Chemical Composition, Free Radicals and Pathogenic Microbes in the Extract Derived from Dictyota dichotoma: In Silico and In Vitro Approaches
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Characterisation by HPLC-MS
2.2. Antioxidant Activity
2.3. Antibacterial and Antifungal Activity of D. dichotoma Extract
2.4. Molecular Docking
3. Discussion
4. Materials and Methods
4.1. Algal Material
4.2. Crude Extract Preparation
4.3. Phytochemical Characterisation by HPLC-MS
4.4. Evaluation of the Antioxidant Power of Dictyota dichotoma Extract
4.4.1. DPPH Method
4.4.2. FRAP Method
4.4.3. TAC Method
4.5. Evaluation of Antimicrobial Activity by Solid-State Diffusion
4.6. Molecular Docking
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Coll, M.; Piroddi, C.; Steenbeek, J.; Kaschner, K.; Lasram, F.B.R.; Aguzzi, J.; Ballesteros, E.; Bianchi, C.N.; Corbera, J.; Dailianis, T. The biodiversity of the Mediterranean Sea: Estimates, patterns, and threats. PLoS ONE 2010, 5, 8. [Google Scholar] [CrossRef] [PubMed]
- Rossbach, F.I.; Merk, B.; Wild, C. High Diversity and Abundance of Foraminifera Associated with Mediterranean Benthic Red Algae Mats. Diversity 2022, 14, 21. [Google Scholar] [CrossRef]
- Moussa, H.; Wynne, M.; Hassoun, M.; Salhi, G.; Zbakh, H.; Kazzaz, M.; Riadi, H. On the occurrence of three red algal species new to the Mediterranean Sea in Al-Hoceima National Park (Morocco). Bot. Mar. 2015, 58, 499–509. [Google Scholar] [CrossRef]
- El-Sheekh, M.; Gharieb, M.; El-Sabbagh, S.; Hamza, W. Antimicrobial efficacy of some marine macroalgae of Red Sea. J. Microbiol. Immunol. Res. 2014, 3, 21–28. [Google Scholar]
- Araújo, R.; Vázquez Calderón, F.; Sánchez López, J.; Azevedo, I.C.; Bruhn, A.; Fluch, S.; Garcia Tasende, M.; Ghaderiardakani, F.; Ilmjärv, T.; Laurans, M.; et al. Current Status of the Algae Production Industry in Europe: An Emerging Sector of the Blue Bioeconomy. Front. Mar. Sci. 2021, 7, 626389. [Google Scholar] [CrossRef]
- Lomartire, S.; Marques, J.C.; Gonçalves, A.M.M. An overview to the health benefits of seaweeds consumption. Mar. Drugs 2021, 19, 341. [Google Scholar] [CrossRef]
- Güven, K.C.; Coban, B.; Özdemir, O. Pharmacology of marine macroalgae. In Encyclopedia of Marine Biotechnology; John Wiley & Sons Ltd.: Oxford, UK, 2020; pp. 585–615. [Google Scholar]
- Sultana, P. Dietary Effects of Seaweed (Hypnea musciformis) on Growth Performance and Blood Parameters in Mice; Chattogram Veterinary & Animal Sciences University: Chattogram, Bangladesh, 2019. [Google Scholar]
- Akhoundian, M.; Safaei, N. Ecological status assessment of eastern coastal waters of Qeshm Island (Persian Gulf, Iran) based on macroalgal assemblages. Ecopersia 2022, 10, 203–215. [Google Scholar]
- Achmad, H.; Huldani, H.; Feby Ramadhany, Y. Antimicrobial activity and sulfated polysaccharides antibiofilms in marine algae against dental plaque bacteria: A literature review. Syst. Rev. Pharm. 2020, 11, 459–465. [Google Scholar]
- Tavares, O.J.; Cotas, J.; Valado, A.; Pereira, L. Algae Food Products as a Healthcare Solution. Mar. Drugs 2023, 21, 578. [Google Scholar] [CrossRef]
- Velankanni, S.; Vinoth, T.; Mary, M.N.; Arun, R.; Radhakrishnan, P.G. Extraction of Bioactive Compounds from Seaweed Dictyota dichotoma (Hudson) J.V. Lamouroux and Assessment of Its Antioxidant Activity. J. Pharm. Negat. Results 2022, 2022, 3528–3539. [Google Scholar]
- Cassani, L.; Lourenço-Lopes, C.; Barral-Martinez, M.; Chamorro, F.; Garcia-Perez, P.; Simal-Gandara, J.; Prieto, M.A. Thermochemical Characterization of Eight Seaweed Species and Evaluation of Their Potential Use as an Alternative for Biofuel Production and Source of Bioactive Compounds. Int. J. Mol. Sci. 2022, 23, 2355. [Google Scholar] [CrossRef] [PubMed]
- Belhadj, R.N.A.; Mellinas, C.; Jiménez, A.; Bordehore, C.; Garrigós, M.C. Invasive Seaweed Rugulopteryx okamurae: A Potential Source of Bioactive Compounds with Antioxidant Activity. Antioxidants 2024, 13, 1298. [Google Scholar] [CrossRef] [PubMed]
- Rushdi, M.I.; Abdel-Rahman, I.A.M.; Attia, E.Z.; Saber, H.; Saber, A.A.; Bringmann, G.; Abdelmohsen, U.R. The Biodiversity of the Genus Dictyota: Phytochemical and Pharmacological Natural Products Prospectives. Molecules 2022, 27, 672. [Google Scholar] [CrossRef] [PubMed]
- Siamopoulou, P.; Bimplakis, A.; Iliopoulou, D.; Vagias, C.; Cos, P.; Vanden Berghe, D.; Roussis, V. Diterpenes from the brown algae Dictyota dichotoma and Dictyota linearis. Phytochemistry 2004, 65, 2025–2030. [Google Scholar] [CrossRef]
- Guiry, M.D.; Guiry, G.M.; Morrison, L.; Rindi, F.; Miranda, S.V.; Mathieson, A.C.; Parker, B.C.; Langangen, A.; John, D.M.; Bárbara, I.; et al. AlgaeBase: An On-line Resource for Algae. Cryptogam. Algol. 2014, 35, 105–115. [Google Scholar] [CrossRef]
- El-Sheekh, M.M.; Ward, F.; Deyab, M.A.; Al-Zahrani, M.; Touliabah, H.E. Chemical Composition, Antioxidant, and Antitumor Activity of Fucoidan from the Brown Alga Dictyota dichotoma. Molecules 2023, 28, 7175. [Google Scholar] [CrossRef]
- Fernandes, A.; Fernandes, I.; Cruz, L.; Mateus, N.; Cabral, M.; de Freitas, V. Antioxidant and Biological Properties of Bioactive Phenolic Compounds from Quercus suber L. J. Agric. Food Chem. 2009, 57, 11154–11160. [Google Scholar] [CrossRef]
- Nijat, D.; Lu, C.-F.; Lu, J.-J.; Abdulla, R.; Hasan, A.; Aidarhan, N.; Aisa, H.A. Spectrum-effect relationship between UPLC fingerprints and antidiabetic and antioxidant activities of Rosa rugosa. J. Chromatogr. B 2021, 1179, 122843. [Google Scholar] [CrossRef]
- Evtyugin, D.D.; Magina, S.; Evtuguin, D.V. Recent Advances in the Production and Applications of Ellagic Acid and Its Derivatives. A Review. Molecules 2020, 25, 2745. [Google Scholar] [CrossRef]
- Kose, L.P.; Gulcin, İ. Evaluation of the Antioxidant and Antiradical Properties of Some Phyto and Mammalian Lignans. Molecules 2021, 26, 7099. [Google Scholar] [CrossRef]
- Mechri, B.; Tekaya, M.; Hammami, M.; Chehab, H. Effects of drought stress on phenolic accumulation in greenhouse-grown olive trees (Olea europaea). Biochem. Syst. Ecol. 2020, 92, 104112. [Google Scholar] [CrossRef]
- Kumar, Y.; Tarafdar, A.; Badgujar, P.C. Seaweed as a Source of Natural Antioxidants: Therapeutic Activity and Food Applications. J. Food Qual. 2021, 2021, 5753391. [Google Scholar] [CrossRef]
- Torres-León, C.; Ventura-Sobrevilla, J.; Serna-Cock, L.; Ascacio-Valdés, J.A.; Contreras-Esquivel, J.; Aguilar, C.N. Pentagalloylglucose (PGG): A valuable phenolic compound with functional properties. J. Funct. Foods 2017, 37, 176–189. [Google Scholar] [CrossRef]
- Chebbac, K.; Benziane Ouaritini, Z.; El Moussaoui, A.; Chalkha, M.; Lafraxo, S.; Bin Jardan, Y.A.; Nafidi, H.-A.; Bourhia, M.; Guemmouh, R. Antimicrobial and Antioxidant Properties of Chemically Analyzed Essential Oil of Artemisia annua L. (Asteraceae) Native to Mediterranean Area. Life 2023, 13, 807. [Google Scholar] [CrossRef]
- Chebbac, K.; Moussaoui, A.E.; Bourhia, M.; Salamatullah, A.M.; Alzahrani, A.; Guemmouh, R. Chemical Analysis and Antioxidant and Antimicrobial Activity of Essential oils from Artemisia negrei L. Against Drug-Resistant Microbes. Evid. Based Complement. Altern. Med. 2021, 2021, 5902851. [Google Scholar] [CrossRef]
- Chebbac, K.; Benziane Ouaritini, Z.; El Moussaoui, A.; Chebaibi, M.; Salamatullah, A.M.; Lafraxo, S.; Bourhia, M.; Giesy, J.P.; Aboul-Soud, M.A.M.; Guemmouh, R. In Vitro and In Silico Studies of Antimicrobial, and Antioxidant Activities of Chemically Characterized Essential Oil of Artemisia flahaultii L. (Asteraceae). Life 2023, 13, 779. [Google Scholar] [CrossRef]
- Imran, M.; Iqbal, A.; Badshah, S.L.; Sher, A.A.; Ullah, H.; Ayaz, M.; Mosa, O.F.; Mostafa, N.M.; Daglia, M. Chemical and Nutritional Profiling of the Seaweed Dictyota dichotoma and Evaluation of Its Antioxidant, Antimicrobial and Hypoglycemic Potentials. Mar. Drugs 2023, 21, 273. [Google Scholar] [CrossRef]
- Karaoğlan, E.S.; Hancı, H.; Koca, M.; Kazaz, C. Some Bioactivities of Isolated Apigenin-7-O-glucoside and Luteolin-7-O-glucoside. Appl. Sci. 2023, 13, 1503. [Google Scholar]
- EL Moussaoui, A.; Bourhia, M.; Jawhari, F.Z.; Salamatullah, A.M.; Ullah, R.; Bari, A.; Majid Mahmood, H.; Sohaib, M.; Serhii, B.; Rozhenko, A.; et al. Chemical Profiling, Antioxidant, and Antimicrobial Activity against Drug-Resistant Microbes of Essential Oil from Withania frutescens L. Appl. Sci. 2021, 11, 5168. [Google Scholar] [CrossRef]
- Abdallah, S.H.; Mostafa, N.M.; Mohamed, M.A.E.H.; Nada, A.S.; Singab, A.N.B. UPLC-ESI-MS/MS profiling and hepatoprotective activities of Stevia leaves extract, butanol fraction and stevioside against radiation-induced toxicity in rats. Nat. Prod. Res. 2022, 36, 5619–5625. [Google Scholar] [CrossRef]
- Fischer, C.L. Antimicrobial Activity of Host-Derived Lipids. Antibiotics 2020, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Laus, G. Biological activities of natural halogen compounds. Stud. Nat. Prod. Chem. 2001, 25, 757–809. [Google Scholar]
- Solomon, R.D.J.; Santhi, V.S. Purification of bioactive natural product against human microbial pathogens from marine sea weed Dictyota acutiloba J. Ag. World J. Microbiol. Biotechnol. 2008, 24, 1747–1752. [Google Scholar] [CrossRef]
- Demirel, Z.; Yilmaz-Koz, F.F.; Karabay-Yavasoglu, U.N.; Ozdemir, G.; Sukatar, A. Antimicrobial and antioxidant activity of brown algae from the Aegean Sea. J. Serbian Chem. Soc. 2009, 74, 619–628. [Google Scholar] [CrossRef]
- Lima, L.M.; da Silva, B.N.M.; Barbosa, G.; Barreiro, E.J. β-lactam antibiotics: An overview from a medicinal chemistry perspective. Eur. J. Med. Chem. 2020, 208, 112829. [Google Scholar] [CrossRef]
- Chebbac, K.; Abchir, O.; Chalkha, M.; El Moussaoui, A.; El Barnossi, A.; Lafraxo, S.; Chtita, S.; Salamatullah, A.M. Phytochemical analysis, antimicrobial and antioxidant activities of essential oils of the species Artemisia mesatlantica maire: In vitro and in silico approaches. CyTA J. Food 2024, 22, 2388. [Google Scholar] [CrossRef]
- Jawhari, F.Z.; El Moussaoui, A.; Bourhia, M.; Imtara, H.; Mechchate, H.; Es-Safi, I.; Ullah, R.; Ezzeldin, E.; Mostafa, G.A.; Grafov, A.; et al. Anacyclus pyrethrum (L): Chemical Composition, Analgesic, Anti-Inflammatory, and Wound Healing Properties. Molecules 2020, 25, 5469. [Google Scholar] [CrossRef]
- Bouslamti, M.; Metouekel, A.; Chelouati, T.; El Moussaoui, A.; Barnossi, A.E.; Chebaibi, M.; Nafidi, H.-A.; Salamatullah, A.M.; Alzahrani, A.; Aboul-Soud, M.A.M.; et al. Solanum elaeagnifolium Var. Obtusifolium (Dunal) Dunal: Antioxidant, Antibacterial, and Antifungal Activities of Polyphenol-Rich Extracts Chemically Characterized by Use of In Vitro and In Silico Approaches. Molecules 2022, 27, 8688. [Google Scholar] [CrossRef]
- Mssillou, I.; Agour, A.; Lefrioui, Y.; Chebaibi, M. LC-TOFMS analysis, in vitro and in silico antioxidant activity on NADPH oxidase, and toxicity assessment of an extract mixture based on Marrubium vulgare L. and Dittrichia viscosa L. J. Biol. Biomed. Res. 2024, 1, 31–45. [Google Scholar] [CrossRef]
- Lopes-Lutz, D.; Alviano, D.S.; Alviano, C.S.; Kolodziejczyk, P.P. Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia essential oils. Phytochemistry 2008, 69, 1732–1738. [Google Scholar] [CrossRef]
- Moattar, F.S.; Sariri, R.; Yaghmaee, P.; Giahi, M. Enzymatic and non-enzymatic antioxidants of Calamintha officinalis moench extracts. J. Appl. Biotechnol. Rep. 2016, 3, 489–494. [Google Scholar]
- Maskovic, P.; Manojlovic, N.; Mandić, A.; Mišan, A.; Milovanović, I.; Radojković, M.; Cvijović, M.; Solujić, S. Phytochemical screening and biological activity of extracts of plant species Halacsya sendtneri (Boiss.). Dörfl. Hem. Ind. 2012, 66, 43–51. [Google Scholar] [CrossRef]
- El Barnossi, A.; Moubchir, T.; Beniaich, G.; Saghrouchni, H.; Allali, A.; Abdelilah, I. Isolation, conventional and molecular identification of Fusarium proliferatum responsible to bulb rot of garlic and potential biological control by new bacterial strains. J. Biol. Biomed. Res. 2024, 1, 1–9. [Google Scholar] [CrossRef]
- El Abdali, Y.; Meryem, J.; Agour, A.; Allali, A.; Chebaibi, M.; Abdelhak, B. Chemical composition, free radicals, pathogenic microbes, α-amylase and α-glucosidase suppressant proprieties of essential oil derived from Moroccan Mentha pulegium: In silico and in vitro approaches. J. Biol. Biomed. Res. 2024, 1, 46–61. [Google Scholar]
- Chebaibi, M.; Mssillou, I.; Allali, A.; Bourhia, M.; Bousta, D.; Francisco, R.; Gonçalves, B.; Hasnae, H.; Aboul-Soud, M.; Augustyniak, M.; et al. Antiviral Activities of Compounds Derived from Medicinal Plants against SARS-CoV-2 Based on Molecular Docking of Proteases. J. Biol. Biomed. Res. 2024, 1, 10–30. [Google Scholar] [CrossRef]
No | RT | m/z (M-H)- | Fragments | Proposed Compounds | Concentration (µg/mg of DdEx) |
---|---|---|---|---|---|
1 | 0.31 | 785.1 | 301/225 | HHDP-digalloyl-glucose | 20.12 |
2 | 9.48 | 357 | 289 | nd | 0.37 |
3 | 9.65 | 361 | 359/112 | Secoisolariciresinol | 5.36 |
4 | 15.98 | 331 | 289/91 | Galloyl-glucoside | 6.94 |
5 | 17.47 | 331 | 289/91 | Gallolyl-hexoside | 8.74 |
6 | 17.65 | 531.1 | 361 | nd | 3.47 |
7 | 25.35 | 783.1 | 480/301 | Tetragalloyl-glucose | 4.18 |
8 | 25.75 | 433.12 | 407/385/301/265 | Ellagic acid-pentose | 5.13 |
9 | 25.84 | 483.12 | 313 | Digalloyl- glucoside | 5.41 |
10 | 25.9 | 939.1 | 787/769 | Pentagalloyl-glucose | 6.34 |
11 | 26.24 | 407.2 | 401/28 | nd | 6.3 |
12 | 26.4 | 431.7 | 269.1/125 | Apigenin-7-O-glucoside | 2.1 |
13 | 26.5 | 996.87 | 725/579 | Punictannin B | 4.83 |
14 | 26.67 | 389.5 | 289/90.1 | nd | 0.44 |
15 | 26.75 | 433.12 | 301.2/289.2/90.1 | Pelargonidin 3-O-glucoside | 0.11 |
16 | 27.03 | 447.12 | 401.25/289.1 | Ellagic acid-deoxyhexose | 4.39 |
17 | 27.18 | 394.1 | 301/265 | Methylation and sulfation of ellagic acid | 0.46 |
18 | 27.49 | 417.03 | 353.1/289.2 | nd | 4.36 |
19 | 27.7 | 289.1 | 91.02 | catechine | 3.48 |
20 | 27.8 | 431.12 | 269.1/90.1 | Apigenin-7-O-glucoside isomer | 2.11 |
21 | 28.1 | 787.1 | 745.1/607.2 | Tetragalloyl-glucose | 1.46 |
22 | 29.43 | 633.1 | 531.2/349.1 | Galloyl-HHDP-glucoside | 3.87 |
E. coli | S. aureus | K. pneumoniae | P. mirabilis | C. albicans | S. cerevisiae | |
---|---|---|---|---|---|---|
DdEx | 22.58 ± 0.58 | 11.93 ± 0.73 | 10.56 ± 1.48 | 18.81 ± 1.05 | 22.38 ± 1.24 | 23.52 ± 0.93 |
AMP | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | Nt | Nt |
Flu | Nt | Nt | Nt | Nt | 19.70 ± 0.40 | 18.81 ± 0.67 |
DMSO (5%) | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
Glide Gscore (Kcal/mol) | ||||
---|---|---|---|---|
2CDU | 1FJ4 | 3Q8U | 5FSA | |
Apigenin-7-O-glucoside | −7.424 | −7.276 | −7.698 | −9.569 |
Catechin | −5.55 | −6.453 | −6.796 | −7.638 |
Ellagic acid | −5.114 | −4.921 | −7.935 | −7.315 |
Ellagic acid deoxyhexoside | −5.749 | −5.072 | −6.76 | −8.66 |
HHDP-galloyl-glucose | −5.185 | −7.858 | −5.251 | |
Pelargonidin 3-O-glucoside | −5.465 | −6.811 | −7.244 | −8.925 |
Pentagalloylglucose | −6.402 | −10.502 | −7.014 | |
Secoisolariciresinol | −4.952 | −6.594 | −7.292 | −8.441 |
Tetragalloyl-glucose | −7.723 | −10.47 | −8.778 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oumassi, F.; Chebbac, K.; Ben Ali, N.; Kaabi, S.; El Ansari, Z.N.; Metouekel, A.; El Barnossi, A.; El Moussaoui, A.; Chebaibi, M.; Bounab, L.; et al. Chemical Composition, Free Radicals and Pathogenic Microbes in the Extract Derived from Dictyota dichotoma: In Silico and In Vitro Approaches. Mar. Drugs 2024, 22, 565. https://doi.org/10.3390/md22120565
Oumassi F, Chebbac K, Ben Ali N, Kaabi S, El Ansari ZN, Metouekel A, El Barnossi A, El Moussaoui A, Chebaibi M, Bounab L, et al. Chemical Composition, Free Radicals and Pathogenic Microbes in the Extract Derived from Dictyota dichotoma: In Silico and In Vitro Approaches. Marine Drugs. 2024; 22(12):565. https://doi.org/10.3390/md22120565
Chicago/Turabian StyleOumassi, Fouad, Khalid Chebbac, Naouar Ben Ali, Soundouss Kaabi, Zineb Nejjar El Ansari, Amira Metouekel, Azeddin El Barnossi, Abdelfattah El Moussaoui, Mohamed Chebaibi, Loubna Bounab, and et al. 2024. "Chemical Composition, Free Radicals and Pathogenic Microbes in the Extract Derived from Dictyota dichotoma: In Silico and In Vitro Approaches" Marine Drugs 22, no. 12: 565. https://doi.org/10.3390/md22120565
APA StyleOumassi, F., Chebbac, K., Ben Ali, N., Kaabi, S., El Ansari, Z. N., Metouekel, A., El Barnossi, A., El Moussaoui, A., Chebaibi, M., Bounab, L., Mssillou, I., Shahat, A. A., El Bouzdoudi, B., & L’bachir El Kbiach, M. (2024). Chemical Composition, Free Radicals and Pathogenic Microbes in the Extract Derived from Dictyota dichotoma: In Silico and In Vitro Approaches. Marine Drugs, 22(12), 565. https://doi.org/10.3390/md22120565