Secondary Metabolites from Marine-Derived Fungi and Actinobacteria as Potential Sources of Novel Colorectal Cancer Drugs
Abstract
:1. Introduction
2. Potential Cytotoxic Metabolites from Various Marine Microorganisms against CRC
2.1. Marine Fungi
2.1.1. Aspergillus sp.
2.1.2. Penicillium sp.
2.1.3. Westerdykella sp.
2.1.4. Paradendryphiella sp.
2.1.5. Dichotomomyces sp.
2.1.6. Neosartorya sp.
2.2. Actinobacteria
2.2.1. Nocardiopsis sp.
2.2.2. Streptomyces sp.
3. Cytotoxicity Assays
4. Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Rawla, P.; Sunkara, T.; Barsouk, A. Epidemiology of Colorectal Cancer: Incidence, Mortality, Survival, and Risk Factors. Prz. Gastroenterol. 2019, 14, 89–103. [Google Scholar] [CrossRef]
- Van der Jeught, K.; Xu, H.C.; Li, Y.J.; Lu, X.B.; Ji, G. Drug Resistance and New Therapies in Colorectal Cancer. World J. Gastroenterol. 2018, 24, 3834–3848. [Google Scholar] [CrossRef] [PubMed]
- Goka, E.T.; Chaturvedi, P.; Lopez, D.T.M.; Garza, A.D.L.; Lippman, M.E. RAC1b Overexpression Confers Resistance to Chemotherapy Treatment in Colorectal Cancer. Mol. Cancer Ther. 2019, 18, 957–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guren, M.G. The Global Challenge of Colorectal Cancer. Lancet Gastroenterol. Hepatol. 2019, 4, 894–895. [Google Scholar] [CrossRef] [Green Version]
- Fujita, K.I.; Kubota, Y.; Ishida, H.; Sasaki, Y. Irinotecan, a Key Chemotherapeutic Drug for Metastatic Colorectal Cancer. World J. Gastroenterol. 2015, 12234–12248. [Google Scholar] [CrossRef] [PubMed]
- Conti, J.A.; Kemeny, N.E.; Saltz, L.B.; Huang, Y.; Tong, W.P.; Chou, T.C.; Sun, M.; Pulliam, S.; Gonzalez, C. Irinotecan Is an Active Agent in Untreated Patients with Metastatic Colorectal Cancer. J. Clin. Oncol. 1996, 14, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Rougier, P.; Bugat, R.; Douillard, J.Y.; Culine, S.; Suc, E.; Brunet, P.; Becouarn, Y.; Ychou, M.; Marty, M.; Extra, J.M.; et al. Phase II Study of Irinotecan in the Treatment of Advanced Colorectal Cancer in Chemotherapy-Naive Patients and Patients Pretreated with Fluorouracil-Based Chemotherapy. J. Clin. Oncol. 2016, 15, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Guo, W.; Li, L.; Fu, Z.; Liu, W.; Gao, J.; Shu, Y.; Xu, Q.; Sun, Y.; Gu, Y. Andrographolide Reversed 5-FU Resistance in Human Colorectal Cancer by Elevating BAX Expression. Biochem. Pharmacol. 2016, 121, 8–17. [Google Scholar] [CrossRef]
- Watson, J.L.; Hill, R.; Lee, P.W.; Giacomantonio, C.A.; Hoskin, D.W. Curcumin Induces Apoptosis in HCT-116 Human Colon Cancer Cells in a P21-Independent Manner. Exp. Mol. Pathol. 2008, 84, 230–233. [Google Scholar] [CrossRef]
- Su, C.C.; Lin, J.G.; Li, T.M.; Chung, J.G.; Yang, J.S.; Ip, S.W.; Lin, W.C.; Chen, G.W. Curcumin-induced apoptosis of human colon cancer colo 205 cells through the production of ROS, Ca2+ and the activation of caspase-3. Anticancer Res. 2006, 26, 4379–4389. [Google Scholar] [PubMed]
- Kim, E.J.; Park, S.Y.; Lee, J.Y.; Park, J.H.Y. Fucoidan Present in Brown Algae Induces Apoptosis of Human Colon Cancer Cells. BMC Gastroenterol. 2010, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Tsai, H.L.; Tai, C.J.; Huang, C.W.; Chang, F.R.; Wang, J.Y. Efficacy of Low-Molecular-Weight Fucoidan as a Supplemental Therapy in Metastatic Colorectal Cancer Patients: A Double-Blind Randomized Controlled Trial. Mar. Drugs 2017, 15, 122. [Google Scholar] [CrossRef] [Green Version]
- Science, A.I. of M. Australian Institute of Marine Science: Marine Microbes. Available online: https://www.aims.gov.au/docs/research/marine-microbes/microbes/microbes.html (accessed on 16 February 2021).
- Salazar, G.; Sunagawa, S. Marine Microbial Diversity. Curr. Biol. 2017, 27, R489–R494. [Google Scholar] [CrossRef] [Green Version]
- Committee on the Ocean’s Role in Human Health; National Research Council. From Monsoons to Microbes: Understanding the Ocean’s Role in Human Health; National Academies Press: Washington, DC, USA, 1999. [Google Scholar] [CrossRef]
- Xiao, L.; Liu, H.; Wu, N.; Liu, M.; Wei, J.; Zhang, Y.; Lin, X. Characterization of the High Cytochalasin E and Rosellichalasin Producing-Aspergillus Sp. Nov. F1 Isolated from Marine Solar Saltern in China. World J. Microbiol. Biotechnol. 2013, 29, 11–17. [Google Scholar] [CrossRef]
- Haidle, A.M.; Myers, A.G. An enantioselective, modular, and general route to the cytochalasins: Synthesis of L-696,474 and cytochalasin B. Proc. Natl. Acad. Sci. USA 2004, 101, 12048–12053. [Google Scholar] [CrossRef] [Green Version]
- Mandelare, P.E.; Adpressa, D.A.; Kaweesa, E.N.; Zakharov, L.N.; Loesgen, S. Coculture of Two Developmental Stages of a Marine-Derived Aspergillus alliaceus Results in the Production of the Cytotoxic Bianthrone Allianthrone A. J. Nat. Prod. 2018, 81, 1014–1022. [Google Scholar] [CrossRef]
- Lee, Y.M.; Dang, H.T.; Li, J.; Zhang, P.; Hong, J.; Lee, C.O.; Jung, J.H. A Cytotoxic Fellutamide Analogue from the Sponge-Derived Fungus Aspergillus versicolor. Bull. Korean Chem. Soc. 2011, 32, 3817–3820. [Google Scholar] [CrossRef] [Green Version]
- Giltrap, A.M.; Cergol, K.M.; Pang, A.; Britton, W.J.; Payne, R.J. Total Synthesis of Fellutamide B and Deoxy-Fellutamides B, C, and D. Mar. Drugs 2013, 11, 2382–2397. [Google Scholar] [CrossRef] [Green Version]
- Hines, J.; Groll, M.; Fahnestock, M.; Crews, C.M. Proteasome Inhibition by Fellutamide B Induces Nerve Growth Factor Synthesis. Chem. Biol. 2008, 15, 501. [Google Scholar] [CrossRef] [Green Version]
- Bae, S.Y.; Liao, L.; Park, S.H.; Kim, W.K.; Shin, J.; Lee, S.K. Antitumor Activity of Asperphenin A, a Lipopeptidyl Benzophenone from Marine-Derived Aspergillus Sp. Fungus, by Inhibiting Tubulin Polymerization in Colon Cancer Cells. Mar. Drugs 2020, 18, 110. [Google Scholar] [CrossRef] [Green Version]
- Li, C.-S.; Li, X.-M.; Gao, S.-S.; Lu, Y.-H.; Wang, B.-G. Cytotoxic Anthranilic Acid Derivatives from Deep Sea Sediment-Derived Fungus Penicillium Paneum SD-44. Mar. Drugs 2013, 11, 3068–3076. [Google Scholar] [CrossRef] [PubMed]
- Congiu, C.; Cocco, M.T.; Lilliu, V.; Onnis, V. New Potential Anticancer Agents Based on the Anthranilic Acid Scaffold: Synthesis and Evaluation of Biological Activity. J. Med. Chem. 2005, 48, 8245–8252. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.H.; Li, X.M.; Lv, C.T.; Huang, C.G.; Wang, B.G. Brocazines A-F, Cytotoxic Bisthiodiketopiperazine Derivatives from Penicillium Brocae MA-231, an Endophytic Fungus Derived from the Marine Mangrove Plant Avicennia Marina. J. Nat. Prod. 2014, 77, 1921–1927. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.J.; Park, J.S.; Kim, Y.J.; Jung, J.H.; Lee, J.K.; Kwon, H.C.; Yang, H.O. Apoptosis-Inducing Effect of Diketopiperazine Disulfides Produced by Aspergillus Sp. KMD 901 Isolated from Marine Sediment on HCT116 Colon Cancer Cell Lines. J. Appl. Microbiol. 2011, 110, 304–313. [Google Scholar] [CrossRef]
- Xu, D.; Luo, M.; Liu, F.; Wang, D.; Pang, X.; Zhao, T.; Xu, L.; Wu, X.; Xia, M.; Yang, X. Cytochalasan and Tyrosine-Derived Alkaloids from the Marine Sediment-Derived Fungus Westerdykella Dispersa and Their Bioactivities. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Dezaire, A.; Marchand, C.H.; Vallet, M.; Ferrand, N.; Chaouch, S.; Mouray, E.; Larsen, A.K.; Sabbah, M.; Lemaire, S.D.; Prado, S.; et al. Secondary Metabolites from the Culture of the Marine-Derived Fungus Paradendryphiella Salina PC 362H and Evaluation of the Anticancer Activity of Its Metabolite Hyalodendrin. Mar. Drugs 2020, 18, 191. [Google Scholar] [CrossRef] [Green Version]
- Welch, T.R.; Williams, R.M. Epidithiodioxopiperazines. occurrence, synthesis and biogenesis. Nat. Prod. Rep. 2014, 31, 1376–1404. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.X.; Xu, M.Y.; Li, H.J.; Zeng, K.J.; Ma, W.Z.; Tian, G.B.; Xu, J.; Yang, D.P.; Lan, W.J. Diverse Secondary Metabolites from the Marine-Derived Fungus Dichotomomyces Cejpii F31-1. Mar. Drugs 2017, 15, 339. [Google Scholar] [CrossRef] [Green Version]
- Ramos, A.A.; Buttachon, S.; Marques, P.; Dethoup, T.; Kijjoa, A.; Rocha, E. Cytotoxic Activity of Secondary Metabolites from Marine-Derived Fungus Neosartorya Siamensis in Human Cancer Cells. Phyther. Res. 2016, 30, 1862–1871. [Google Scholar]
- Lee, J.; Gamage, C.D.B.; Kim, G.J.; Hillman, P.F.; Lee, C.; Lee, E.Y.; Choi, H.; Kim, H.; Nam, S.J.; Fenical, W. Androsamide, a Cyclic Tetrapeptide from a Marine Nocardiopsis sp., Suppresses Motility of Colorectal Cancer Cells. J. Nat. Prod. 2020, 83, 3166–3172. [Google Scholar] [CrossRef]
- Chen, C.; Ye, Y.; Wang, R.; Zhang, Y.; Wu, C.; Debnath, S.C.; Ma, Z.; Wang, J.; Wu, M. Streptomyces Nigra Sp. Nov. Is a Novel Actinobacterium Isolated from Mangrove Soil and Exerts a Potent Antitumor Activity in vitro. Front. Microbiol. 2018, 9, 1587. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.T.; Pokhrel, A.R.; Nguyen, C.T.; Pham, V.T.T.; Dhakal, D.; Lim, H.N.; Jung, H.J.; Kim, T.S.; Yamaguchi, T.; Sohng, J.K. Streptomyces Sp. VN1, a Producer of Diverse Metabolites Including Non-Natural Furan-Type Anticancer Compound. Sci. Rep. 2020, 10, 1756. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.; Othman, E.M.; Stopper, H.; Edrada-Ebel, R.A.; Hentschel, U.; Abdelmohsen, U.R. Isolation of Petrocidin a, a New Cytotoxic Cyclic Dipeptide from the Marine Sponge-Derived Bacterium Streptomyces sp. SBT348. Mar. Drugs 2017, 15, 383. [Google Scholar] [CrossRef] [Green Version]
- Jinendiran, S.; Teng, W.; Dahms, H.U.; Liu, W.; Ponnusamy, V.K.; Chiu, C.C.C.; Kumar, B.S.D.; Sivakumar, N. Induction of Mitochondria-Mediated Apoptosis and Suppression of Tumor Growth in Zebrafish Xenograft Model by Cyclic Dipeptides Identified from Exiguobacterium acetylicum. Sci. Rep. 2020, 10, 13721. [Google Scholar] [CrossRef]
- Farnaes, L.; Coufal, N.G.; Kauffman, C.A.; Rheingold, A.L.; Dipasquale, A.G.; Jensen, P.R.; Fenical, W. Napyradiomycin Derivatives, Produced by a Marine-Derived Actinomycete, Illustrate Cytotoxicity by Induction of Apoptosis. J. Nat. Prod. 2014, 77, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Yang, J.; Yu, J.; Li, J.; Yuan, J.; Wong, N.K.; Ju, J. Chlorinated Bis-Indole Alkaloids from Deep-Sea Derived Streptomyces Sp. SCSIO 11791 with Antibacterial and Cytotoxic Activities. J. Antibiot. 2020, 73, 542–547. [Google Scholar] [CrossRef]
- Khan, N.; Yılmaz, S.; Aksoy, S.; Uzel, A.; Tosun, Ç.; Kirmizibayrak, P.B.; Bedir, E. Polyethers Isolated from the Marine Actinobacterium Streptomyces Cacaoi Inhibit Autophagy and Induce Apoptosis in Cancer Cells. Chem. Biol. Interact. 2019, 307, 167–178. [Google Scholar] [CrossRef]
- Pérez, M.; Schleissner, C.; Fernández, R.; Rodríguez, P.; Reyes, F.; Zuñiga, P.; De La Calle, F.; Cuevas, C. PM100117 and PM100118, New Antitumor Macrolides Produced by a Marine Streptomyces Caniferus GUA-06-05-006A. J. Antibiot. 2016, 69, 388–394. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Wang, M.; Tan, Y.; Hu, X.; He, H.; Xiao, C.; You, X.; Wang, Y.; Gan, M. Neo-Actinomycins A and B, Natural Actinomycins Bearing the 5H-Oxazolo[4,5-b]Phenoxazine Chromophore, from the Marine-Derived Streptomyces Sp. IMB094. Sci. Rep. 2017, 7, 3591. [Google Scholar] [CrossRef] [Green Version]
- Byun, W.S.; Kim, S.; Shin, Y.H.; Kim, W.K.; Oh, D.C.; Lee, S.K. Antitumor Activity of Ohmyungsamycin A through the Regulation of the Skp2-P27 Axis and MCM4 in Human Colorectal Cancer Cells. J. Nat. Prod. 2020, 83, 118–126. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Sari, G.; Ozdal, T.; Capanoglu, E. Guidelines for Cell Viability Assays. Food Front. 2020, 1, 332–349. [Google Scholar] [CrossRef]
- Van Tonder, A.; Joubert, A.M.; Cromarty, A.D. Limitations of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three commonly used cell enumeration assays. BMC Res. Notes. 2015, 8, 47. [Google Scholar] [CrossRef] [Green Version]
- Hamid, R.; Rotshteyn, Y.; Rabadi, L.; Parikh, R.; Bullock, P. Comparison of alamar blue and MTT assays for high through-put screening. Toxicol. Vitr. 2004, 18, 703–710. [Google Scholar] [CrossRef]
- Huang, K.T.; Chen, Y.H.; Walker, A.M. Inaccuracies in MTS Assays: Major Distorting Effects of Medium, Serum Albumin, and Fatty Acids. Biotechniques 2004, 37, 406–412. [Google Scholar] [CrossRef]
- Scarcello, E.; Lambremont, A.; Vanbever, R.; Jacques, P.J.; Lison, D. Mind Your Assays: Misleading Cytotoxicity with the WST-1 Assay in the Presence of Manganese. PLoS ONE 2020, 15, e0231634. [Google Scholar] [CrossRef] [Green Version]
- Aslantürk, Ö.S. In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages. In Genotoxicity—A Predictable Risk to Our Actual World; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Vichai, V.; Kirtikara, K. Sulforhodamine B Colorimetric Assay for Cytotoxicity Screening. Nat. Protoc. 2006, 1, 1112–1116. [Google Scholar] [CrossRef]
- Amaani, R.; Dwira, S. Phytochemical Content an in Vitro Toxicity of Glycine Soja Ethanol Extract on the A549 Lung Cancer Line Cell. J. Phys. 2018, 1073, 32042. [Google Scholar] [CrossRef]
- El-Azab, A.S.; Abdel-Aziz, A.A.M.; Abou-Zeid, L.A.; El-Husseiny, W.M.; ElMorsy, A.M.; El-Gendy, M.A.; El-Sayed, M.A.A. Synthesis, antitumour activities and molecular docking of thiocarboxylic acid ester-based NSAID scaffolds: COX-2 inhibition and mechanistic studies. J. Enzym. Inhib. Med. Chem. 2018, 33, 989–998. [Google Scholar] [CrossRef]
- Michel, K.H.; Chaney, M.O.; Jones, N.D.; Hoehn, M.M.; Nagarajan, R. Epipolythiopiperazinedione Antibiotics from Penicillium Turbatum. J. Antibiot. 1974, 27, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Stillwell, M.A.; Magasi, L.P.; Strunz, G.M. Production, Isolation, and Antimicrobial Activity of Hyalodendrin, a New Antibiotic Produced by a Species of Hyalodendron. Can. J. Microbiol. 2011, 20, 759–764. [Google Scholar] [CrossRef] [Green Version]
- Andreani, A.; Burnelli, S.; Granaiola, M.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M.; Varoli, L.; Landi, L.; Prata, C.; et al. Antitumor activity of bis-indole derivatives. J. Med. Chem. 2008, 51, 4563–4570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.J.; Reddy, K.; Kim, M.O.; Li, Y.; Nadas, J.; Cho, Y.Y.; Kim, J.E.; Shim, J.H.; Song, N.R.; Carper, A.; et al. (3-Chloroacetyl)-Indole, a Novel Allosteric AKT Inhibitor, Suppresses Colon Cancer Growth in Vitro and in Vivo. Cancer Prev. Res. 2011, 4, 1842–1851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.-S.; Weng, D.; Weng, J.-R. Potent Indole-3-Carbinol-Derived Antitumor Agents–Google Patents. US7807705B2, October 2010. [Google Scholar]
- McArthur, K.A.; Mitchell, S.S.; Tsueng, G.; Rheingold, A.; White, D.J.; Grodberg, J.; Lam, K.S.; Potts, B.C.M. Lynamicins A-E, Chlorinated Bisindole Pyrrole Antibiotics from a Novel Marine Actinomycete. J. Nat. Prod. 2008, 71, 1732–1737. [Google Scholar] [CrossRef] [PubMed]
- Gang, D.; Kim, D.W.; Park, H.S. Cyclic Peptides: Promising Scaffolds for Biopharmaceuticals. Genes 2018, 9, 557. [Google Scholar] [CrossRef] [Green Version]
- Avendaño, C.; Menéndez, J.C. Anticancer Drugs Acting via Radical Species, Photosensitizers and Photodynamic Therapy of Cancer. Med. Chem. Anticancer. Drugs 2008, 93–138. [Google Scholar] [CrossRef]
- Marqus, S.; Pirogova, E.; Piva, T.J. Evaluation of the use of therapeutic peptides for cancer treatment. J. Biomed. Science. 2017, 24, 21. [Google Scholar] [CrossRef] [Green Version]
Compound | Chemical Class | Producing Strain | Method, Cell Lines | Anticancer Potential * | Ref |
Marine fungi | |||||
Rosellichalasin (1) | Alkaloid, Cytochalasins | Aspergillus sp. nov. F1 | MTT assay, RKO | Moderate with IC50 = 37.3 µM | [16] |
Cytochalasin E (2) | Alkaloid, Cytochalasins | Aspergillus sp. nov. F1 | MTT assay, RKO | Weak with IC50 = 62.3 µM | [16] |
Allianthrone A (3) | Bianthrone | A. alliaceus (new strain, G4) | MTT assay, HCT116 | Very strong with IC50 = 9 µM | [18] |
Allianthrone B (4) | Bianthrone | A. alliaceus (new strain, G4) | MTT assay, HCT117 | Very strong with IC50 = 10.5 µM | [18] |
Allianthrone C (5) | Bianthrone | A. alliaceus (new strain, G4) | MTT assay, HCT118 | Strong with IC50 = 13.7 µM | [18] |
Fellutamide F (6) | Peptide, Lipopeptide | A. versicolor PF10M | SRB assay, HCT15 | Strong with IC50 = 0.13 µg/mL | [19] |
Fellutamide C (7) | Peptide, Lipopeptide | A. versicolor PF10M | SRB assay, HCT15 | Strong with IC50 = 1.74 µg/mL | [19] |
Asperphenin A (8) | Peptide, Lipopeptidyl Benzophenones | A. versicolor Ppf48 | SRB assay, RKO | Very strong with IC50 = 0.84 µM | [22] |
Asperphenin B (9) | Peptide, Lipopeptidyl Benzophenones | A. versicolor Ppf48 | SRB assay, RKO | Very strong with IC50 = 1.26 µM | [22] |
Penipacid A (10) | Anthranilic acid derivatives | P. paneum SD-44 | MTT assay, RKO | Very strong with IC50 = 8.4 µM | [23] |
Penipacid B (11) | Anthranilic acid derivatives | P. paneum SD-44 | MTT assay, RKO | Non-cytotoxic | [23] |
Penipacid C (12) | Anthranilic acid derivatives | P. paneum SD-44 | MTT assay, RKO | Non-cytotoxic | [23] |
Penipacid D (13) | Anthranilic acid derivatives | P. paneum SD-44 | MTT assay, RKO | Non-cytotoxic | [23] |
Penipacid E (14) | Anthranilic acid derivatives | P. paneum SD-44 | MTT assay, RKO | Very strong with IC50 = 9.7 µM | [23] |
Compound (15) | Anthranilic acid derivatives | P. paneum SD-44 | MTT assay, RKO | Non-cytotoxic | |
Brocazine A (16) | Peptide, Diketopiperazines with disulfide-bridged | P. brocae MA-231 | MTT assay, SW480 | Very strong with IC50 = 2.0 nM | [25] |
Brocazine B (17) | Peptide, Diketopiperazines with disulfide-bridged | P. brocae MA-231 | MTT assay, SW480 | Very strong with IC50 = 1.2 nM | [25] |
Brocazine C (18) | Peptide, Diketopiperazines with disulfide-bridged | P. brocae MA-231 | MTT assay, SW480 | Non-cytotoxic | [25] |
Brocazine D (19) | Peptide, Diketopiperazines with disulfide-bridged | P. brocae MA-231 | MTT assay, SW480 | Non-cytotoxic | [25] |
Brocazine E (20) | Peptide, Diketopiperazines with disulfide-bridged | P. brocae MA-231 | - | Not tested but showed activity against Du145, Hela, HepG2, MCF-7, NCI-H460, SGC-7901, SW1990, and U251 | [25] |
Brocazine F (21) | Peptide, Diketopiperazines with disulfide-bridged | P. brocae MA-231 | - | Not tested but showed activity against Du145, Hela, HepG2, MCF-7, NCI-H460, SGC-7901, SW1990, and U251 | [25] |
18-oxo-19,20-dihydrophomacin C (22) | Alkaloid, Cytochalasans | W. dispersa XL602 | MTT assay, HT29 | Non-cytotoxic | [27] |
18-oxo-19-methoxy-19,20- dihydrophomacin C C (23) | Alkaloid Cytochalasans | W. dispersa XL602 | MTT assay, HT29 | Non-cytotoxic | [27] |
18-oxo-19-hydroxyl-19,20-dihydrophomacin C (24) | Alkaloid, Cytochalasans | W. dispersa XL602 | MTT assay, HT29 | Non-cytotoxic | [27] |
19,20-dihydrophomacin C (25) | Alkaloid, Cytochalasans | W. dispersa XL602 | MTT assay, HT29 | Weak with IC50 = 49.09 µM | [27] |
19-methoxy-19,20-dihydrophomacin C (26) | Alkaloid, Cytochalasans | W. dispersa XL602 | MTT assay, HT29 | Weak with IC50 = 55.31 µM | [27] |
19-hydroxyl-19,20-dihydrophomacin C (27) | Alkaloid, Cytochalasans | W. dispersa XL602 | MTT assay, HT29 | Weak with IC50 = 55.48 µM | [27] |
Gymnastatin Z (28) | Alkaloid, Tyrosine-derivative | W. dispersa XL602 | MTT assay, HT29 | Weak with IC50 = 49.31 µM | [27] |
(3R, 6R) Hyalodendrin (29) | Heterocyclic aromatics, Piperazine | P. salina PC 362H | MTT assay, HCT116oxa | Very Strong with IC50 = 25.7 nM | [28] |
Dichotomocej A (30) | Amides | D. cejpii F31-1 | SRB assay, HCT116 | Non-cytotoxic | [30] |
Diorcinol (31) | Polyphenols | D. cejpii F31-1 | SRB assay, HCT116 | Non-cytotoxic | [30] |
3-O-methyldiorcinol (32) | Polyphonols | D. cejpii F31-1 | SRB assay, HCT116 | Non-cytotoxic | [30] |
Butyl (2-ethylhexyl) phthalate (33) | Phthalic Acid Esters | D. cejpii F31-1 | SRB assay, HCT116 | Non-cytotoxic | [30] |
Dichocerazine A (34) | Diketopiperazines | D. cejpii F31-1 | SRB assay, HCT116 | Non-cytotoxic | [30] |
Pityriacitrin (35) | Alkaloid, Indoles | D. cejpii F31-1 | SRB assay, HCT116 | Moderate with IC50 = 35.1 µM | [30] |
Stellarine A (36) | Alkaloid, Indoles | D. cejpii F31-1 | SRB assay, HCT116 | Non-cytotoxic | [30] |
Indolyl-3-acetic acid methyl ester (37) | Alkaloid, Indoles | D. cejpii F31-1 | SRB assay, HCT116 | Non-cytotoxic | [30] |
Chevalone C (38) | Meroterpenoids | N. siamensis KUFA 0017 | MTT assay, HCT116 | Non-cytotoxic with IC50 = 153 µM | [31] |
Nortryptoquivaline (39) | α-amino acid ester derivatives | N. siamensis KUFA 0017 | MTT assay, HCT116 | Non-cytotoxic with IC50 = 114 µM | [31] |
Tryptoquivaline H (40) | α-amino acid ester derivatives | N. siamensis KUFA 0017 | MTT assay, HCT116 | Non-cytotoxic with IC50 = 202 µM | [31] |
Fiscalin A (41) | Alkaloid, Indoles | N. siamensis KUFA 0017 | MTT assay, HCT116 | Non-cytotoxic with IC50 = 123 µM | [31] |
epi-Fiscalin A (42) | Alkaloid, Indoles | N. siamensis KUFA 0017 | MTT assay, HCT116 | Non-cytotoxic with IC50 = 277 µM | [31] |
epi-Neofiscalin A (43) | Alkaloid, Indoles | N. siamensis KUFA 0017 | MTT assay, HCT116 | Non-cytotoxic with IC50 = 203 µM | [31] |
epi-Fiscalin C (44) | Alkaloid, Indoles | N. siamensis KUFA 0017 | MTT assay, HCT116 | Weak with IC50 = 86 µM | [31] |
Actinobacteria | |||||
Androsamide (45) | Peptide, Cyclic Tetrapeptide | Nocardiopsis sp. CNT-189 | MTT assay, Caco-2 and HCT116 | Strong (for both cell lines tested) with IC50 = 13 µM againts Caco-2 cells and IC50 = 21 µM againts HCT116 cells | [32] |
Cyclo(Pro-Ala) (46) | Peptide, Diketopiperazines | S. nigra sp. nov. 452 | MTT assay, HCT116 | Moderate with IC50 = 47.6 µg/mL | [33] |
Cyclo(Pro-Val) (47) | Peptide, Diketopiperazines | S. nigra sp. nov. 452 | MTT assay, HCT116 | Moderate with IC50 = 67.2 µg/mL | [33] |
Cyclo(Pro-Leu) (48) | Peptide, Diketopiperazines | S. nigra sp. nov. 452 | MTT assay, HCT116 | Moderate with IC50 = 92.6 µg/mL | [33] |
Cyclo(Pro-Phe) (49) | Peptide, Diketopiperazines | S. nigra sp. nov. 452 | MTT assay, HCT116 | Moderate with IC50 = 32.3 µg/mL | [33] |
Furan-type Compound (50) | Heterocyclic aromatics, Furan | Streptomyces sp. VN1 | MTT assay, HCT116 | Non-cytotoxic with IC50 = 123.7 µM | [34] |
Petrocidin A (51) | Peptide, Cyclic Dipeptide | Streptomyces sp. SBT348 | MTT assay, HT29 | Strong with IC50 = 5.3 µg/mL | [35] |
2,3-dihydroxybenzoic acid (52) | Benzene | Streptomyces sp. SBT348 | MTT assay, HT29 | Non-cytotoxic | |
2,3-Dihydroxybenzamide (53) | Benzene | Streptomyces sp. SBT348 | MTT assay, HT29 | Strong with IC50 = 3.8 µg/mL | [35] |
Maltol (54) | 4H-pyran | Streptomyces sp. SBT348 | MTT assay, HT29 | Non-cytotoxic | |
Napyradiomycin CNQ525.510B (55) | Terpene, Meroterpenoids | Streptomyces sp. CNQ525 | MTS assay, HCT116 | Strong with IC50 = 17 µM | [37] |
Napyradiomycin CNQ525.538 (56) | Terpene, Meroterpenoids | Streptomyces sp. CNQ525 | MTS assay, HCT116 | Very strong with IC50 = 6 µM | [37] |
Napyradiomycin CNQ525.554 (57) | Terpene, Meroterpenoids | Streptomyces sp. CNQ525 | MTS assay, HCT116 | Non-cytotoxic | |
Napyradiomycin CNQ525.600 (58) | Terpene, Meroterpenoids | Streptomyces sp. CNQ525 | MTS assay, HCT116 | Moderate with IC50 = 49 µM | [37] |
Dionemycin (59) | Alkaloid, Indoles | Streptomyces strain SCSIO 11791 | MTT assay, HCT116 | Very strong with IC50 = 4.3 µM | [38] |
6-OMe-7′,7″-dichorochromopyrrolic acid (60) | Alkaloid, Indoles | Streptomyces strain SCSIO 11791 | MTT assay, HCT116 | Strong againts with IC50 = 13.1 µM | [38] |
Lynamicin B (61) | Alkaloid, Indoles | Streptomyces strain SCSIO 11791 | MTT assay, HCT116 | Very strong with IC50 = 8.7 µM | [38] |
Spiroindimicin B (62) | Alkaloid, Indoles | Streptomyces strain SCSIO 11791 | MTT assay, HCT116 | Very strong with IC50 = 2.2 µM | [38] |
K41 A (63) | Polyether | S. cacaoi 14CM034 | WST-1 assay, Caco-2 | Very Strong with IC50 = 7.4 µM | [39] |
Compound (64) | Polyether | S. cacaoi 14CM034 | WST-1 assay, Caco-2 | Strong with IC50 = 7.4 µM | |
PM100117 (65) | Macrolide, Polyhydroxyl | S. caniferus GUA-06-05-006A | SRB assay, HT29 | Very Strong with LC50 = 3.8 µM | [40] |
PM100118 (66) | Macrolide, Polyhydroxyl | S. caniferus GUA-06-05-006A | SRB assay, HT29 | Very Strong with IC50 = 4.1 µM | [40] |
Neo-actinomycin A (67) | Peptide, Cyclic Dipeptide | Streptomyces sp. IMB094 | SRB assay, HCT116 | Very Strong with IC50 = 38.7 nM | [41] |
Neo-actinomycin B (68) | Peptide, Cyclic Dipeptide | Streptomyces sp. IMB094 | SRB assay, HCT116 | Very Strong with IC50 = 339.1 nM | [41] |
Actinomycin D (69) | Peptide, Cyclic Dipeptide | Streptomyces sp. IMB094 | SRB assay, HCT116 | Very Strong with IC50 = 0.045 nM | [41] |
Actinomycin X2 (70) | Peptide, Cyclic Dipeptide | Streptomyces sp. IMB094 | SRB assay, HCT116 | Very Strong with IC50 = 0.0075 nM | [41] |
Ohmyungsamycin A (71) | Peptide, Cyclic Dipeptide | Streptomyces strain SNJ042 | SRB assay, HCT116 | Very Strong with IC50 = 7.61 µM | [42] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Julianti, E.; Abrian, I.A.; Wibowo, M.S.; Azhari, M.; Tsurayya, N.; Izzati, F.; Juanssilfero, A.B.; Bayu, A.; Rahmawati, S.I.; Putra, M.Y. Secondary Metabolites from Marine-Derived Fungi and Actinobacteria as Potential Sources of Novel Colorectal Cancer Drugs. Mar. Drugs 2022, 20, 67. https://doi.org/10.3390/md20010067
Julianti E, Abrian IA, Wibowo MS, Azhari M, Tsurayya N, Izzati F, Juanssilfero AB, Bayu A, Rahmawati SI, Putra MY. Secondary Metabolites from Marine-Derived Fungi and Actinobacteria as Potential Sources of Novel Colorectal Cancer Drugs. Marine Drugs. 2022; 20(1):67. https://doi.org/10.3390/md20010067
Chicago/Turabian StyleJulianti, Elin, Ikram Ammar Abrian, Marlia Singgih Wibowo, Muhammad Azhari, Nadya Tsurayya, Fauzia Izzati, Ario Betha Juanssilfero, Asep Bayu, Siti Irma Rahmawati, and Masteria Yunovilsa Putra. 2022. "Secondary Metabolites from Marine-Derived Fungi and Actinobacteria as Potential Sources of Novel Colorectal Cancer Drugs" Marine Drugs 20, no. 1: 67. https://doi.org/10.3390/md20010067