Anti-Inflammatory Polyketide Derivatives from the Sponge-Derived Fungus Pestalotiopsis sp. SWMU-WZ04-2
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Fungal Material
3.3. Fermentation, Extraction, and Isolation
3.4. Computational Section
3.5. Cytotoxicity Assay
3.6. Inhibition of NO Production Assays
3.7. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, B.; Zhang, T.; Xu, J.; Lu, J.; Qiu, P.; Wang, T.; Ding, L. Marine sponge-associated fungi as potential novel bioactive natural product sources for drug discovery. Mini Rev. Med. Chem. 2020, 20, 1966–2010. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.L.; Zhang, J.Z.; Luo, D.Q. The taxonomy, biology and chemistry of the fungal Pestalotiopsis genus. Nat. Prod. Rep. 2012, 29, 622–641. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Yang, X.B.; Lin, Q. Chemistry and biology of Pestalotiopsis-derived natural products. Fungal Divers. 2014, 66, 37–68. [Google Scholar] [CrossRef]
- Wu, B.; Wu, X.D.; Sun, M.; Li, M.H. Two novel tyrosinase inhibitory sesquiterpenes induced by CuCl2 from a marine-derived fungus Pestalotiopsis sp. Z233. Mar. Drugs 2013, 11, 2713–2721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strobel, G.; Yang, X.; Sears, J.; Kramer, R.; Sidhu, R.S.; Hess, W.M. Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiology 1996, 142, 435–440. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Ebada, S.S.; Proksch, P. Pestalotiopsis a highly creative genus: Chemistry and bioactivity of secondary metabolites. Fungal Divers. 2010, 44, 15–31. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Bai, J.; Yan, D.J.; Liu, B.Y.; Zhang, L.; Zhang, C.; Chen, M.H.; Mou, Y.H.; Hu, Y.C. Highly oxygenated caryophyllene-type sesquiterpenes from a plant-associated fungus, Pestalotiopsis hainanensis, and their biosynthetic gene cluster. J. Nat. Prod. 2020, 83, 3262–3269. [Google Scholar] [CrossRef]
- Feng, L.; Han, J.; Wang, J.; Zhang, A.X.; Miao, Y.Y.; Tan, N.H.; Wang, Z. Pestalopyrones A-D, four tricyclic pyrone derivatives from the endophytic fungus Pestalotiopsis neglecta S3. Phytochemistry 2020, 179, 112505. [Google Scholar] [CrossRef]
- Rivera-Chávez, J.; Zacatenco-Abarca, J.; Morales-Jiménez, J.; Martínez-Aviña, B.; Hernández-Ortega, S.; Hernández-Ortega, S.; Aguilar-Ramírez, E. Cuautepestalorin, a 7,8-dihydrochromene-oxoisochromane adduct bearing a hexacyclic scaffold from Pestalotiopsis sp. IQ-011. Org. Lett. 2019, 21, 3558–3562. [Google Scholar] [CrossRef]
- Liu, S.; Dai, H.F.; Makhloufi, G.; C Heering, C.; Janiak, C.; Hartmann, R.; Mándi, A.; Kurtán, T.; Müller, W.E.G.; Kassack, M.U.; et al. Cytotoxic 14-membered macrolides from a mangrove-derived endophytic fungus, Pestalotiopsis microspore. J. Nat. Prod. 2016, 79, 2332–2340. [Google Scholar] [CrossRef]
- Lei, H.; Lin, X.P.; Han, L.; Ma, J.; Ma, Q.J.; Zhong, J.L.; Liu, Y.H.; Sun, T.M.; Wang, J.H.; Huang, X.S. New metabolites and bioactive chlorinated benzophenone derivatives produced by a marine-derived fungus Pestalotiopsis heterocornis. Mar. Drugs 2017, 15, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutledge, P.J.; Challis, G.L. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat. Rev. Microbiol. 2015, 13, 509–523. [Google Scholar] [CrossRef] [PubMed]
- He, Z.H.; Wu, J.; Xu, L.; Hu, M.Y.; Xie, M.M.; Hao, Y.J.; Li, S.J.; Shao, Z.Z.; Yang, X.W. Chemical constituents of the deep-sea-derived Penicillium Solitum. Mar. Drugs 2021, 19, 580. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, C.; Hasumi, K.; Chikanishi, T.; Kikuchi, T.; Endo, A. 11-Keto-9 (E), 12 (E)-octadecadienoic acid, a novel fatty acid that enhances fibrinolytic activity of endothelial cells. J. Antibiot. 1999, 52, 171–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.Z.; He, X.Q.; Che, Q.; Zhang, G.J.; Zhu, T.J.; Gu, Q.Q.; Li, D.H. Sorbicillasins A-B and scirpyrone K from a deep-sea-derived fungus, Phialocephala sp. FL30r. Mar. Drugs 2018, 16, 245. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.H.; Tian, L.; Chen, G.; Xu, N.; Wang, Y.N.; Sun, S.; Pei, Y.H. Six compounds from marine fugus Y26-02. J. Asian Nat. Prod. REs 2009, 11, 748–751. [Google Scholar] [CrossRef]
- Yang, L.X.; Huang, K.X.; Li, H.B.; Gong, J.X.; Wang, F.; Feng, Y.B.; Tao, Q.F.; Wu, Y.H.; Li, X.K.; Wu, X.M.; et al. Design, synthesis, and examination of neuron protective properties of alkenylated and amidated dehydro-silybin derivatives. J. Med. Chem. 2009, 52, 7732–7752. [Google Scholar] [CrossRef]
- Takaya, Y.; Furukawa, T.; Miura, S.; Akutagawa, T.; Hotta, Y.; Ishikawa, N.; Niwa, M. Antioxidant constituents in distillation residue of awamori spirits. J. Agric. Food Chem. 2007, 55, 75–79. [Google Scholar] [CrossRef]
- Bose, P.; Banerji, J. Synthesis of 4-phenylcoumarins from Dalbergia volubilis and Exostema caribaeu. Phytochemistry 1991, 30, 2438–2439. [Google Scholar] [CrossRef]
- Reggelin, M.; Gerlach, M.; Vogt, M. Metallated 2-alkenyl sulfoximines in asymmetric synthesis: Regio-and stereoselective synthesis of highly substituted oxabicyclic ethers and studies towards the total syntheses of the euglobals G1 and G2 and arenaran A. Eur. J. Org. Chem. 1999, 5, 1011–1031. [Google Scholar] [CrossRef]
- Tian, S.Z.; Pu, X.; Luo, G.Y.; Zhao, L.X.; Xu, L.H.; Li, W.J.; Luo, Y.G. Isolation and characterization of new p-terphenyls with antifungal, antibacterial, and antioxidant activities from Halophilic actinomycete Nocardiopsis gilva YIM 90087. J. Agric. Food Chem. 2013, 61, 3006–3012. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.Z.; Fang, Y.C.; Zhang, M.; Lin, A.Q.; Zhu, T.J.; Gu, Q.Q.; Zhu, W.M. Six new ergosterols from the marine-derived fungus Rhizopus sp. Steroids 2008, 73, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Lei, H.M.; Ma, N.; Wang, T.; Zhao, P.J. Metabolites from the endophytic fungus colletotrichum sp. F168. Nat. Prod. Res. 2021, 35, 1077–1083. [Google Scholar] [CrossRef]
- Yang, Y.H.; Yang, D.S.; Lei, H.M.; Li, C.Y.; Li, G.H.; Zhao, P.J. Griseaketides A-D, new aromatic polyketides from the pathogenic fungus Magnaporthe grisea. Molecules 2020, 25, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcin, E.D.; Arvai, A.S.; Rosenfeld, R.J.; Kroeger, M.D.; Crane, B.R.; Andersson, G.; Andrews, G.; Hamley, P.J.; Mallinder, P.R.; Nicholls, D.J.; et al. Anchored plasticity opens doors for selective inhibitor design in nitric oxide synthase. Nat. Chem. Biol. 2008, 4, 700–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Christie, C.H.; Dalenberg, K.; Di Costanzo, L.; Duarte, J.M.; et al. RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 2021, 49, D437–D451. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S.; Olson, A.J. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc. 2016, 11, 905–919. [Google Scholar] [CrossRef] [Green Version]
- Laskowski, R.A. Swindells M.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 2011, 51, 2778–2786. [Google Scholar] [CrossRef]
1 a | 2 b | |||
---|---|---|---|---|
No. | dC, Type | dH (J in Hz) | dC, Type | dH (J in Hz) |
1 | 81.0, CH | 4.84, td (2.4, 6.8) | - | - |
2 | 46.0, CH2 | 2.16, m | 94.1, CH | 4.80, s |
3 | 81.2, C | - | 67.2, C | - |
4 | 50.6, CH | 1.94, dt (7.0, 13.1) | 139.5, CH | 6.53, d (2.0) |
5 | 54.0, CH | 2.14, m | 133.7, C | - |
6 | 81.4, CH | 4.93, td (2.5, 7.3) | 66.0, CH | 4.54, dd (6.7, 1.6) |
7 | 46.4, CH2 | 2.21, m, 2.02, m | 21.0, CH3 | 1.14, s |
8 | 80.9, C | - | 165.9, C | - |
9 | 44.0, CH | 2.04, m | 50.8, OCH3 | 3.65, s |
10 | 49.5, CH | 2.54, dt (10.0, 7.1) | 18.0, CH3 | 1.30, d (6.7) |
11 | 15.9, CH3 | 0.95, d (7.2) | 80.2, CH | 4.78, s |
12 | 23.8, CH3 | 1.20, s | 56.0, CH | 2.26, d (7.2) |
13 | 181.1, C | - | 43.9, CH | 2.09, m |
14 | 42.6, CH | 2.70, dd (7.6, 3.2) | 80.0, C | - |
15 | 18.3, CH3 | 1.32, d (7.6) | 45.7, CH2 | 2.12, m, 1.85, m |
16 | 16.0, CH3 | 0.97, d (7.0) | 74.4, C | - |
17 | 23.8, CH3 | 1.19, s | 25.9, CH3 | 1.35, s |
18 | 179.6, C | - | 14.2, CH3 | 0.90, d (7.2) |
19 | 38.3, CH | 2.88, dq (10.0, 7.4) | 180.4, C | - |
20 | 11.6, CH3 | 1.29, d (7.4) | 22.1, CH3 | 1.04, s |
1′-OAc | 179.5, C | - | ||
2′ | 22.6, CH3 | 1.81, s |
3 a | 4 b | 5 b | ||||
---|---|---|---|---|---|---|
No. | dC, Type | dH (J in Hz) | dC, Type | dH (J in Hz) | dC, Type | dH (J in Hz) |
1 | 19.5, CH3 | 0.99, d (6.7) | ||||
2 | 65.9, CH | 4.38,t(6.3) | 67.6, CH | 4.38, t (6.3) | 29.1, CH2 | 1.5, m |
3 | 29.2, CH2 | 2.38, t (6.3) | 29.3, CH2 | 2.44, t (6.3) | 72.9, CH2 | 4.07, t (6.7) |
4 | 157.8, C | 162.1, C | ||||
5 | 116.8, CH | 5.83, s | 116.5, CH | 5.78, s | 169.3, C | |
6 | 164.8, C | 167.5, C | 30.7, CH2 | 1.34, m | ||
7 | 23.0, CH3 | 2.03, s | 22.9, C | 2.02, s | 29.4, CH2 | 1.5, m |
8 | 75.7, CH | 4.12, d (6.3) | 68.3, CH | 4.02, m | 30.4, CH2 | 1.33, m |
9 | 40.9, C | 66.2, CH2 | 4.10, dd (11.3, 5.3) | 33.7, CH2 | 2.26, t (7.0) | |
10 | 76.4, CH2 | 4.03, d (8.9), 3.95, d (8.9) | 150.4, CH | 6.97, dt (15.6, 7.0) | ||
11 | 177.6, C | 172.6, C | 129.4, CH | 6.4, d (15.6) | ||
12 | 22.9, CH3 | 1.24, s | 20.7, CH3 | 2.06, s | 192.0, C | |
13 | 18.8, CH3 | 1.08, s | 129.4, CH | 6.4, d (15.6) | ||
14 | 150.4, CH | 6.94, dt (15.6, 7.0) | ||||
15 | 33.7, CH2 | 2.26, t (7.0) | ||||
16 | 30.4, CH2 | 1.35, m | ||||
17 | 32.6, CH2 | 1.33, m | ||||
18 | 23.5, CH3 | 1.30, m | ||||
19 | 14.4, CH3 | 0.92, t (6.0) |
Compound | SMMC-7721 | H460 | PC-3 | BGC-823 |
---|---|---|---|---|
5 | 65.1 | 35.6 | 28.2 | >100 |
6 | 57.3 | 42.6 | 22.4 | >100 |
9 | 35.0 | 54.3 | 42.0 | 22.1 |
14 | 73.5 | 64.3 | >100 | 62.6 |
Adriamycin | 2.2 | 1.2 | 1.8 | 1.5 |
Compound | 1 | 2 | 3–4, 7–8, 10–13, 15–16 | Positive a |
---|---|---|---|---|
IC50 | 23.6 | 14.5 | - | 12.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, P.; Luo, J.; Jiang, Y.; Zhang, L.; Jiang, L.; Teng, B.; Niu, H.; Zhang, D.; Lei, H. Anti-Inflammatory Polyketide Derivatives from the Sponge-Derived Fungus Pestalotiopsis sp. SWMU-WZ04-2. Mar. Drugs 2022, 20, 711. https://doi.org/10.3390/md20110711
Jiang P, Luo J, Jiang Y, Zhang L, Jiang L, Teng B, Niu H, Zhang D, Lei H. Anti-Inflammatory Polyketide Derivatives from the Sponge-Derived Fungus Pestalotiopsis sp. SWMU-WZ04-2. Marine Drugs. 2022; 20(11):711. https://doi.org/10.3390/md20110711
Chicago/Turabian StyleJiang, Peng, Jinfeng Luo, Yao Jiang, Liping Zhang, Liyuan Jiang, Baorui Teng, Hong Niu, Dan Zhang, and Hui Lei. 2022. "Anti-Inflammatory Polyketide Derivatives from the Sponge-Derived Fungus Pestalotiopsis sp. SWMU-WZ04-2" Marine Drugs 20, no. 11: 711. https://doi.org/10.3390/md20110711
APA StyleJiang, P., Luo, J., Jiang, Y., Zhang, L., Jiang, L., Teng, B., Niu, H., Zhang, D., & Lei, H. (2022). Anti-Inflammatory Polyketide Derivatives from the Sponge-Derived Fungus Pestalotiopsis sp. SWMU-WZ04-2. Marine Drugs, 20(11), 711. https://doi.org/10.3390/md20110711