bruheim, I.; Griinari, M.; Ervik, J.R.; Remoy, S.R.; Remoy, E.; Cameron, J. Method for Processing Crustaceans to Produce Low Fluoride/Low Trimethyl Amine Products Thereof. U.S. Patent 20160345616 Al, 2 June 2016. [Google Scholar]
- Gigliotti, J.C.; Davenport, M.P.; Beamer, S.K.; Tou, J.C.; Jaczynski, J. Extraction and characterisation of lipids from Antarctic krill (Euphausia superba). Food Chem. 2011, 125, 1028–1036. [Google Scholar] [CrossRef]
- Yin, F.-W.; Liu, X.-Y.; Fan, X.-R.; Zhou, D.-Y.; Xu, W.-S.; Zhu, B.-W.; Murata, Y.-Y. Extrusion of Antarctic krill (Euphausia superba) meal and its effect on oil extraction. Int. J. Food Sci. Technol. 2014, 50, 633–639. [Google Scholar] [CrossRef]
- Khan, L.M.; Hanna, M.A. Expression of oil from oilseeds—A review. J. Agric. Eng. Res. 1983, 28, 495–503. [Google Scholar] [CrossRef]
- Larsen, P.M.; Fey, S.J.; Breuning, J.; Ludvigsen, B. A Method for the Extraction of Lipid Fractions from Krill. WO Patent 2007080514 A2, 15 January 2007. [Google Scholar]
- Tilseth, S.; Høstmark, Ø. New Method for Making Krill Meal. U.S. Patent 20150050403 A1, 16 January 2015. [Google Scholar]
- Friedrich, J.P.; Pryde, E.H. Supercritical CO2 extraction of lipid-bearing materials and characterization of the products. J. Am. Oil Chem. Soc. 1984, 61, 223–228. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Miki, W.; Toriu, N.; Kondo, Y.; Murakami, M.; Konosu, S. The composition of carotenoid pigments in the Antarctic krill (Euphausia superba). Nippon Suisan Gakkaishi 1983, 49, 1411–1415. [Google Scholar] [CrossRef]
- Bruheim, I.; Tilseth, S.; Mancinelli, D. Bioeffective Krill Oil Compositions. U.S. Patent 9889163 B2, 13 February 2018. [Google Scholar]
- Liu, H.-M.; Wang, F.-Y.; Li, H.-Y.; Wang, X.-D.; Qin, G.-Y. Subcritical Butane and Propane Extraction of Oil from Rice Bran. Bioresources 2015, 10, 4652–4662. [Google Scholar] [CrossRef]
- Sun, D.; Cao, C.; Li, B.; Chen, H.; Cao, P.; Li, J.; Liu, Y. Study on combined heat pump drying with freeze-drying of Antarctic krill and its effects on the lipids. J. Food Process. Eng. 2017, 40, e12577. [Google Scholar] [CrossRef]
- Domínguez, H.; Núñez, M.; Lema, J. Enzymatic pretreatment to enhance oil extraction from fruits and oilseeds: A review. Food Chem. 1994, 49, 271–286. [Google Scholar] [CrossRef]
- Lee, S. Krill Oil and Method for Manufacturing the Same. U.S. Patent 8624046 B2, 7 January 2014. [Google Scholar]
- Bunea, R.; El Farrah, K.; Deutsch, L. Evaluation of the effects of Neptune Krill Oil on the clinical course of hyperlipidemia. Altern. Med. Rev. 2004, 9, 420–428. [Google Scholar]
- Konagai, C.; Yanagimoto, K.; Hayamizu, K.; Han, L.; Tsuji, T.; Koga, Y. Effects of krill oil containing n-3 polyunsaturated fatty acids in phospholipid form on human brain function: A randomized controlled trial in healthy elderly volunteers. Clin. Interv. Aging 2013, 8, 1247–1257. [Google Scholar] [CrossRef] [Green Version]
- Laidlaw, M.; Cockerline, C.A.; Rowe, W.J. A randomized clinical trial to determine the efficacy of manufacturers’ recommended doses of omega-3 fatty acids from different sources in facilitating cardiovascular disease risk reduction. Lipids Health Dis. 2014, 13, 99. [Google Scholar] [CrossRef] [Green Version]
- Salem, N.; Kuratko, C.N. A reexamination of krill oil bioavailability studies. Lipids Health Dis. 2014, 13, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Köhler, A.; Sarkkinen, E.; Tapola, N.; Niskanen, T.; Bruheim, I. Bioavailability of fatty acids from krill oil, krill meal and fish oil in healthy subjects–a randomized, single-dose, cross-over trial. Lipids Health Dis. 2015, 14, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Harris, W.S.; Miller, M.; Tighe, A.P.; Davidson, M.H.; Schaefer, E.J. Omega-3 fatty acids and coronary heart disease risk: Clinical and mechanistic perspectives. Atherosclerosis 2008, 197, 12–24. [Google Scholar] [CrossRef]
- Cleland, L.G.; James, M.J.; Proudman, S.M. The Role of Fish Oils in the Treatment of Rheumatoid Arthritis. Drugs 2003, 63, 845–853. [Google Scholar] [CrossRef] [PubMed]
- Boudrault, C.; Bazinet, R.P.; Ma, D.W. Experimental models and mechanisms underlying the protective effects of n-3 polyun-saturated fatty acids in Alzheimer’s disease. J. Nutr. Biochem. 2009, 20, 1–10. [Google Scholar] [CrossRef]
- Fedor, D.; Kelley, D.S. Prevention of insulin resistance by n-3 polyunsaturated fatty acids. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Kris-Etherton, P.M.; Harris, W.S.; Appel, L.J. American Heart Association. Nutrition Committee. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 2002, 106, 2747–2757. [Google Scholar] [CrossRef] [PubMed]
- Cohn, J.S.; Wat, E.; Kamili, A.; Tandy, S. Dietary phospholipids, hepatic lipid metabolism and cardiovascular disease. Curr. Opin. Lipidol. 2008, 19, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Hussein, G.; Nakagawa, T.; Goto, H.; Shimada, Y.; Matsumoto, K.; Sankawa, U.; Watanabe, H. Astaxanthin ameliorates features of metabolic syndrome in SHR/NDmcr-cp. Life Sci. 2007, 80, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Maki, K.C.; Reeves, M.S.; Farmer, M.; Griinari, M.; Berge, K.; Vik, H.; Hubacher, R.; Rains, T.M. Krill oil supplementation increases plasma concentrations of eicosapentaenoic and docosahexaenoic acids in overweight and obese men and women. Nutr. Res. 2009, 29, 609–615. [Google Scholar] [CrossRef]
- Sung, H.H.; Sinclair, A.J.; Huynh, K.; Smith, A.A.T.; Mellett, N.A.; Meikle, P.J.; Su, X.Q. Krill Oil Has Different Effects on the Plasma Lipidome Compared with Fish Oil Following 30 Days of Supplementation in Healthy Women: A Randomized Con-trolled and Crossover Study. Nutrients 2020, 12, 2804. [Google Scholar] [CrossRef]
- Sung, H.H.; Sinclair, A.J.; Huynh, K.; Smith, A.T.; Mellett, N.A.; Meikle, P.J.; Su, X.Q. Differential plasma postprandial lipidomic responses to krill oil and fish oil supplementations in women: A randomized crossover study. Nutrients 2019, 65, 191–201. [Google Scholar] [CrossRef]
- Robertson, B.; Burri, L.; Berge, K. Genotoxicity test and subchronic toxicity study with Superba™ krill oil in rats. Toxicol. Rep. 2014, 1, 764–776. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.-J.; Shi, J.-H.; Qian, W.-B.; Cai, Z.-Z.; Li, D. Effects of Krill Oil on serum lipids of hyperlipidemic rats and human SW480 cells. Lipids Health Dis. 2008, 7, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tandy, S.; Chung, R.W.S.; Wat, E.; Kamili, A.; Berge, K.; Griinari, M.; Cohn, J.S. Dietary Krill Oil Supplementation Reduces Hepatic Steatosis, Glycemia, and Hypercholesterolemia in High-Fat-Fed Mice. J. Agric. Food Chem. 2009, 57, 9339–9345. [Google Scholar] [CrossRef] [PubMed]
- Bjørndal, B.; Vik, R.; Brattelid, T.; Vigerust, N.F.; Burri, L.; Bohov, P.; Nygård, O.; Skorve, J.; Berge, R.K. Krill powder increases liver lipid catabolism and reduces glucose mobilization in tumor necrosis factor-alpha transgenic mice fed a high-fat diet. Metabolism 2012, 61, 1461–1472. [Google Scholar] [CrossRef] [PubMed]
- Saito, M.; Ishida, N.; Yamada, H.; Ibi, M.; Hirose, M. 8-HEPE-Concentrated Materials from Pacific Krill Improve Plasma Cho-lesterol Levels and Hepatic Steatosis in High Cholesterol Diet-Fed Low-Density Lipoprotein (LDL) Receptor-Deficient Mice. Biol. Pharm. Bull. 2020, 43, 919–924. [Google Scholar] [CrossRef]
- Hals, P.-A.; Wang, X.; Xiao, Y.-F. Effects of a purified krill oil phospholipid rich in long-chain omega-3 fatty acids on cardiovascular disease risk factors in non-human primates with naturally occurring diabetes type-2 and dyslipidemia. Lipids Health Dis. 2017, 16, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferramosca, A.; Conte, A.; Burri, L.; Berge, K.; De Nuccio, F.; Giudetti, A.M.; Zara, V. A Krill Oil Supplemented Diet Suppresses Hepatic Steatosis in High-Fat Fed Rats. PLoS ONE 2012, 7, e38797. [Google Scholar] [CrossRef] [Green Version]
- Ivanova, Z.; Bjørndal, B.; Grigorova, N.; Roussenov, A.; Vachkova, E.; Berge, K.; Burri, L.; Berge, R.; Stanilova, S.; Milanova, A.; et al. Effect of fish and krill oil supplementation on glucose tolerance in rabbits with experimentally induced obesity. Eur. J. Nutr. 2015, 54, 1055–1067. [Google Scholar] [CrossRef]
- Rundblad, A.; Holven, K.B.; Bruheim, I.; Myhrstad, M.C.; Ulven, S.M. Effects of krill oil and lean and fatty fish on cardiovascular risk markers: A randomised controlled trial. J. Nutr. Sci. 2018, 7, e3. [Google Scholar] [CrossRef] [Green Version]
- Berge, K.; Musa-Veloso, K.; Harwood, M.; Hoem, N.; Burri, L. Krill oil supplementation lowers serum triglycerides without in-creasing low-density lipoprotein cholesterol in adults with borderline high or high triglyceride levels. Nutr. Res. 2014, 34, 126–133. [Google Scholar] [CrossRef] [Green Version]
- Cicero, A.F.; Rosticci, M.; Morbini, M.; Cagnati, M.; Grandi, E.; Parini, A.; Borghi, C. Lipid-lowering and anti-inflammatory effects of omega 3 ethyl esters and krill oil: A randomized, cross-over, clinical trial. Arch. Med. Sci. 2016, 3, 507–512. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Zhang, L.; Chen, H.; Feng, R.; Cao, P.; Liu, Y. Effects of Antarctic krill oil on lipid and glucose metabolism in C57BL/6J mice fed with high fat diet. Lipids Health Dis. 2017, 16, 218. [Google Scholar] [CrossRef] [Green Version]
- Sistilli, G.; Kalendova, V.; Cajka, T.; Irodenko, I.; Bardova, K.; Oseeva, M.; Zacek, P.; Kroupova, P.; Horakova, O.; Lackner, K.; et al. Krill Oil Supplementation Reduces Exacerbated Hepatic Steatosis Induced by Thermoneutral Housing in Mice with Diet-Induced Obesity. Nutrients 2021, 13, 437. [Google Scholar] [CrossRef] [PubMed]
- Kroupova, P.; Van Schothorst, E.M.; Keijer, J.; Bunschoten, A.; Vodicka, M.; Irodenko, I.; Oseeva, M.; Zacek, P.; Kopecky, J.; Rossmeisl, M.; et al. Omega-3 Phospholipids from Krill Oil Enhance Intestinal Fatty Acid Oxidation More Effectively than Omega-3 Triacylglycerols in High-Fat Diet-Fed Obese Mice. Nutrients 2020, 12, 2037. [Google Scholar] [CrossRef] [PubMed]
- Rossmeisl, M.; Pavlisova, J.; Bardova, K.; Kalendova, V.; Buresova, J.; Kuda, O.; Kroupova, P.; Stankova, B.; Tvrzicka, E.; Fiserova, E.; et al. Increased plasma levels of palmitoleic acid may contribute to beneficial effects of Krill oil on glucose homeostasis in dietary obese mice. Biochim. Biophys. Acta 2020, 1865, 158732. [Google Scholar] [CrossRef] [PubMed]
- Fosshaug, L.E.; Berge, R.K.; Beitnes, J.O.; Berge, K.; Vik, H.; Aukrust, P.; Gullestad, L.; Vinge, L.E.; Oie, E. Krill oil attenuates left ventricular dilatation after myocardial infarction in rats. Lipids Health Dis. 2011, 10, 245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lobraico, J.M.; DiLello, L.C.; Butler, A.D.; Cordisco, M.E.; Petrini, J.R.; Ahmadi, R. Effects of krill oil on endothelial function and other cardiovascular risk factors in participants with type 2 diabetes, a randomized controlled trial. BMJ Open Diabetes Res. Care 2015, 3, e000107. [Google Scholar] [CrossRef] [Green Version]
- Di Marzo, V.; Silvestri, C. Lifestyle and Metabolic Syndrome: Contribution of the Endocannabinoidome. Nutrients 2019, 11, 1956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piscitelli, F.; Carta, G.; Bisogno, T.; Murru, E.; Cordeddu, L.; Berge, K.; Tandy, S.; Cohn, J.S.; Griinari, M.; Banni, S.; et al. Effect of dietary krill oil supplementation on the endocannabinoidome of metabolically relevant tissues from high-fat-fed mice. Nutr. Metab. 2011, 8, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berge, K.; Piscitelli, F.; Hoem, N.; Silvestri, C.; Meyer, I.; Banni, S.; Di Marzo, V. Chronic treatment with krill powder reduces plasma triglyceride and anandamide levels in mildly obese men. Lipids Health Dis. 2013, 12, 78. [Google Scholar] [CrossRef] [Green Version]
- Banni, S.; Carta, G.; Murru, E.; Cordeddu, L.; Giordano, E.; Sirigu, A.R.; Berge, K.; Vik, H.; Maki, K.C.; Di Marzo, V.; et al. Krill oil significantly decreases 2-arachidonoylglycerol plasma levels in obese subjects. Nutr. Metab. 2011, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Cui, C.; Li, Y.; Gao, H.; Zhang, H.; Han, J.; Zhang, D.; Li, Y.; Zhou, J.; Lu, C.; Su, X. Modulation of the gut microbiota by the mixture of fish oil and krill oil in high-fat diet-induced obesity mice. PLoS ONE 2017, 12, e0186216. [Google Scholar] [CrossRef]
- Lu, C.; Sun, T.; Li, Y.; Zhang, D.; Zhou, J.; Su, X. Modulation of the Gut Microbiota by Krill Oil in Mice Fed a High-Sugar High-Fat Diet. Front. Microbiol. 2017, 8, 905. [Google Scholar] [CrossRef]
- Jiang, Q.; Lu, C.; Sun, T.; Zhou, J.; Li, Y.; Ming, T.; Bai, L.; Wang, Z.J.; Su, X. Alterations of the Brain Proteome and Gut Microbiota in d-Galactose-Induced Brain-Aging Mice with Krill Oil Supplementation. J. Agric. Food Chem. 2019, 67, 9820–9830. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, M.; Cesi, V.; Palone, F.; Pierdomenico, M.; Colantoni, E.; Leter, B.; Vitali, R.; Negroni, A.; Cucchiara, S.; Stronati, L. Krill oil, vitamin D and Lactobacillus reuteri cooperate to reduce gut inflammation. Benef. Microbes 2018, 9, 389–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimstad, T.; Bjørndal, B.; Cacabelos, D.; Aasprong, O.G.; Janssen, E.A.; Omdal, R.; Svardal, A.; Hausken, T.; Bohov, P.; Portero-Otin, M.; et al. Dietary supplementation of krill oil attenuates inflammation and oxidative stress in experimental ulcerative colitis in rats. Scand. J. Gastroenterol. 2011, 47, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Hong, S.-S.; Lee, M.; Lee, E.-H.; Rhee, I.; Chang, S.-Y.; Lim, S.-J. Krill Oil-Incorporated Liposomes as an Effective Nanovehicle to Ameliorate the Inflammatory Responses of DSS-Induced Colitis. Int. J. Nanomed. 2019, 14, 8305–8320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.; Smith, A.D.; Solano-Aguilar, G.; Wang, T.T.Y.; Pham, Q.; Beshah, E.; Tang, Q.; Urban, J.F., Jr.; Xue, C.; Li, R.W. Mechanistic insights into the attenuation of intestinal inflammation and modulation of the gut microbiome by krill oil using in vitro and in vivo models. Microbiome 2020, 8, 83. [Google Scholar] [CrossRef] [PubMed]
- Ierna, M.; Kerr, A.; Scales, H.; Berge, K.; Griinari, M. Supplementation of diet with krill oil protects against experimental rheu-matoid arthritis. BMC Musculoskelet. Disord. 2010, 11, 136. [Google Scholar] [CrossRef] [Green Version]
- Vigerust, N.F.; Bjørndal, B.; Bohov, P.; Brattelid, T.; Svardal, A.; Berge, R.K. Krill oil versus fish oil in modulation of inflammation and lipid metabolism in mice transgenic for TNF-α. Eur. J. Nutr. 2013, 52, 1315–1325. [Google Scholar] [CrossRef]
- Tou, J.C.; Jaczynski, J.; Chen, Y.-C. Krill for Human Consumption: Nutritional Value and Potential Health Benefits. Nutr. Rev. 2007, 65, 63–77. [Google Scholar] [CrossRef]
- Deutsch, L. Evaluation of the Effect of Neptune Krill Oil on Chronic Inflammation and Arthritic Symptoms. J. Am. Coll. Nutr. 2007, 26, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Fukushima, M.; Sakuraba, K.; Sawaki, K.; Sekigawa, K. Krill Oil Improves Mild Knee Joint Pain: A Randomized Control Trial. PLoS ONE 2016, 11, e0162769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Osawa, T. Astaxanthin Protects Neuronal Cells against Oxidative Damage and Is a Potent Candidate for Brain Food. Forum Nutr. 2009, 61, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-Q.; Sun, X.-B.; Xu, Y.-X.; Zhao, H.; Zhu, Q.-Y.; Zhu, C.-Q. Astaxanthin upregulates heme oxygenase-1 expression through ERK1/2 pathway and its protective effect against beta-amyloid-induced cytotoxicity in SH-SY5Y cells. Brain Res. 2010, 1360, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.-P.; Liu, S.-Y.; Sun, H.; Wu, X.-M.; Li, J.-J.; Zhu, L. Neuroprotective effect of astaxanthin on H2O2-induced neurotoxicity in vitro and on focal cerebral ischemia in vivo. Brain Res. 2010, 1360, 40–48. [Google Scholar] [CrossRef]
- Lee, B.; Sur, B.-J.; Han, J.-J.; Shim, I.; Her, S.; Lee, H.-J.; Hahm, D.-H. Krill phosphatidylserine improves learning and memory in Morris water maze in aged rats. Prog. Neuro. Psychopharmacol. Biol. Psychiatry 2010, 34, 1085–1093. [Google Scholar] [CrossRef]
- Barros, M.P.; Poppe, S.C.; Bondan, E.F. Neuroprotective Properties of the Marine Carotenoid Astaxanthin and Omega-3 Fatty Acids, and Perspectives for the Natural Combination of Both in Krill Oil. Nutrients 2014, 6, 1293–1317. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.Y.; Jang, J.S.; Son, D.J.; Im, H.-S.; Kim, J.Y.; Park, J.E.; Choi, W.R.; Han, S.-B.; Hong, J.T. Antarctic Krill Oil Diet Protects against Lipopolysaccharide-Induced Oxidative Stress, Neuroinflammation and Cognitive Impairment. Int. J. Mol. Sci. 2017, 18, 2554. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Wu, F.; Wen, M.; Yanagita, T.; Xue, C.; Zhang, T.; Wang, Y. The Protective Effect of Antarctic Krill Oil on Cognitive Function by Inhibiting Oxidative Stress in the Brain of Senescence-Accelerated Prone Mouse Strain 8 (SAMP8) Mice. J. Food Sci. 2018, 83, 543–551. [Google Scholar] [CrossRef]
- Kim, J.H.; Meng, H.W.; He, M.T.; Choi, J.M.; Lee, D.; Cho, E.J. Krill Oil Attenuates Cognitive Impairment by the Regulation of Oxidative Stress and Neuronal Apoptosis in an Amyloid β-Induced Alzheimer’s Disease Mouse Model. Molecules 2020, 25, 3942. [Google Scholar] [CrossRef]
- Andraka, J.M.; Sharma, N.; Marchalant, Y. Can krill oil be of use for counteracting neuroinflammatory processes induced by high fat diet and aging? Neurosci. Res. 2020, 157, 1–14. [Google Scholar] [CrossRef]
- Wibrand, K.; Berge, K.; Messaoudi, M.; Duffaud, A.; Panja, D.; Bramham, C.R.; Burri, L. Enhanced cognitive function and antidepressant-like effects after krill oil supplementation in rats. Lipids Health Dis. 2013, 12, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zadeh-Ardabili, P.M.; Rad, S.K.; Rad, S.K.; Movafagh, A. Antidepressant-like effects of fish, krill oils and Vit B12 against exposure to stress environment in mice models: Current status and pilot study. Sci. Rep. 2019, 9, 19953. [Google Scholar] [CrossRef]
- Mendoza, C.; Perez-Urrutia, N.; Alvarez-Ricartes, N.; Barreto, G.E.; Pérez-Ordás, R.; Iarkov, A.; Echeverria, V. Cotinine Plus Krill Oil Decreased Depressive Behavior, and Increased Astrocytes Survival in the Hippocampus of Mice Subjected to Restraint Stress. Front. Neurosci. 2018, 12, 952. [Google Scholar] [CrossRef]
- Van der Wurff, I.S.; von Schacky, C.; Berge, K.; Kirschner, P.A.; de Groot, R.H. A protocol for a randomised controlled trial in-vestigating the effect of increasing Omega-3 index with krill oil supplementation on learning, cognition, behaviour and visual processing in typically developing adolescents. BMJ Open 2016, 6, e011790. [Google Scholar] [CrossRef] [PubMed]
- Van der Wurff, I.; von Schacky, C.; Bergeland, T.; Leontjevas, R.; Zeegers, M.; Kirschner, P.; de Groot, R. Effect of one year krill oil supplementation on depressive symptoms and self-esteem of Dutch adolescents: A randomized controlled trial. Prostaglandins Leukot. Essent. Fat. Acids 2020, 163, 102208. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Wang, X.; Cao, W.; Yang, B.; Mu, Y.; Dong, Y.; Xiu, Z. E-configuration structures of EPA and DHA derived from Euphausia superba and their significant inhibitive effects on growth of human cancer cell lines in vitro. Prostaglandins Leukot. Essent. Fat. Acids 2017, 117, 47–53. [Google Scholar] [CrossRef]
- Xiao, S.U.; Tanalgo, P.; Bustos, M.; Dass, C.R. The Effect of Krill Oil and n-3 Polyunsaturated Fatty Acids on Human Osteosarcoma Cell Proliferation and Migration. Curr. Drug Targets 2018, 19, 479–486. [Google Scholar] [CrossRef]
- Jayathilake, A.G.; Senior, P.V.; Su, X.Q. Krill oil extract suppresses cell growth and induces apoptosis of human colorectal cancer cells. BMC Complement. Altern. Med. 2016, 16, 328. [Google Scholar] [CrossRef] [Green Version]
- Jayathilake, A.G.; Kadife, E.; Luwor, R.B.; Nurgali, K.; Su, X.Q. Krill oil extract suppresses the proliferation of colorectal cancer cells through activation of caspase 3/9. Nutr. Metab. 2019, 16, 53. [Google Scholar] [CrossRef]
- Jayathilake, A.G.; Veale, M.F.; Luwor, R.B.; Nurgali, K.; Su, X.Q. Krill oil extract inhibits the migration of human colorectal cancer cells and down-regulates EGFR signalling and PD-L1 expression. BMC Complement. Med. Ther. 2020, 20, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Skarpańska-Stejnborn, A.; Pilaczyńska-Szcześniak, L.; Basta, P.; Foriasz, J.; Arlet, J. Effects of Supplementation with Neptune Krill Oil (Euphasia Superba) on Selected Redox Parameters and Pro-Inflammatory Markers in Athletes during Exhaustive Exercise. J. Hum. Kinet. 2010, 25, 49–57. [Google Scholar] [CrossRef]
- Da Boit, M.; Mastalurova, I.; Brazaite, G.; McGovern, N.; Thompson, K.; Gray, S.R. The Effect of Krill Oil Supplementation on Exercise Performance and Markers of Immune Function. PLoS ONE 2015, 10, e0139174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georges, J.; Sharp, M.H.; Lowery, R.P.; Wilson, J.M.; Purpura, M.; Hornberger, T.A.; Harding, F.; Johnson, J.H.; Peele, D.M.; Jäger, R. The Effects of Krill Oil on mTOR Signaling and Resistance[tnq_nbsp] Exercise: A Pilot Study. J. Nutr. Metab. 2018, 2018, 1–11. [Google Scholar] [CrossRef]
- Barenie, M.J.; Freemas, J.A.; Baranauskas, M.N.; Goss, C.S.; Freeman, K.L.; Chen, X.; Dickinson, S.L.; Fly, A.D.; Kawata, K.; Chapman, R.F.; et al. Effectiveness of a combined New Zealand green-lipped mussel and Antarctic krill oil supplement on markers of exercise-induced muscle damage and inflammation in untrained men. J. Diet Suppl. 2020, 1–26. [Google Scholar] [CrossRef]
- Storsve, A.B.; Johnsen, L.; Nyborg, C.; Melau, J.; Hisdal, J.; Burri, L. Effects of Krill Oil and Race Distance on Serum Choline and Choline Metabolites in Triathletes: A Field Study. Front. Nutr. 2020, 7, 133. [Google Scholar] [CrossRef]
- Ibrahim, S.H.; Hirsova, P.; Malhi, H.; Gores, G.J. Animal Models of Nonalcoholic Steatohepatitis: Eat, Delete, and Inflame. Dig. Dis. Sci. 2015, 61, 1325–1336. [Google Scholar] [CrossRef] [Green Version]
- Cicero, A.F.G.; Morbini, M.; Borghi, C. Do we need ’new’ omega-3 polyunsaturated fatty acids formulations? Expert Opin. Pharmacother. 2015, 16, 285–288. [Google Scholar] [CrossRef] [Green Version]
- Kwantes, J.M.; Grundmann, O. A Brief Review of Krill Oil History, Research, and the Commercial Market. J. Diet. Suppl. 2014, 12, 23–35. [Google Scholar] [CrossRef]
- Wang, L.; Yang, F.; Rong, Y.; Yuan, Y.; Ding, Y.; Shi, W.; Wang, Z. Effects of different proteases enzymatic extraction on the lipid yield and quality of Antarctic krill oil. Food Sci. Nutr. 2019, 7, 2224–2230. [Google Scholar] [CrossRef]
- Alvarez-Ricartes, N.; Oliveros-Matus, P.; Mendoza, C.; Perez-Urrutia, N.; Echeverria, F.; Iarkov, A.; Barreto, G.E.; Echeverria, V. Correction to: Intranasal Cotinine Plus Krill Oil Facilitates Fear Extinction, Decreases Depressive-Like Behavior, and Increases Hippocampal Calcineurin a Levels in Mice. Mol. Neurobiol. 2018, 55, 7961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Der Wurff, I.S.; Von Schacky, C.; Bergeland, T.; Leontjevas, R.; Zeegers, M.P.; Jolles, J.; Kirschner, P.A.; De Groot, R.H. Effect of 1 Year Krill Oil Supplementation on Cognitive Achievement of Dutch Adolescents: A Double-Blind Randomized Controlled Trial. Nutrients 2019, 11, 1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Krill Sample | Polar Lipids | Monoacylglycerols | Diacylglycerols | Sterols | Free Fatty Acids | Triacyl Glycerols | Ref. |
---|---|---|---|---|---|---|---|
Euphausia superba in South Georgia | 41.25 | 1.4 | 0.43 | 16.17 | 14.36 | 21.50 | [19] |
Euphausia superba in Gerlache Strait | 44 | 0.9 | 3.6 | 1.4 | 8.5 | 40.4 | [16] |
Euphausia superba in Scotia Sea | 45.7 | 0.4 | 1.3 | 1.7 | 16.1 | 33.3 | [27] |
Euphausia superba US AMLR Elephant Islands | ND | 66–72 | ND | 4–6 | 1.1–1.8 | 22–38.4 | [16] |
Euphausia superba US AMLR Elephant Islands Extracted with ethanol | 69.8 | ND | ND | 1.1 | 28.5 | 0.6 | [28] |
Euphausia superba US AMLR Elephant Islands Extracted with hexane | 48.6 | ND | ND | 0.6 | 13.5 | 37.6 | [29] |
Krill oil from Aker BioMarine | 80.7 | ND | 0.93 | 2.8 | 3.46 | 11.85 | [30] |
Fatty Acid | Krill |
---|---|
C14:0 Myristic acid | 5.0–13.0 |
C16:0 Palmitic acid | 17.0–24.6 |
C16:1 (n-7) Palmitoleic acid | 2.5–9.0 |
C18:1 (n-7) Cis-11-octadecenoic acid | 4.7–8.1 |
C18:1 (n-9) Elaidic acid | 6.0–14.5 |
C18:2 (n-6) Linoleic acid | ND–3.0 |
C18:3 (n-3) Alpha linolenic acid | 0.1–4.7 |
C20:5 (n-3) Eicosapentaenoic acid | 14.3–28.0 |
C22:5 (n-3) Docosapentaenoic Acid | ND–0.07 |
C22:6 (n-3) Docosahexaenoic acid (DHA) | 7.1–15.7 |
Classification of Health Benefits | Model | Diets | Duration of Supplementation | Outcomes | References |
---|---|---|---|---|---|
Metabolic disorders | Sprague Dawley rats HFD | 100 and 200 g/krill oil (KO) | 2 weeks | ↓ serum lipid levels | [104] |
HFD mice | 1.25–2.5–5% KO | 8 weeks | ↓ liver TGs, cholesterol and serum cholesterol and glucose | [105] | |
hTNFα over-expressing mice | Krill powder (4.3% of proteins) | 8 weeks | ↓ liver and plasma TGs, hepatic expression SREBP2, ↑ β-oxidation, ↓ inflammation | [106] | |
LDLR-KO mice fed with a western diet + Pacific krill | 8-HEPE (100 mg/kg) | 18 weeks | ↓ plasma LDL and total cholesterol, ↑ HDL, ↓ hepatic TG levels | [107] | |
Dyslipidemic and diabetic non-human primates | 150 mg/Kg/day | ↓ plasma total and LDL-cholesterol, and TGs, ↑ HDL-cholesterol | [108] | ||
C57BL/6J mice fed with HFD | 5% krill powder | 12 weeks | ↓ body weight gain, the fat accumulation in tissue adipose and liver, ↓ serum LDL, ↑ glucose tolerance. ↓ oxidative damage in liver | [114] | |
Rats HFD | 2.5% krill | 12 weeks | ↓ body weight gain | [109] | |
Obesity model in castrated New Zealand white rabbits | 600 mg/day | 8 weeks | ↑ insulin sensitivity and secretion, ↓ fasting blood glucose | [110] | |
HFD combined with thermoneutral animal housing | KO (containing EPA ~13%, DHA ~8%) | 24 weeks | ↓ liver steatosis | [152] | |
Randomized controlled study on 36 individuals | 4 g/day | 8 weeks | ↑ EPA, DHA and DPA in krill group | [111] | |
Human with borderline or high TG levels | 0.5, 1, 2, or 4 g/day for | 6 and 12 weeks | ↓ plasma TGs | [112] | |
Randomized cross-over clinical trial on 25 moderately hyperTGmic subjects | 1000 mg/day | 4 weeks | ↑ plasma HDL and apolipoprotein AI levels | [113] | |
11 obese men | 4 g/day per os | 24 weeks | ↓ anthropometric parameters and blood AEA and 2-AG | [122] | |
63 obese subjects | 2 g/day | 4 weeks | ↓ 2-AG levels, no significant effect on antropometric | [123] | |
Pretectionagainst myocardial infarct | MI and euthanasia after 7 days | KO containing 0.47 g/100 g EPA + DHA | 14 days of pretreatment with KO before MI | ↓ heart and lung hypertrophy, and and inflammation | [118] |
Vascular function | 34 participants with type 2 diabetes | 1 g/day in PUFA | 4 weeks | ↑ endothelial function ↓ blood C peptide levels and HOMA scores | [119] |
Gut microbiota and IBD | ICR mice fed with HFD | fish oil (600 μg/g/day), KO (600 μg/g/day) and their mixture (300 + 300 μg/g/day | 12 weeks | ↓ obesity, ↑ positive phyla (i.e., Bacterioides and Lactobacilli) | [124] |
Obesity and hyperlipidemia induced by HFD+ high sugar diet | 100, 200, 600µg/g/day | 12 weeks | ↑ microbiotic alteration and cardiometabolic parameters | [125] | |
100, 200 and 600 mg/kg | 7 weeks | ↑ abundance of Lactobacillus spp. and short-chain fatty acids producers | [126] | ||
Dextran sulfate sodium (DSS)-induced colitis in mice | mixture of KO, Lactobacillus reuteri and vitamin | 4 weeks | ↑ clinical and histological scores, restore epithelial restitution, ↓ proinflammatory cytokines | [110] | |
DSS-induced colitis in mice | 5% | 4 weeks | ↓ disease activity index and TNF-α and IL-1β levels | [128] | |
DSS-induced colitis in mice | KO-entrapped liposomes (containing 42% w/w phospholipids, ≥26.5 w/w% total Omega-3, ≥8.5% w/w DHA, ≥14.5% w/w EPA, and 0.125±0.025 w/w% astaxanthin) | 8 weeks | ↓TNF and IL6 and the systemic levels of endotoxin, ↑ hydrophobic protective barrier | [129] | |
C. rodentium infected mice | 1.5 g KO | 4 weeks | ↓ inflammatory pathway, ↓of Rickettsiales and several species of Lactobacillus | [130] | |
Arthritic disease | Mice experimental models of inflammatory arthritis | KO diet, in which EPA + DHA were 0.44 g/100 g of KO diet | 2 months | ↓ infiltration of inflammatory cells and hyperplasia at synovial layer | [132] |
hTNF-α over-expressing mice | 6 weeks | ↓ markers of fatty acid oxidation | [133] | ||
Randomized, double blind, placebo controlled clinical trials on 90 patients with CVD and/or osteoarthritis and/or rheumatoid arthritis | 300 mg/day | ↓ CRP levels and pain (about 29%), stiffness (about 20%) and functional impairment (about 23%). | [134] | ||
Randomized, double-blind, parallel-group, placebo-controlled study, 50 patients with mild knee pain | 2 g/day | 30 days | ↓ knee pain, ↑ motion of both the knees | [135] | |
260 Australian patients affected by knee OA | 2 g/day | 6 months (ongoing) | ↑ knee pain and in size of knee synovitis/effusion | [11] | |
Neurodegeneration | Human neuronal SH-SY5Y cell line | ↓ oxidative stress and mitochondrial protection | [137] | ||
Aged rats | 20, 50 mg/kg/day | 7 days | ↑ cholinergic trasmission, muscarinic receptors and choline transporters | [139] | |
LPS -induced mice model of Alzheimer | 80 mg/kg/day | 4 weeks | ↓ iNOS, COX-2, NFkB, ROS and malondialdehyde levels, amyloid beta (1–42) peptide | [141] | |
Senescence-accelerated prone mouse strain 8 (SAMP8) | 1% of KO | 12 weeks | ↑ cognitive function and the anxiety, ↓ memory deficit and learning, ↓ β-amyloid Aβ42 accumulation | [142] | |
Amyloid Aβ25-35-induced mouse model of Alzheimer | 100, 200 or 500 mg/Kg/day | 14 days | ↓ latency in the Morris water maze test, ↓ Bax/Bcl-2 ratio in the brain and ↓ levels of ROS, malondialdehyde and NO | [143] | |
Randomized, double-blind clinical trial on 45 healthy elderly males (61–72 years-old) | sardine-oil, KO or placebo | 12 weeks | ↑ cognitive capacity | [144] | |
KO 0.2 g/rat/day, or imipramine 20 mg/kg/day | 7 weeks | ↑ cognitive abilities, in behaviour features and Bdnf | [145] | ||
KO or vitamine B12 or imipramine or saline 5 mL/kg | 14 days | ↓ malondialdehyde and hydrogen peroxide levels, catalase activity, ↑ glutathione peroxidase levels, superoxide dismutase activities and glutathione levels | [146] | ||
Immobility-induced murine depression model | PBS, or cotinine (a nicotine-derivative) 5 mg/kg, or cotinine plus KO 143 mg/kg | 4 weeks | ↓ depression-like behaviours | [147] | |
Randomized, controlled, double-blind clinical trial on 264 adolescent (13–15 years) | cohort I: 400 mg/day of EPA + DHA or placebo, and after 3 months increased the dose to 800 mg/day of EPA + DHA. cohort II: 800 mg/day of EPA + DHA | 1 year | no evidence about an effect on depressive feelings, low adherence | [148,149] | |
Cancer | Several human and murine colorectal cancer cells | 0.03 and 0.12 µL/100 µL | 24–48 h | ↓ cell proliferation, ↓ expression of EGFR, pEGFR, pERK1/2 and pAKT | [154] |
Exercise performance | Double-blind on 17 rowers members of the Polish National Rowing Team | 1 g/day of KO | 6 weeks | ↑ erythrocytes or serum levels of superoxide dismutase, TNF-α and thiobarbituric acid | [155] |
Randomized clinical trial on 37 young athletes | 2 g/day of KO | 6 weeks | ↑ levels of peripheral blood mononuclear cell IL-2 production and natural killer cell cytotoxic activity, 3 h post-exercise | [156] | |
Double-blind, placebo-controlled clinical trial | 3 g/day of KO or placebo during the resistance training | 8 weeks | ↑ in the lean body mass (about 2.1% vs. baseline) | [157] | |
ESPO-572® (75% of PCSO-524® and 25% KO) 600 mg/day | 26 days | ↑ mitigation of exercise-induced muscle damage and cytokine-induced tissue degradation | [158] | ||
47 triathletes randomized supplemented before the race. | 4 g/day of a KO (Superba BoostTM) | 5 weeks | ↑ exercise performance, especially during high-resistance efforts | [159] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colletti, A.; Cravotto, G.; Citi, V.; Martelli, A.; Testai, L.; Cicero, A.F.G. Advances in Technologies for Highly Active Omega-3 Fatty Acids from Krill Oil: Clinical Applications. Mar. Drugs 2021, 19, 306. https://doi.org/10.3390/md19060306
Colletti A, Cravotto G, Citi V, Martelli A, Testai L, Cicero AFG. Advances in Technologies for Highly Active Omega-3 Fatty Acids from Krill Oil: Clinical Applications. Marine Drugs. 2021; 19(6):306. https://doi.org/10.3390/md19060306
Chicago/Turabian StyleColletti, Alessandro, Giancarlo Cravotto, Valentina Citi, Alma Martelli, Lara Testai, and Arrigo F. G. Cicero. 2021. "Advances in Technologies for Highly Active Omega-3 Fatty Acids from Krill Oil: Clinical Applications" Marine Drugs 19, no. 6: 306. https://doi.org/10.3390/md19060306
APA StyleColletti, A., Cravotto, G., Citi, V., Martelli, A., Testai, L., & Cicero, A. F. G. (2021). Advances in Technologies for Highly Active Omega-3 Fatty Acids from Krill Oil: Clinical Applications. Marine Drugs, 19(6), 306. https://doi.org/10.3390/md19060306