Comparative Assessment of APTT Reagents for Evaluating Anticoagulant Sensitivity of Fucosylated Glycosaminoglycans (FGs) Derived from Sea Cucumbers
Abstract
:1. Introduction
2. Results
2.1. APTT Prolongation In Vitro
2.1.1. Human Coagulation Control Plasma
2.1.2. Fresh Rat Plasma
2.2. APTT Prolongation In Vivo
2.3. Contact Activation and iXase Inhibition
3. Discussion
4. Materials and Methods
4.1. Plasma APTT Analysis
4.2. APTT Prolongation In Vivo
4.3. Contact Activation in Plasma
4.4. Inhibition for iXase
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Goeijenbier, M.; van Wissen, M.; van de Weg, C.; Jong, E.; Gerdes, V.E.A.; Meijers, J.C.M.; Brandjes, D.P.M.; van Gorp, E.C.M. Review: Viral infections and mechanisms of thrombosis and bleeding. J. Med. Virol. 2012, 84, 1680–1696. [Google Scholar] [CrossRef]
- Beristain-Covarrubias, N.; Perez-Toledo, M.; Thomas, M.R.; Henderson, I.R.; Watson, S.P.; Cunningham, A.F. Understanding infection-Induced thrombosis: Lessons learned from animal models. Front. Immunol. 2019, 10, 2569. [Google Scholar] [CrossRef]
- Falanga, A.; Zacharski, L. Deep vein thrombosis in cancer: The scale of the problem and approaches to management. Ann. Oncol. 2005, 16, 696–701. [Google Scholar] [CrossRef]
- Donnellan, E.; Khorana, A.A. Cancer and venous thromboembolic disease: A review. Oncologist 2017, 22, 199–207. [Google Scholar] [CrossRef]
- Hill, J.; Treasure, T. Reducing the risk of venous thromboembolism (deep vein thrombosis and pulmonary embolism) in inpatients having surgery: Summary of NICE guidance. Br. Med. J. 2007, 334, 1053–1054. [Google Scholar] [CrossRef]
- Harter, K.; Levine, M.; Henderson, S.O. Anticoagulation drug therapy: A review. West. J. Emerg. Med. 2015, 16, 11–17. [Google Scholar] [CrossRef]
- Pinto, D.J.P.; Orwat, M.J.; Smith, L.M.; Quan, M.L.; Lam, P.Y.S.; Rossi, K.A.; Apedo, A.; Bozarth, J.M.; Wu, Y.; Zheng, J.J.; et al. Discovery of a parenteral small molecule coagulation factor XIa inhibitor clinical candidate (BMS-962212). J. Med. Chem. 2017, 60, 9703–9723. [Google Scholar] [CrossRef]
- Quan, M.L.; Pinto, D.J.P.; Smallheer, J.M.; Ewing, W.R.; Rossi, K.A.; Luettgen, J.M.; Seiffert, D.A.; Wexler, R.R. Factor XIa inhibitors as new anticoagulants. J. Med. Chem. 2018, 61, 7425–7447. [Google Scholar] [CrossRef]
- Wang, S.; Beck, R.; Burd, A.; Blench, T.; Marlin, F.; Ayele, T.; Buxton, S.; Dagostin, C.; Malic, M.; Joshi, R.; et al. Structure based drug design: Development of potent and selective factor IXa (FIXa) inhibitors. J. Med. Chem. 2010, 53, 1473–1482. [Google Scholar] [CrossRef]
- Robert, S.; Bertolla, C.; Masereel, B.; Dogné, J.-M.; Pochet, L. Novel 3-carboxamide-coumarins as potent and selective FXIIa inhibitors. J. Med. Chem. 2008, 51, 3077–3080. [Google Scholar] [CrossRef]
- Lin, L.; Zhao, L.; Gao, N.; Yin, R.; Li, S.; Sun, H.; Zhou, L.; Zhao, G.; Purcell, S.W.; Zhao, J. From multi-target anticoagulants to DOACs, and intrinsic coagulation factor inhibitors. Blood Rev. 2020, 39, 100615. [Google Scholar] [CrossRef] [PubMed]
- Pomin, V. Holothurian fucosylated chondroitin sulfate. Mar. Drugs 2014, 12, 232–254. [Google Scholar] [CrossRef]
- Li, H.; Yuan, Q.; Lv, K.; Ma, H.; Gao, C.; Liu, Y.; Zhang, S.; Zhao, L. Low-molecular-weight fucosylated glycosaminoglycan and its oligosaccharides from sea cucumber as novel anticoagulants: A review. Carbohydr. Polym. 2021, 251, 117034. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Yin, R.; Li, S.; Pan, Y.; Mao, H.; Cai, Y.; Lin, L.; Wang, W.; Zhang, T.; Zhou, L.; et al. Structural characterization of oligosaccharides from free radical depolymerized fucosylated glycosaminoglycan and suggested mechanism of depolymerization. Carbohydr. Polym. 2021, 270, 118368. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.Y.; Lai, S.S.; Huang, R.; Wu, M.Y.; Gao, N.; Xu, L.; Qin, H.B.; Peng, W.L.; Zhao, J.H. Structure and anticoagulant activity of fucosylated glycosaminoglycan degraded by deaminative cleavage. Carbohydr. Polym. 2013, 98, 1514–1523. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Yang, W.J.; Li, X.M.; Zhou, L.T.; Wang, Z.J.; Lin, L.S.; Chen, D.Y.; Zhao, L.Y.; Li, Z.K.; Liu, S.B.; et al. Precise structures and anti-intrinsic tenase complex activity of three fucosylated glycosaminoglycans and their fragments. Carbohydr. Polym. 2019, 224, 115146. [Google Scholar] [CrossRef]
- Zhou, L.; Gao, N.; Sun, H.; Xiao, C.; Yang, L.; Lin, L.; Yin, R.; Li, Z.; Zhang, H.; Ji, X.; et al. Effects of native fucosylated glycosaminoglycan, its depolymerized derivatives on intrinsic factor Xase, coagulation, thrombosis, and hemorrhagic risk. Thromb. Haemost. 2020, 120, 607–619. [Google Scholar] [CrossRef]
- Sun, H.; Gao, N.; Ren, L.; Liu, S.; Lin, L.; Zheng, W.; Zhou, L.; Yin, R.; Zhao, J. The components and activities analysis of a novel anticoagulant candidate dHG-5. Eur. J. Med. Chem. 2020, 207, 112796. [Google Scholar] [CrossRef]
- White, G.C. The partial thromboplastin time: Defining an era in coagulation. J. Thromb. Haemost. 2003, 1, 2267–2270. [Google Scholar] [CrossRef]
- Hirsh, J.; Eikelboom, J. Monitoring unfractionated heparin with the aPTT: Time for a fresh look. Thromb. Haemost. 2006, 96, 547–552. [Google Scholar] [CrossRef]
- Tripodi, A.; Chantarangkul, V.; Martinelli, I.; Bucciarelli, P.; Mannucci, P.M. A shortened activated partial thromboplastin time is associated with the risk of venous thromboembolism. Blood 2004, 104, 3631–3634. [Google Scholar] [CrossRef]
- Shetty, S.; Ghosh, K.; Mohanty, D. Comparison of four commercially available activated partial thromboplastin time reagents using a semi-automated coagulometer. Blood Coagul. Fibrinolysis 2003, 14, 493–497. [Google Scholar] [CrossRef]
- Lutze, G.; Hartung, K.J.; Luley, C. SynthASil—A new APTT reagent based on synthetic phospholipids. Clin. Lab. 1998, 44, 145–151. [Google Scholar]
- Giavarina, D.; Zamperetti, M.; Manfrin, C.; Schiavon, R. Evaluation of an activated partial thromboplastin time reagent conposed by synthetic phospholipids and colloidal silica. J. Autoimmun. 1998, 6, 117–119. [Google Scholar]
- Marlar, R.A.; Bauer, P.J.; Endres-Brooks, J.L.; Montgomery, R.R.; Miller, C.M.; Schanen, M.M. Comparison of the sensitivity of commercial APTT reagents in the detection of mild coagulopathies. Am. J. Clin. Pathol. 1984, 82, 436–439. [Google Scholar] [CrossRef]
- Kumano, O.; Ieko, M.; Naito, S.; Yoshida, M.; Takahashi, N. APTT reagent with ellagic acid as activator shows adequate lupus anticoagulant sensitivity in comparison to silica-based reagent. J. Thromb. Haemost. 2012, 10, 2338–2343. [Google Scholar] [CrossRef]
- Moll, S.; Grant, R.P.; Francart, S.J.; Hawes, E.M.; Adcock, D.; Gosselin, R.C. Evaluating the use of commercial drug-specific calibrators for determining PT and APTT reagent sensitivity to dabigatran and rivaroxaban. Thromb. Haemost. 2015, 113, 77–84. [Google Scholar]
- Bjornsson, T.D.; Nash, P.V. Variability in heparin sensitivity of APTT reagents. Am. J. Forensic. Med. Pathol. 1986, 86, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Manzato, F.; Mengoni, A.; Grilenzoni, A.; Lippi, G. Evaluation of the activated partial thrombo-plastin time (APTT) sensitivity to heparin using five commercial reagents: Implications for therapeutic monitoring. Clin. Chem. Lab. Med. 1998, 36, 975–980. [Google Scholar] [CrossRef]
- Opartkiattikul, N.; Tientadakul, P.; Wongtiraporn, W. Evaluation of the activated partial thromboplastin time (aPTT) sensitivity to unfractionated heparin using three commercial reagents: Implication for therapeutic range. Int. J. Mol. Sci. 2005, 57, 537–540. [Google Scholar]
- Tanaka, N.; Manabe, M.; Yamashita, S.; Ikeda, K.; Obayashi, K.; Uchiba, M.; Ando, Y. Comparison of heparin-induced prolongation of APTT in 12 different laboratories in Kyushu area. Rinsho Byori. 2013, 61, 576–582. [Google Scholar] [PubMed]
- Yasui, Y.; Ishii, T.; Tatebe, J.; Morita, T. Comparative analysis on characteristics of two activated partial thromboplastin time reagents. J. Clin. Lab. Anal. 2022, 36, e24608. [Google Scholar] [CrossRef] [PubMed]
- Neofotistos; Oropeza; Rogan; Santos Performance characteristics of a new synthetic APTT reagent. Clin. Lab. Haematol. 1998, 20, 307–313. [CrossRef] [PubMed]
- Kitchen, S.; Cartwright, I.; Woods, T.; Jennings, I.; Preston, F. Lipid composition of seven APTT reagents in relation to heparin sensitivity. Br. J. Haematol. 1999, 106, 801–808. [Google Scholar] [CrossRef]
- Rosén, S.; Bryngelhed, P. FIX potency of rFIX-Albumin fusion protein is underestimated by one-stage methods using silica-based APTT reagents. Haemophilia 2020, 26, 340–345. [Google Scholar] [CrossRef]
- Wada, H.; Shiraki, K.; Matsumoto, T.; Ohishi, K.; Shimpo, H.; Sakano, Y.; Nishii, H.; Shimaoka, M. The evaluation of APTT reagents in reference plasma, recombinant FVIII products; Kovaltry® and Jivi® using CWA, including sTF/7FIX assay. Clin. Appl. Thromb. Hemost. 2021, 27, 1–8. [Google Scholar] [CrossRef]
- Javot, L.; Lecompte, T.; Rabiskova, M.; Maincent, P. Encapsulation of low molecular weight heparins: Influence on the anti-Xa/anti-IIa ratio. J. Control. Release 2009, 139, 8–14. [Google Scholar] [CrossRef]
- Gerotziafas, G.T.; Petropoulou, A.D.; Verdy, E.; Samama, M.M.; Elalamy, I. Effect of the anti-factor Xa and anti-factor IIa activities of low-molecular-weight heparins upon the phases of thrombin generation. J. Thromb. Haemost. 2010, 5, 955–962. [Google Scholar] [CrossRef]
Compounds | EC2.0× (APTT, μg/mL) 1 | |
---|---|---|
Ellagic Acid | Colloidal Silica | |
dHG-5 | 8.45 ± 0.50 | 17.21 ± 1.20 |
dHLFG-4 | 7.17 ± 0.41 | 15.98 ± 0.55 |
LMWH | 10.59 ± 0.68 | 7.80 ± 0.33 |
Compounds | EC2.0× (APTT, μg/mL) 1 | |
---|---|---|
Ellagic Acid | Colloidal Silica | |
dHG-5 | 11.06 ± 0.47 | 26.76 ± 1.11 |
dHLFG-4 | 10.83 ± 1.19 | 19.18 ± 0.75 |
LMWH | 13.70 ± 1.21 | 15.16 ± 0.66 |
Compounds | Doses (mg/kg) | APTT Ratio 1 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ellagic Acid | Colloidal Silica | ||||||||||
0 h | 0.5 h | 1 h | 2 h | 4 h | 0 h | 0.5 h | 1 h | 2 h | 4 h | ||
dHG-5 | 10.00 | 1.00 ± 0.14 # | 1.28 ± 0.20 # | 1.58 ± 0.20 * | 1.39 ± 0.08 * | 1.1 ± 0.17 # | 1.00 ± 0.17 | 1.10 ± 0.17 | 1.27 ± 0.05 | 1.11 ± 0.05 | 0.99 ± 0.13 |
dHG-5 | 20.00 | 1.00 ± 0.13 # | 1.64 ± 0.18 * | 1.74 ± 0.14 * | 1.68 ± 0.10 * | 1.36 ± 0.19 * | 1.00 ± 0.13 | 1.25 ± 0.13 | 1.28 ± 0.09 | 1.17 ± 0.08 | 1.04 ± 0.12 |
LMWH | 10.00 | 1.00 ± 0.11 # | 1.24 ± 0.20 # | 1.34 ± 0.21 # | 1.34 ± 0.16 # | 1.12 ± 0.14 # | 1.00 ± 0.08 | 1.27 ± 0.29 | 1.34 ± 0.15 | 1.33 ± 0.16 | 1.09 ± 0.19 |
Compounds | IC50 of Anti-iXase (ng/mL) 1 | ||
---|---|---|---|
Ellagic Acid | Colloidal Silica | No Colloidal Silica or Ellagic Acid | |
dHG-5 | 136.00 ± 16.07 | 440.00 ± 64.39 | 31.28 ± 1.54 |
dHLFG-4 | 141.60 ± 21.54 | 383.40 ± 65.65 | 23.09 ± 1.83 |
LMWH | 1084.00 ± 423.40 | 1092.00 ± 272.67 | 83.19 ± 7.67 |
Reagent | Manufacturer | Phospholipid | Activator |
---|---|---|---|
APTT reagent kit | BJ MDC | Cephalin obtained from rabbit brain | Ellagic acid |
SynthASil kit | HemosIL | Synthetic phospholipid | Colloidal silica |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Yang, S.; Li, P.; Shang, X.; Wang, P.; Zhang, J.; Yuan, L.; Yin, R.; Gao, N.; Zhao, J. Comparative Assessment of APTT Reagents for Evaluating Anticoagulant Sensitivity of Fucosylated Glycosaminoglycans (FGs) Derived from Sea Cucumbers. Mar. Drugs 2023, 21, 568. https://doi.org/10.3390/md21110568
Sun H, Yang S, Li P, Shang X, Wang P, Zhang J, Yuan L, Yin R, Gao N, Zhao J. Comparative Assessment of APTT Reagents for Evaluating Anticoagulant Sensitivity of Fucosylated Glycosaminoglycans (FGs) Derived from Sea Cucumbers. Marine Drugs. 2023; 21(11):568. https://doi.org/10.3390/md21110568
Chicago/Turabian StyleSun, Huifang, Shasha Yang, Pengfei Li, Xiaolei Shang, Pin Wang, Jiali Zhang, Lin Yuan, Ronghua Yin, Na Gao, and Jinhua Zhao. 2023. "Comparative Assessment of APTT Reagents for Evaluating Anticoagulant Sensitivity of Fucosylated Glycosaminoglycans (FGs) Derived from Sea Cucumbers" Marine Drugs 21, no. 11: 568. https://doi.org/10.3390/md21110568
APA StyleSun, H., Yang, S., Li, P., Shang, X., Wang, P., Zhang, J., Yuan, L., Yin, R., Gao, N., & Zhao, J. (2023). Comparative Assessment of APTT Reagents for Evaluating Anticoagulant Sensitivity of Fucosylated Glycosaminoglycans (FGs) Derived from Sea Cucumbers. Marine Drugs, 21(11), 568. https://doi.org/10.3390/md21110568