Content and Bioaccessibility of Minerals and Proteins in Fish-Bone Containing Side-Streams from Seafood Industries
Abstract
:1. Introduction
2. Results
2.1. Content of Minerals and Protein in Bone Powder Products and Raw Cod Backbone
2.2. Bioaccessibility of Minerals from the Different Bone Powder Products and Raw Cod Backbone
2.3. Bioaccessibility of Proteins from the Different Bone Powder Products and Raw Cod Backbone
3. Discussion
3.1. Content of Minerals in the Bone Powder Products and Raw Cod Backbone
3.2. Bioaccessibility of Minerals from the Bone Powder Products and Raw Cod Backbone
3.3. Bioaccessibility of Proteins from the Bone Powder Products and Raw Cod Backbone
3.4. The Nutritional Relevance of the Bone Powder Products
4. Materials and Methods
4.1. Materials
4.2. Samples
4.3. Mineral Analysis
4.4. Dry Matter Determination
4.5. Protein Analysis
4.6. In Vitro Digestion (INFOGEST 2.0)
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jafarpour, A.; Gomes, R.M.; Gregersen, S.; Sloth, J.J.; Jacobsen, C.; Moltke Sørensen, A.D. Characterization of Cod (Gadus Morhua) Frame Composition and Its Valorization by Enzymatic Hydrolysis. J. Food Compos. Anal. 2020, 89, 103469. [Google Scholar] [CrossRef]
- Aspevik, T.; Totland, C.; Lea, P.; Oterhals, Å. Sensory and Surface-Active Properties of Protein Hydrolysates Based on Atlantic Salmon (Salmo Salar) by-Products. Process Biochem. 2016, 51, 1006–1014. [Google Scholar] [CrossRef]
- Iñarra, B.; Bald, C.; Gutierrez, M.; San Martin, D.; Zufía, J.; Ibarruri, J. Production of Bioactive Peptides from Hake By-Catches: Optimization and Scale-Up of Enzymatic Hydrolysis Process. Mar. Drugs 2023, 21, 552. [Google Scholar] [CrossRef] [PubMed]
- Toppe, J.; Albrektsen, S.; Hope, B.; Aksnes, A. Chemical Composition, Mineral Content and Amino Acid and Lipid Profiles in Bones from Various Fish Species. Comp. Biochem. Physiol.—B Biochem. Mol. Biol. 2007, 146, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Pérez, A.; Ruz, M.; García, P.; Jiménez, P.; Valencia, P.; Ramírez, C.; Pinto, M.; Nuñez, S.M.; Park, J.W.; Almonacid, S. Nutritional Properties of Fish Bones: Potential Applications in the Food Industry. Food Rev. Int. 2022, 40, 79–91. [Google Scholar] [CrossRef]
- Etcheverry, P.; Grusak, M.A.; Fleige, L.E. Application of in Vitro Bioaccessibility and Bioavailability Methods for Calcium, Carotenoids, Folate, Iron, Magnesium, Polyphenols, Zinc, and Vitamins B6, B12, D, and E. Front. Physiol. 2012, 3, 317. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J.; Peng, S.F. Current Status in Our Understanding of Physicochemical Basis of Bioaccessibility. Curr. Opin. Food Sci. 2020, 31, 57–62. [Google Scholar] [CrossRef]
- Kiela, P.R.; Ghishan, F.K. Physiology of Intestinal Absorption and Secretion. Best Pract. Res. Clin. Gastroenterol. 2016, 30, 145–159. [Google Scholar] [CrossRef] [PubMed]
- Goff, J.P. Invited Review: Mineral Absorption Mechanisms, Mineral Interactions That Affect Acid–Base and Antioxidant Status, and Diet Considerations to Improve Mineral Status. J. Dairy Sci. 2018, 101, 2763–2813. [Google Scholar] [CrossRef]
- William, J.H.; Danziger, J. Proton-Pump Inhibitor-Induced Hypomagnesemia: Current Research and Proposed Mechanisms. World J. Nephrol. 2016, 5, 152. [Google Scholar] [CrossRef]
- Demigné, C.; Sabboh, H.; Rémésy, C.; Meneton, P. Protective Effects of High Dietary Potassium: Nutritional and Metabolic Aspects. J. Nutr. 2004, 134, 2903–2906. [Google Scholar] [CrossRef]
- Koulouridis, I.; Qari, M.; Koulouridis, E. Dietary Potassium Intake and Blood Pressure: Possible Benefecial Effect of Paleolithic Diet. Med. Res. Arch. 2023, 11, 1–22. [Google Scholar] [CrossRef]
- Goodman, B.E. Insights into Digestion and Absorption of Major Nutrients in Humans. Am. J. Physiol.—Adv. Physiol. Educ. 2010, 34, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST Static in Vitro Simulation of Gastrointestinal Food Digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Egger, L.; Schlegel, P.; Baumann, C.; Stoffers, H.; Guggisberg, D.; Brügger, C.; Dürr, D.; Stoll, P.; Vergères, G.; Portmann, R. Physiological Comparability of the Harmonized INFOGEST in Vitro Digestion Method to in Vivo Pig Digestion. Food Res. Int. 2017, 102, 567–574. [Google Scholar] [CrossRef]
- Blomhoff, R.; Andersen, R.; Arnesen, E.K.; Christensen, J.J.; Eneroth, H.; Erkkola, M.; Gudanaviciene, I.; Halldorsson, T.I.; Høyer-Lund, A.; Lemming, E.W.; et al. Nordic Nutrition Recommendations 2023; Nordic Council of Ministers: Copenhagen, Denmark, 2023. [Google Scholar]
- Bubel, F.; Dobrzański, Z.; Bykowski, P.J.; Chojnacka, K.; Opaliński, S.; Trziszka, T. Production of Calcium Preparations by Technology of Saltwater Fish by Product Processing. Open Chem. 2015, 13, 1333–1340. [Google Scholar] [CrossRef]
- Nam, P.V.; Van Hoa, N.; Trung, T.S. Properties of Hydroxyapatites Prepared from Different Fish Bones: A Comparative Study. Ceram. Int. 2019, 45, 20141–20147. [Google Scholar] [CrossRef]
- Silva, J.G.S.; Rebellato, A.P.; Greiner, R.; Pallone, J.A.L. Bioaccessibility of Calcium, Iron and Magnesium in Residues of Citrus and Characterization of Macronutrients. Food Res. Int. 2017, 97, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Bertin, R.L.; Maltez, H.F.; de Gois, J.S.; Borges, D.L.G.; Borges, G.d.S.C.; Gonzaga, L.V.; Fett, R. Mineral Composition and Bioaccessibility in Sarcocornia Ambigua Using ICP-MS. J. Food Compos. Anal. 2016, 47, 45–51. [Google Scholar] [CrossRef]
- Vitali, D.; Vedrina Dragojević, I.; Šebečić, B. Bioaccessibility of Ca, Mg, Mn and Cu from Whole Grain Tea-Biscuits: Impact of Proteins, Phytic Acid and Polyphenols. Food Chem. 2008, 110, 62–68. [Google Scholar] [CrossRef]
- Sousa, R.; Recio, I.; Heimo, D.; Dubois, S.; Moughan, P.J.; Hodgkinson, S.M.; Portmann, R.; Egger, L. In Vitro Digestibility of Dietary Proteins and in Vitro DIAAS Analytical Workflow Based on the INFOGEST Static Protocol and Its Validation with in Vivo Data. Food Chem. 2023, 404, 134720. [Google Scholar] [CrossRef]
- Aenglong, C.; Wang, Y.-M.; Limpawattana, M.; Sukketsiri, W.; Tang, Q.-J.; Klaypradit, W.; Kerdpiboon, S. Synthesis of Soluble Calcium Compund From Skipjack Tuna Bones Using Edible Weak Acids. LWT 2022, 162, 113460. [Google Scholar] [CrossRef]
- Mariotti, F.; Tomé, D.; Mirand, P.P. Converting Nitrogen into Protein—Beyond 6.25 and Jones’ Factors. Crit. Rev. Food Sci. Nutr. 2008, 48, 177–184. [Google Scholar] [CrossRef] [PubMed]
Food Matrix | Minerals | Mg | P | K | Ca | Protein | |
---|---|---|---|---|---|---|---|
n | mg/100 g | n | (%) | ||||
Ca supplement | 2 | 127 | 1.7 | 8.3 | 33,216 | 1 | - |
CodE | 5 | 310 B ± 10 | 8200 C ± 500 | 490 B ± 10 | 15,700 C ± 900 | 1 | 41 |
CodC | 3 | 240 C ± 10 | 5800 D ± 100 | 580 A ± 10 | 10,700 D ± 200 | 1 | 54 |
HakeE | 3 | 460 A ± 10 | 11100 A ± 200 | 310 C ± 10 | 21,600 A ± 800 | 1 | 28 |
SalmonE | 3 | 290 B ± 10 | 930 B ± 400 | 240 D ± 10 | 17,400 B ± 800 | 1 | 32 |
RawCod | 3 | 40 D ± 10 | 1000 E ± 300 | 240 D ± 10 | 1900 E ± 600 | 1 | 19 |
Samples | Mass (g/100 g Side-Stream) * | Dry Matter (%) | |
---|---|---|---|
Pellet Fraction | Bone Fraction | ||
CodE | 14.5 ± 3.8 | - | 97.6 ± 0.2 |
CodC | 19.4 ± 3.8 | - | 98.0 ± 0.3 |
SalmonE | - | 25.5 ± 2.6 | 91.6 ± 2.9 |
HakeE | - | 9.4 ± 0.7 | 97.3 ± 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jensen, M.B.; Jakobsen, J.; Jacobsen, C.; Sloth, J.J.; Ibarruri, J.; Bald, C.; Iñarra, B.; Bøknæs, N.; Sørensen, A.-D.M. Content and Bioaccessibility of Minerals and Proteins in Fish-Bone Containing Side-Streams from Seafood Industries. Mar. Drugs 2024, 22, 162. https://doi.org/10.3390/md22040162
Jensen MB, Jakobsen J, Jacobsen C, Sloth JJ, Ibarruri J, Bald C, Iñarra B, Bøknæs N, Sørensen A-DM. Content and Bioaccessibility of Minerals and Proteins in Fish-Bone Containing Side-Streams from Seafood Industries. Marine Drugs. 2024; 22(4):162. https://doi.org/10.3390/md22040162
Chicago/Turabian StyleJensen, Marie Bagge, Jette Jakobsen, Charlotte Jacobsen, Jens J. Sloth, Jone Ibarruri, Carlos Bald, Bruno Iñarra, Niels Bøknæs, and Ann-Dorit Moltke Sørensen. 2024. "Content and Bioaccessibility of Minerals and Proteins in Fish-Bone Containing Side-Streams from Seafood Industries" Marine Drugs 22, no. 4: 162. https://doi.org/10.3390/md22040162
APA StyleJensen, M. B., Jakobsen, J., Jacobsen, C., Sloth, J. J., Ibarruri, J., Bald, C., Iñarra, B., Bøknæs, N., & Sørensen, A. -D. M. (2024). Content and Bioaccessibility of Minerals and Proteins in Fish-Bone Containing Side-Streams from Seafood Industries. Marine Drugs, 22(4), 162. https://doi.org/10.3390/md22040162