Bibliometric Review of the Literature on Cone Snail Peptide Toxins from 2000 to 2022
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Post-Processing
2.3. Data Analysis
3. Results and Discussion
3.1. Geographic Regions, Institutions, and Authors
3.2. Research Trends
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Terlau, H.; Olivera, B.M. Conus Venoms: A Rich Source of Novel Ion Channel-Targeted Peptides. Physiol. Rev. 2004, 84, 41–68. [Google Scholar] [CrossRef] [Green Version]
- Olivera, B. Conus Venom Peptides: Reflections from the Biology of Clades and Species. Annu. Rev. Ecol. Syst. 2002, 33, 25–47. [Google Scholar] [CrossRef]
- Dutertre, S.; Jin, A.-H.; Vetter, I.; Hamilton, B.; Sunagar, K.; Lavergne, V.; Dutertre, V.; Fry, B.G.; Antunes, A.; Venter, D.J.; et al. Evolution of Separate Predation- and Defence-Evoked Venoms in Carnivorous Cone Snails. Nat. Commun. 2014, 5, 3521. [Google Scholar] [CrossRef] [Green Version]
- Olivera, B.M.; Seger, J.; Horvath, M.P.; Fedosov, A.E. Prey-Capture Strategies of Fish-Hunting Cone Snails: Behavior, Neurobiology and Evolution. Brain. Behav. Evol. 2015, 86, 58–74. [Google Scholar] [CrossRef] [Green Version]
- Akondi, K.B.; Muttenthaler, M.; Dutertre, S.; Kaas, Q.; Craik, D.J.; Lewis, R.J.; Alewood, P.F. Discovery, Synthesis, and Structure-Activity Relationships of Conotoxins. Chem. Rev. 2014, 114, 5815–5847. [Google Scholar] [CrossRef] [PubMed]
- Jin, A.-H.; Muttenthaler, M.; Dutertre, S.; Himaya, S.W.A.; Kaas, Q.; Craik, D.J.; Lewis, R.J.; Alewood, P.F. Conotoxins: Chemistry and Biology. Chem. Rev. 2019, 119, 11510–11549. [Google Scholar] [CrossRef] [PubMed]
- Azam, L.; McIntosh, J.M. α-Conotoxins as Pharmacological Probes of Nicotinic Acetylcholine Receptors. Acta Pharmacol. Sin. 2009, 30, 771–783. [Google Scholar] [CrossRef] [Green Version]
- Kaas, Q.; Yu, R.; Jin, A.-H.; Dutertre, S.; Craik, D.J. ConoServer: Updated Content, Knowledge, and Discovery Tools in the Conopeptide Database. Nucleic Acids Res. 2012, 40, D325–D330. [Google Scholar] [CrossRef]
- Wang, C.-Z.; Chi, C.-W. Conus Peptides—A Rich Pharmaceutical Treasure. Acta Biochim. Biophys. Sin. 2004, 36, 713–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowling, J.J.; Kochanowska, A.J.; Kasanah, N.; Hamann, M.T. Nature’s Bounty—Drug Discovery from the Sea. Expert Opin. Drug Discov. 2007, 2, 1505–1522. [Google Scholar] [CrossRef]
- Wang, F.; Chang, S.; Wei, D. Prediction of Conotoxin Type Based on Long Short-Term Memory Network. Math. Biosci. Eng. MBE 2021, 18, 6700–6708. [Google Scholar] [CrossRef] [PubMed]
- Kohn, A.J.; Saunders, P.R.; Wiener, S. Preliminary Studies on the Venom of the Marine Snail Conus. Ann. New York Acad. Sci. 1960, 90, 706–725. [Google Scholar] [CrossRef] [PubMed]
- Whyte, J.M.; Endean, R. Pharmacological Investigation of the Venoms of the Marine Snails Conus Textile and Conus Geographus. Toxicon 1962, 1, 25–31. [Google Scholar] [CrossRef]
- Olivera, B.M.; Cruz, L.J. Conotoxins, in Retrospect. Toxicon 2001, 39, 7–14. [Google Scholar] [CrossRef]
- Gray, W.R.; Luque, A.; Olivera, B.M.; Barrett, J.; Cruz, L.J. Peptide Toxins from Conus Geographus Venom. J. Biol. Chem. 1981, 256, 4734–4740. [Google Scholar] [CrossRef]
- Olivera, B.M.; Gray, W.R.; Zeikus, R.; McIntosh, J.M.; Varga, J.; Rivier, J.; de Santos, V.; Cruz, L.J. Peptide Neurotoxins from Fish-Hunting Cone Snails. Science 1985, 230, 1338–1343. [Google Scholar] [CrossRef]
- Olivera, B.M.; Rivier, J.; Clark, C.; Ramilo, C.A.; Corpuz, G.P.; Abogadie, F.C.; Mena, E.E.; Woodward, S.R.; Hillyard, D.R.; Cruz, L.J. Diversity of Conus Neuropeptides. Science 1990, 249, 257–263. [Google Scholar] [CrossRef]
- Zhu, X.; Zhou, Y.; Yuan, G.; Shi, J.; Shi, S.; Zhang, L.; Chai, R.; Du, Y.; Duan, C.; Hu, Y. Bibliometric Analysis of Nicotinic Acetylcholine Receptors Channel Research (2000–2020). Channels 2021, 15, 298–309. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- van Eck, N.J.; Waltman, L. Visualizing Bibliometric Networks. In Measuring Scholarly Impact: Methods and Practice; Ding, Y., Rousseau, R., Wolfram, D., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 285–320. ISBN 978-3-319-10377-8. [Google Scholar]
- Chen, C. CiteSpace II: Detecting and Visualizing Emerging Trends and Transient Patterns in Scientific Literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- McIntosh, M.; Cruz, L.J.; Hunkapiller, M.W.; Gray, W.R.; Olivera, B.M. Isolation and Structure of a Peptide Toxin from the Marine Snail Conus Magus. Arch. Biochem. Biophys. 1982, 218, 329–334. [Google Scholar] [CrossRef]
- Miljanich, G.P. Ziconotide: Neuronal Calcium Channel Blocker for Treating Severe Chronic Pain. Curr. Med. Chem. 2004, 11, 3029–3040. [Google Scholar] [CrossRef]
- Hillyard, D.R.; Monje, V.D.; Mintz, I.M.; Bean, B.P.; Nadasdi, L.; Ramachandran, J.; Miljanich, G.; Azimi-Zoonooz, A.; McIntosh, J.M.; Cruz, L.J. A New Conus Peptide Ligand for Mammalian Presynaptic Ca2+ Channels. Neuron 1992, 9, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.J.; Ling, G.; McCabe, R.T.; Tortella, F.C. Intrathecal CGX-1007 Is Neuroprotective in a Rat Model of Focal Cerebral Ischemia. Neuroreport 2002, 13, 821–824. [Google Scholar] [CrossRef]
- Han, T.S.; Teichert, R.W.; Olivera, B.M.; Bulaj, G. Conus Venoms—A Rich Source of Peptide-Based Therapeutics. Curr. Pharm. Des. 2008, 14, 2462–2479. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.; Kaas, Q.; Craik, D.J. Hormone-like Conopeptides—New Tools for Pharmaceutical Design. RSC Med. Chem. 2020, 11, 1235–1251. [Google Scholar] [CrossRef]
- Brust, A.; Palant, E.; Croker, D.E.; Colless, B.; Drinkwater, R.; Patterson, B.; Schroeder, C.I.; Wilson, D.; Nielsen, C.K.; Smith, M.T.; et al. χ-Conopeptide Pharmacophore Development: Toward a Novel Class of Norepinephrine Transporter Inhibitor (Xen2174) for Pain. J. Med. Chem. 2009, 52, 6991–7002. [Google Scholar] [CrossRef]
- Okkerse, P.; Hay, J.L.; Sitsen, E.; Dahan, A.; Klaassen, E.; Houghton, W.; Groeneveld, G.J. Pharmacokinetics and Pharmacodynamics of Intrathecally Administered Xen2174, a Synthetic Conopeptide with Norepinephrine Reuptake Inhibitor and Analgesic Properties. Br. J. Clin. Pharmacol. 2017, 83, 751–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, R.J.; Craik, D.J. Engineering Cyclic Peptide Toxins. Methods Enzymol. 2012, 503, 57–74. [Google Scholar] [CrossRef]
- Clark, R.J.; Jensen, J.; Nevin, S.T.; Callaghan, B.P.; Adams, D.J.; Craik, D.J. The Engineering of an Orally Active Conotoxin for the Treatment of Neuropathic Pain. Angew. Chem. 2010, 49, 6545–6548. [Google Scholar] [CrossRef]
- Mansbach, R.A.; Travers, T.; McMahon, B.H.; Fair, J.M.; Gnanakaran, S. Snails In Silico: A Review of Computational Studies on the Conopeptides. Mar. Drugs 2019, 17, 145. [Google Scholar] [CrossRef] [Green Version]
- Kaas, Q.; Craik, D.J. Bioinformatics-Aided Venomics. Toxins 2015, 7, 2159–2187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hung, A.; Kuyucak, S.; Schroeder, C.I.; Kaas, Q. Modelling the Interactions between Animal Venom Peptides and Membrane Proteins. Neuropharmacology 2017, 127, 20–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, S.; Yao, X.; Yan, N. Structure of Human Cav2.2 Channel Blocked by the Painkiller Ziconotide. Nature 2021, 596, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Abraham, N.; Lewis, R.J. Neuronal Nicotinic Acetylcholine Receptor Modulators from Cone Snails. Mar. Drugs 2018, 16, 208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giribaldi, J.; Dutertre, S. α-Conotoxins to Explore the Molecular, Physiological and Pathophysiological Functions of Neuronal Nicotinic Acetylcholine Receptors. Neurosci. Lett. 2018, 679, 24–34. [Google Scholar] [CrossRef]
- Turner, M.W.; Marquart, L.A.; Phillips, P.D.; McDougal, O.M. Mutagenesis of α-Conotoxins for Enhancing Activity and Selectivity for Nicotinic Acetylcholine Receptors. Toxins 2019, 11, 113. [Google Scholar] [CrossRef] [Green Version]
- Romero, H.K.; Christensen, S.B.; Mannelli, L.D.C.; Gajewiak, J.; Ramachandra, R.; Elmslie, K.S.; Vetter, D.E.; Ghelardini, C.; Iadonato, S.P.; Mercado, J.L.; et al. Inhibition of α9α10 Nicotinic Acetylcholine Receptors Prevents Chemotherapy-Induced Neuropathic Pain. Proc. Natl. Acad. Sci. USA 2017, 114, E1825–E1832. [Google Scholar] [CrossRef] [Green Version]
- Huynh, P.N.; Christensen, S.B.; McIntosh, J.M. RgIA4 Prevention of Acute Oxaliplatin-Induced Cold Allodynia Requires α9-Containing Nicotinic Acetylcholine Receptors and CD3+ T-Cells. Cells 2022, 11, 3561. [Google Scholar] [CrossRef] [PubMed]
- Jin, A.; Dutertre, S.; Kaas, Q.; Lavergne, V.; Kubala, P.; Lewis, R.J.; Alewood, P.F. Transcriptomic Messiness in the Venom Duct of Conus Miles Contributes to Conotoxin Diversity. Mol. Cell. Proteom. 2013, 12, 3824–3833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutertre, S.; Jin, A.; Kaas, Q.; Jones, A.; Alewood, P.; Lewis, R. Deep Venomics Reveals the Mechanism for Expanded Peptide Diversity in Cone Snail Venom. Mol. Cell. Proteom. 2013, 12, 312–329. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.; Jones, A.; Lewis, R.J. Remarkable Inter- and Intra-Species Complexity of Conotoxins Revealed by LC/MS. Peptides 2009, 30, 1222–1227. [Google Scholar] [CrossRef]
- Kaas, Q.; Westermann, J.-C.; Craik, D.J. Conopeptide Characterization and Classifications: An Analysis Using ConoServer. Toxicon 2010, 55, 1491–1509. [Google Scholar] [CrossRef]
- Adams, A.; Reeve, L.; Gray, J.E.; Richardson, J.; White, A.; Wing, W.; Marryat, F.; Hawkins, B.W.; Benjamin, W.; Sowerby, G.B.; et al. The Zoology of the Voyage of H.M.S. Samarang, under the Command of Captain Sir Edward Belcher, C.B., F.R.A.S., F.G.S., during the Years 1843–1846; Reeve and Benham: London, UK, 1848. [Google Scholar]
- Safavi-Hemami, H.; Brogan, S.E.; Olivera, B.M. Pain Therapeutics from Cone Snail Venoms: From Ziconotide to Novel Non-Opioid Pathways. J. Proteom. 2019, 190, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Lau, J.L.; Dunn, M.K. Therapeutic Peptides: Historical Perspectives, Current Development Trends, and Future Directions. Bioorg. Med. Chem. 2018, 26, 2700–2707. [Google Scholar] [CrossRef] [PubMed]
- de la Torre, B.G.; Albericio, F. Peptide Therapeutics 2.0. Mol. Basel Switz. 2020, 25, 2293. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
Countries/Regions | Documents 1 | Citations | Average Citation 2 |
---|---|---|---|
USA | 1142 | 42,989 | 37.6 |
Australia | 412 | 14,175 | 34.4 |
Peoples R. China | 395 | 8350 | 21.1 |
Japan | 281 | 6531 | 23.2 |
Germany | 200 | 6335 | 31.7 |
France | 175 | 7315 | 41.8 |
England | 147 | 5925 | 40.3 |
Italy | 142 | 6223 | 43.8 |
Canada | 120 | 4724 | 39.4 |
Spain | 91 | 2165 | 23.8 |
Organizations | Documents 1 | Citations | Average Citation 2 |
---|---|---|---|
University of Utah | 398 | 16670 | 41.9 |
University of Queensland | 241 | 9369 | 38.9 |
Chinese Academy of Sciences | 62 | 1270 | 20.5 |
Russian Academy of Sciences | 61 | 1487 | 24.4 |
Hainan University | 60 | 788 | 13.1 |
Universidad Nacional Autonoma de Mexico | 59 | 926 | 15.7 |
University of Melbourne | 54 | 2098 | 38.9 |
Monash University | 47 | 1262 | 26.9 |
University of Colorado | 42 | 3312 | 78.9 |
Royal Melbourne Institute of Technology | 40 | 1206 | 30.2 |
Authors | Documents 1 | Citations | Average Citation 2 |
---|---|---|---|
Mcintosh, J. Michael | 203 | 10,328 | 50.9 |
Olivera, Baldomero M. | 182 | 7287 | 40.0 |
Lewis, Richard J. | 125 | 4877 | 39.0 |
Adams, David J. | 96 | 4373 | 45.6 |
Alewood, Paul F. | 95 | 4173 | 43.9 |
Craik, David J. | 94 | 4691 | 49.9 |
Bulaj, Grzegorz W. | 70 | 2799 | 40.0 |
Luo, Sulan | 60 | 788 | 13.1 |
Zhangsun, Dong-Ting | 54 | 698 | 12.9 |
Yoshikami, Doju | 49 | 2490 | 50.8 |
Watkins, Maren | 44 | 1939 | 44.1 |
Dutertre, Sebastien | 43 | 1881 | 43.7 |
Tsetlin, Victor I. | 43 | 1119 | 26.0 |
Dai, Qiu-Yun | 42 | 481 | 11.5 |
Daly, Norelle L. | 38 | 1698 | 44.7 |
Gomez, Marcus V. | 38 | 845 | 22.2 |
Norton, Raymond S. | 37 | 1542 | 41.7 |
Zhu, XiaoPeng | 37 | 626 | 16.9 |
Marks, Michael J. | 34 | 2844 | 83.6 |
Wu, Yong | 34 | 605 | 17.8 |
Research Article 1 | Citations 2 | Comment |
---|---|---|
Hansen, S.B.; Sulzenbacher, G.; Huxford, T.; Marchot, P.; Taylor, P.; Bourne, Y. Structures of Aplysia AChBP Complexes with Nicotinic Agonists and Antagonists Reveal Distinctive Binding Interfaces and Conformations. EMBO J. 2005, 24, 3635–3646. | 555 | Experimental structure of α-conotoxin ImI in complex with the acetylcholine binding protein. |
Klink, R.; de Kerchove d’Exaerde, A.; Zoli, M.; Changeux, J.P. Molecular and Physiological Diversity of Nicotinic Acetylcholine Receptors in the Midbrain Dopaminergic Nuclei. J. Neurosci. 2001, 21, 1452–1463. | 553 | Physiological studies of nicotinic acetylcholine receptors that use α-conotoxin MII as a molecular probe. |
Miljanich, G.P. Ziconotide: Neuronal Calcium Channel Blocker for Treating Severe Chronic Pain. Curr. Med. Chem. 2004, 11, 3029–3040. | 434 | Clinical development of the first conopeptide-based drug, ziconotide |
Champtiaux, N.; Gotti, C.; Cordero-Erausquin, M.; David, D.J.; Przybylski, C.; Léna, C.; Clementi, F.; Moretti, M.; Rossi, F.M.; Le Novère, N.; et al. Subunit Composition of Functional Nicotinic Receptors in Dopaminergic Neurons Investigated with Knock-out Mice. J. Neurosci. 2003, 23, 7820–7829. | 407 | Physiological studies of nicotinic acetylcholine receptors that use α-conotoxin MII as a molecular probe. |
Staats, P.S.; Yearwood, T.; Charapata, S.G.; Presley, R.W.; Wallace, M.S.; Byas-Smith, M.; Fisher, R.; Bryce, D.A.; Mangieri, E.A.; Luther, R.R.; et al. Intrathecal Ziconotide in the Treatment of Refractory Pain in Patients with Cancer or AIDS: A Randomized Controlled Trial. JAMA 2004, 291, 63–70. | 399 | Clinical trial of the analgesic activity of ziconotide in cancer and AIDS patients. |
Salminen, O.; Murphy, K.L.; McIntosh, J.M.; Drago, J.; Marks, M.J.; Collins, A.C.; Grady, S.R. Subunit Composition and Pharmacology of Two Classes of Striatal Presynaptic Nicotinic Acetylcholine Receptors Mediating Dopamine Release in Mice. Mol. Pharmacol. 2004, 65, 1526–1535. | 342 | Physiological studies of nicotinic acetylcholine receptors that use α-conotoxin MII as a molecular probe. |
Zoli, M.; Moretti, M.; Zanardi, A.; McIntosh, J.M.; Clementi, F.; Gotti, C. Identification of the Nicotinic Receptor Subtypes Expressed on Dopaminergic Terminals in the Rat Striatum. J. Neurosci. 2002, 22, 8785–8789. | 329 | Physiological studies of nicotinic acetylcholine receptors that use α-conotoxin MII as a molecular probe. |
Wolf, J.A.; Stys, P.K.; Lusardi, T.; Meaney, D.; Smith, D.H. Traumatic Axonal Injury Induces Calcium Influx Modulated by Tetrodotoxin-Sensitive Sodium Channels. J. Neurosci. 2001, 21, 1923–1930. | 299 | Physiological studies of voltage-gated calcium channels that use ω-conotoxin MVIIC as a molecular probe. |
Champtiaux, N.; Han, Z.-Y.; Bessis, A.; Rossi, F.M.; Zoli, M.; Marubio, L.; McIntosh, J.M.; Changeux, J.-P. Distribution and Pharmacology of α6-Containing Nicotinic Acetylcholine Receptors Analyzed with Mutant Mice. J. Neurosci. 2002, 22, 1208–1217. | 291 | Physiological studies of nicotinic acetylcholine receptors that use α-conotoxin MII as a molecular probe. |
Celie, P.H.N.; Kasheverov, I.E.; Mordvintsev, D.Y.; Hogg, R.C.; van Nierop, P.; van Elk, R.; van Rossum-Fikkert, S.E.; Zhmak, M.N.; Bertrand, D.; Tsetlin, V.; et al. Crystal Structure of Nicotinic Acetylcholine Receptor Homolog AChBP in Complex with an α-Conotoxin PnIA Variant. Nat. Struct. Mol. Biol. 2005, 12, 582–588. | 289 | Experimental structure of α-conotoxin PnIA in complex with the acetylcholine binding protein. |
Publication 1 | 2000–2022 Citations 2 | Total Link Strength | Comment |
---|---|---|---|
Terlau, H.; Olivera, B.M. Conus Venoms: A Rich Source of Novel Ion Channel-Targeted Peptides. Physiol. Rev. 2004, 84, 41–68. | 522 | 478 | Review on conopeptides and their pharmacological activities. |
Lewis, R.J.; Dutertre, S.; Vetter, I.; Christie, M.J. Conus Venom Peptide Pharmacology. Pharmacol. Rev. 2012, 64, 259–298. | 212 | 201 | Review on conopeptide pharmacological activities. |
Miljanich, G.P. Ziconotide: Neuronal Calcium Channel Blocker for Treating Severe Chronic Pain. Curr. Med. Chem. 2004, 11, 3029–3040. | 189 | 179 | Clinical development of the first conopeptide-based drug, ziconotide. |
Kaas, Q.; Yu, R.; Jin, A.-H.; Dutertre, S.; Craik, D.J. ConoServer: Updated Content, Knowledge, and Discovery Tools in the Conopeptide Database. Nucleic Acids Res. 2012, 40, D325–330. | 173 | 165 | ConoServer is an expert database on conopeptides. |
Olivera, B.M.; Cruz, L.J. Conotoxins, in Retrospect. Toxicon 2001, 39, 7–14. | 151 | 146 | Review on conopeptide early discoveries. |
McIntosh, J.M.; Azam, L.; Staheli, S.; Dowell, C.; Lindstrom, J.M.; Kuryatov, A.; Garrett, J.E.; Marks, M.J.; Whiteaker, P. Analogs of α-Conotoxin MII Are Selective for α6-Containing Nicotinic Acetylcholine Receptors. Mol. Pharmacol. 2004, 65, 944–952. | 148 | 142 | Development of molecular probes based on α-conotoxin MII selective for α6- or α3-containing nicotinic acetylcholine receptors. |
Lewis, R.J.; Nielsen, K.J.; Craik, D.J.; Loughnan, M.L.; Adams, D.A.; Sharpe, I.A.; Luchian, T.; Adams, D.J.; Bond, T.; Thomas, L.; et al. Novel ω-Conotoxins from Conus catus Discriminate among Neuronal Calcium Channel Subtypes. J. Biol. Chem. 2000, 275, 35335–35344. | 146 | 129 | Discovery of conopeptide CVID, which displays similar activity to the conopeptide-based drug ziconotide but with higher selectivity. |
Olivera, B.M. Conus Peptides: Biodiversity-Based Discovery and Exogenomics. J. Biol. Chem. 2006, 281, 31173–31177. | 144 | 140 | Perspective on phylogeny-guided discovery of conopeptides. |
Akondi, K.B.; Muttenthaler, M.; Dutertre, S.; Kaas, Q.; Craik, D.J.; Lewis, R.J.; Alewood, P.F. Discovery, Synthesis, and Structure-Activity Relationships of Conotoxins. Chem. Rev. 2014, 114, 5815–5847. | 143 | 130 | General review on conopeptides. |
Lewis, R.J.; Garcia, M.L. Therapeutic Potential of Venom Peptides. Nat. Rev. Drug Discov. 2003, 2, 790–802. | 143 | 135 | Review on the potential therapeutic applications of conopeptides. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, L.T.T.; Craik, D.J.; Kaas, Q. Bibliometric Review of the Literature on Cone Snail Peptide Toxins from 2000 to 2022. Mar. Drugs 2023, 21, 154. https://doi.org/10.3390/md21030154
Nguyen LTT, Craik DJ, Kaas Q. Bibliometric Review of the Literature on Cone Snail Peptide Toxins from 2000 to 2022. Marine Drugs. 2023; 21(3):154. https://doi.org/10.3390/md21030154
Chicago/Turabian StyleNguyen, Linh T. T., David J. Craik, and Quentin Kaas. 2023. "Bibliometric Review of the Literature on Cone Snail Peptide Toxins from 2000 to 2022" Marine Drugs 21, no. 3: 154. https://doi.org/10.3390/md21030154
APA StyleNguyen, L. T. T., Craik, D. J., & Kaas, Q. (2023). Bibliometric Review of the Literature on Cone Snail Peptide Toxins from 2000 to 2022. Marine Drugs, 21(3), 154. https://doi.org/10.3390/md21030154