Effects of Omega-3 Polyunsaturated Fatty Acids, Docosahexaenoic Acid and Eicosapentaenoic Acid, on Post-Surgical Complications in Surgical Trauma Patients: Mechanisms, Nutrition, and Challenges
Abstract
:1. Introduction
2. Materials and Methods
3. Background of Omega-3 Polyunsaturated Fatty Acids
4. Surgical Trauma and Post-Surgical Complications
4.1. Endocrine Response
4.2. Immune Response
5. The Effect of Omega-3 on Traumatic Surgical Outcomes
5.1. Coronary Artery Bypass Graft Surgeries
5.1.1. Intravenous Administration
5.1.2. Oral Supplementation
First Author | Sample Size | Duration of Exposure | Control | Time of Measures | Dose | Outcomes | Findings |
---|---|---|---|---|---|---|---|
Intravenous | |||||||
Miliü Veljoviü et al., 2013 [38] | 40 CABG with the use of CPB | Preoperative 1 day before surgery | 0.9% saline infusion | Day before surgery and repeated 4 h before starting CPB (25 mL/h) | 100 mL lipid emulsion with a high content n-3 EPA:1.25–2.82 g DHA:1.44–3.09 g | hematological parameters and the activity of platelets | (=) hematological parameters (=) transfusion requirements and post-operative blood loss (=) allogenic red blood cells (RBCs) (p = 0.94) (=) fresh frozen plasma (FFP) (p = 0.52) (=) platelet units (p = 0.73) (=) post-operative blood loss (p = 0.356) (=) post-operative platelet aggregation ADP test (p = 0.396) (−) post-operative platelet aggregation COL test (p = 0.009) |
Mette M Berger et al., 2012 [39] | 28 undergoing CPB | Perioperative 1 day before | Saline infusion | Blood samples (7 time points) and an atrial biopsy (during surgery), every 1–2 h after surgery | 3 infusions of 0.2 g/kg at 12 and 2 h pre-op and immediately after surgery of FO emulsion | Primary outcomes: Incorporation of EPA and DHA into the membrane of circulating platelets and cardiac tissue cells Secondary outcomes: inflammation cardiovascular and organ function severity scores length of mechanical ventilation (ICU) hospital stay safety data | (=) ICU severity score p = 0.058 (+) Incorporation of EPA and DHA in platelet membrane (+) EPA in atrial tissue (=) DHA in atrial tissue (−) IL-6 (p = 0.018) (−) IL-8 (p = 0.005) (=) IL-10 (p = 0.10) (=) ICU stay (p = 0.118) (=) kidney function (plasma carnitine and plasma urea) (−) average glycemia (p < 0.0001) |
Heidt et al., 2008 [40] | CABG | Perioperative 12 h before surgery until discharge from ICU | 100 mg soya oil/kg/day | Standard 12-lead ECG was performed daily from admission to hospital until transfer | 100 mg fish oil/kg body weight/day | POAF > 15 min | (−) POAF |
Oral | |||||||
Calo et al., 2005 [43] | 160 | Perioperative 5 days before surgery until discharge | Standard care | first four to five post-operative days. 4 weeks follow up after discharge | 2 gelatin capsules/day 2 g/day 850–882 mg EPA and DHA | POAF >= 5 min Hospital length of stay | (−) POAF (p = 0.013)) (=) episodes of AF (p = −0.889) (−) length of hospital stay (p = 0.017) |
Saravanan et al., 2010 [51] | 108 | Perioperative 12–21 days median 16 days | 2 g/day Olive oil | 12–21 days presurgical until Discharge | 2 g/day 85% to 88% EPA_DHA as ethyl esters | POAF >= 30 s Clinically recognized AF AF burden Length of hospital stay ICU stay | (=) Overall incidence of AF (p = 0.28) (=) Clinical AF (p = 0.60) (=) AF burden (p = 0.49) (=) hospital stay (p = 0.49) (=) Length of stay in ICU/HDH 1 day (1 to 2 days) |
Sandesara CM et al., 2012 [44] | 260 | Perioperative 2 days before | Matched placebo (corn oil) | Day of screening, day of surgery and post operative day 4 | Capsules Each 1 g capsule of n3-PUFA contained ≥ 900 mg of n-3 ethyl esters (465 mg EPA and 375 mg DHA) Pre op. 4 g/day Post op. 2 g/day until AF or unitl 14 days | Any episode of AF | (=) AF (p = 0.67) (=) Legth of hospital stay (p = 0.27) (=) Congestive heart failure (p = 0.68) (=) Myocardial infarction (p = 1.00) (=) Bleeding requiring reoperation or transfusion (p = 0.18) (=) Infection (p = 0.79) (=) Renal failure (p = 1.0) (=) Respiratory failure (p = 1.0) (=) Stroke or transient ischemic attack (p = 1.0) (=) Rehospitalization for AF 1 (p = 1.0) (=) Readmission to intensive care Unit (p = 0.64) (=) Death within 30 d (p = 1.0) |
Vasheghani Farahani et al., 2017 [46] | 478 | Perioperative 5 days preoperative until discharge | Olive oil soft gelatin capsules | Not specified | 2 g/day Soft gelatin capsules 300 mg EPA 200 mg DHA | POAF until 96 h during ICU and post ICU Length of hospital stay | (=) Incidence of POAF (p = 0.07) (−) Duration of AF (p = 0.04) (=) Episodes of AF (p = 0.06) (−) ICU stay (p = 0.003) (−) Hospital stay (p = 0.04) |
Sorice, M. et al., 2011 [19] | 201 | 5 days preoperatively –discharge | control | Not specified | gelatinous capsules EEPA and DHA ethyl esters 850–882 EPA | POAF incidence Impact of surgical technique on incidence of POAF Length of post-operative hospital stay | (−) AF incidence in n-3 groups (OR 0.28 (p = 0.013) (=) Length of hospital stay (days) (p = 0.75) (−) AF in “on-pump” CABG, no benefit to off pump groups |
Saravanan et al., 2016 [45] | 61 | 14 days preoperatively | Olive oil | Baseline and during surgery | 2 g/day (Omacor capsules) 760 mg DHA 920 mg EPA | ECG atrial arrhythmic markers | (=) ECG P-max duration POAF (p = 0.74) (=) ECG P-wave duration (p = 0.25) (=) Cx 40 expression (p = 0.40) (=) Cx 43 expression (p = 0.44) (=) Incidence of AF (p = 0.26) (=) Total AF barden (p = 0.62) |
5.2. Gastrointestinal and Liver Surgeries
5.3. Omega-3 and Femoral Fracture Surgeries
5.4. Omega-3 PUFA Supplementation in Hospitalized Patients with ARDS
6. Mechanisms of Action
6.1. Omega-3 as an Anti-Inflammatory Molecule
6.2. Omega-3 in Trauma
6.3. Omega-3 in Wound Healing
7. Limitations, Summary, and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ni Choileain, N.; Redmond, H.P. Cell response to surgery. Arch. Surg. 2006, 141, 1132–1140. [Google Scholar] [CrossRef]
- Desborough, J.P. The stress response to trauma and surgery. Br. J. Anaesth. 2000, 85, 109–117. [Google Scholar] [CrossRef]
- Cuthbertson, D.P. Observations on the disturbance of metabolism produced by injury to the limbs. QJM Int. J. Med. 1932, 1, 233–246. [Google Scholar]
- Angele, M.K.; Chaudry, I.H. Surgical trauma and immunosuppression: Pathophysiology and potential immunomodulatory approaches. Langenbecks Arch. Surg. 2005, 390, 333–341. [Google Scholar] [CrossRef]
- Akira, O.; Yoji, T.; Riichiro, N.; Shoko, L. Zinc in clinical surgery—A research review. Jpn. J. Surg. 1990, 20, 635–644. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tang, L.; Lin, Y.F.; Xie, G.F. Role of vitamin C in wound healing after dental implant surgery in patients treated with bone grafts and patients with chronic periodontitis. Clin. Implant. Dent. Relat. Res. 2018, 20, 793–798. [Google Scholar] [CrossRef]
- Yu, J.; Liu, L.; Zhang, Y.; Wei, J.; Yang, F. Effects of omega-3 fatty acids on patients undergoing surgery for gastrointestinal malignancy: A systematic review and meta-analysis. BMC Cancer 2017, 17, 271. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Tsai, H.; Su, W.; Sun, L.; Shih, Y.; Wang, J. Combination of arginine, glutamine, and omega-3 fatty acid supplements for perioperative enteral nutrition in surgical patients with gastric adenocarcinoma or gastrointestinal stromal tumor (GIST): A prospective, randomized, double-blind study. J. Postgrad. Med. 2018, 64, 155–163. [Google Scholar] [CrossRef]
- Langlois, P.L.; Hardy, G.; Manzanares, W. Omega-3 polyunsaturated fatty acids in cardiac surgery patients: An updated systematic review and meta-analysis. Clin. Nutr. 2017, 36, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Jia, R.; Li, Y.; Liu, T.; Wang, Z. Omega-3 fatty acids reduce post-operative risk of deep vein thrombosis and pulmonary embolism after surgery for elderly patients with proximal femoral fractures: A randomized placebo-controlled, double-blind clinical trial. Int. Orthop. 2020, 44, 2089–2093. [Google Scholar] [CrossRef]
- Jackson, J.C.; Mozaffarian, D.; Graves, A.J.; Brown, N.J.; Marchioli, R.; Kiehl, A.L.; Ely, E.W. Fish Oil Supplementation Does Not Affect Cognitive Outcomes in Cardiac Surgery Patients in the Omega-3 Fatty Acids for Prevention of Post-Operative Atrial Fibrillation (OPERA) Trial. J. Nutr. 2018, 148, 472–479. [Google Scholar] [CrossRef]
- Bakker, N.; Schoorl, M.; Stoutjesdijk, E.; Houdijk, A.P. Erythrocyte deformability and aggregability in patients undergoing colon cancer surgery and effects of two infusions with omega-3 fatty acids. Clin. Hemorheol. Microcirc. 2020, 74, 287–297. [Google Scholar] [CrossRef]
- Xiao, F.; Han, W.; Yue, Q.; Ke, J.; Jia, B.; Fu, X. Perioperative omega-3 fatty acids for liver surgery: A meta-analysis of randomized controlled trials. Medicine 2021, 100, e25743. [Google Scholar] [CrossRef] [PubMed]
- Villareal, R.P.; Hariharan, R.; Liu, B.C.; Kar, B.; Lee, V.-V.; Elayda, M.; Lopez, J.; Rasekh, A.; Wilson, J.M.; Massumi, A. Postoperative atrial fibrillation and mortality after coronary artery bypass surgery. J. Am. Coll. Cardiol. 2004, 43, 742–748. [Google Scholar] [CrossRef]
- Linecker, M.; Botea, F.; Raptis, D.A.; Nicolaescu, D.; Limani, P.; Alikhanov, R.; Kim, P.; Wirsching, A.; Kron, P.; Schneider, M.A.; et al. Perioperative omega-3 fatty acids fail to confer protection in liver surgery: Results of a multicentric, double-blind, randomized controlled trial. J. Hepatol. 2020, 72, 498–505. [Google Scholar] [CrossRef]
- Chiang, N.; Serhan, C.N. Specialized pro-resolving mediator network: An update on production and actions. Essays Biochem. 2020, 64, 443–462. [Google Scholar]
- Arnardottir, H.; Pawelzik, S.-C.; Wistbacka, U.Ö.; Artiach, G.; Hofmann, R.; Reinholdsson, I.; Braunschweig, F.; Tornvall, P.; Religa, D.; Bäck, M. Stimulating the Resolution of Inflammation Through Omega-3 Polyunsaturated Fatty Acids in COVID-19: Rationale for the COVID-Omega-F Trial. Front. Physiol. 2020, 11, 624657. [Google Scholar] [CrossRef] [PubMed]
- Pradelli, L.; Mayer, K.; Klek, S.; Omar Alsaleh, A.J.; Clark, R.A.; Rosenthal, M.D.; Heller, A.R.; Muscaritoli, A. omega-3 Fatty-Acid Enriched Parenteral Nutrition in Hospitalized Patients: Systematic Review with Meta-Analysis and Trial Sequential Analysis. JPEN J. Parenter. Enter. Nutr. 2020, 44, 44–57. [Google Scholar] [CrossRef]
- Sorice, M.; Tritto, F.P.; Sordelli, C.; Gregorio, R.; Piazza, L. N-3 polyunsaturated fatty acids reduces post-operative atrial fibrillation incidence in patients undergoing “on-pump” coronary artery bypass graft surgery. Monaldi Arch. Chest Dis. Card. Ser. 2011, 76, 93–98. [Google Scholar] [CrossRef]
- Lomivorotov, V.V.; Efremov, S.M.; Pokushalov, E.A.; Romanov, A.B.; Ponomarev, D.N.; Cherniavsky, A.M.; Shilova, A.N.; Karaskov, A.M.; Lomivorotov, V.N. Randomized trial of fish oil infusion to prevent atrial fibrillation after cardiac surgery: Data from an implantable continuous cardiac monitor. J. Cardiothorac. Vasc. Anesth. 2014, 28, 1278–1284. [Google Scholar] [CrossRef]
- Akintoye, E.; Wu, J.Y.; Hou, T.; Song, X.; Yang, J.; Hammock, B.; Mozaffarian, D. Effect of fish oil on monoepoxides derived from fatty acids during cardiac surgery. J. Lipid Res. 2016, 57, 492–498. [Google Scholar] [CrossRef]
- Gui, L.; Cheng, M.; Zheng, M.; Ning, C.; Huo, Q. Effects of omega-3 fatty acid supplementation on nutritional status and inflammatory response in patients with stage II-III NSCLC undergoing postoperative chemotherapy: A double-blind randomized controlled trial. Front. Nutr. 2023, 10, 1266584. [Google Scholar] [CrossRef]
- Cholewski, M.; Tomczykowa, M.; Tomczyk, M. A Comprehensive Review of Chemistry, Sources and Bioavailability of Omega-3 Fatty Acids. Nutrients 2018, 10, 1662. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Xie, F.; Huang, W.; Hu, M.; Yan, Q.; Chen, Z.; Zheng, Y.; Liu, L. The review of alpha-linolenic acid: Sources, metabolism, and pharmacology. Phytother. Res. 2022, 36, 164–188. [Google Scholar] [CrossRef] [PubMed]
- Das, U.N. Essential Fatty Acids—Biochemistry, Physiology and Clinical Significance. In Molecular Basis of Health and Disease; Springer: Dordrecht, The Netherlands, 2011; pp. 101–151. [Google Scholar]
- Singh, M. Essential fatty acids, DHA and human brain. Indian. J. Pediatr. 2005, 72, 239–242. [Google Scholar] [CrossRef]
- Parrish, C.C. Essential fatty acids in aquatic food webs. In Lipids; Ecosystems, A., Kainz, M., Brett, M.T., Arts, M.T., Eds.; Springer: New York, NY, USA, 2009; pp. 309–326. [Google Scholar]
- Brenna, J.T. Efficiency of conversion of alpha-linolenic acid to long chain n-3 fatty acids in man. Curr. Opin. Clin. Nutr. Metab. Care 2002, 5, 127–132. [Google Scholar] [CrossRef]
- Greupner, T.; Kutzner, L.; Nolte, F.; Strangmann, A.; Kohrs, H.; Hahn, A.; Schebb, N.H.; Schuchardt, J.P. Effects of a 12-week high-alpha-linolenic acid intervention on EPA and DHA concentrations in red blood cells and plasma oxylipin pattern in subjects with a low EPA and DHA status. Food Funct. 2018, 9, 1587–1600. [Google Scholar] [CrossRef]
- Lin, Y.H.; Llanos, A.; Mena, P.; Uauy, R.; Salem, N.; Pawlosky, R.J. Compartmental analyses of 2H5-alpha-linolenic acid and C-U-eicosapentaenoic acid toward synthesis of plasma labeled 22:6n-3 in newborn term infants. Am. J. Clin. Nutr. 2010, 92, 284–293. [Google Scholar] [CrossRef]
- Arterburn, L.M.; Hall, B.E.; Oken, H. Distribution, interconversion, and dose response of n-3 fatty acids in humans. Am. J. Clin. Nutr. 2006, 83 (Suppl. 6), 1467S–1476S. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture and U.S. Department of Health and Human Services, H.a.H. 2010 Dietary Guidelines for Americans, 7th ed.; 2010. Available online: https://www.dietaryguidelines.gov/about-dietary-guidelines/previous-editions/2010-dietary-guidelines (accessed on 7 November 2023).
- Breznock, E.M. The Systemic Response of the Traumatized Patient: An Overview. Vet. Clin. N. Am. Small Anim. Pract. 1980, 10, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Bone, R.C.; Balk, R.A.; Cerra, F.B.; Dellinger, R.P.; Fein, A.M.; Knaus, W.A.; Schein, R.M.H.; Sibbald, W.J. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Co mmittee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992, 101, 1644–1655. [Google Scholar] [CrossRef] [PubMed]
- Finnerty, C.C.; Mabvuure, N.T.; Ali, A.; Kozar, R.A.; Herndon, D.N. The surgically induced stress response. JPEN J. Parenter. Enteral Nutr. 2013, 37 (Suppl. 5), 21S–29S. [Google Scholar] [CrossRef] [PubMed]
- Chrousos, G.P. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammati on. N. Engl. J. Med. 1995, 332, 1351–1362. [Google Scholar] [CrossRef]
- Annane, D.; Sébille, V.; Troché, G.; Raphaël, J.-C.; Gajdos, P.; Bellissant, E. A 3-level prognostic classification in septic shock based on cortisol levels and cortisol response to corticotropin. JAMA 2000, 283, 1038–1045. [Google Scholar] [CrossRef]
- Veljovic, M.; Popadic, A.; Vukic, Z.; Ilic, R.; Trifunovic, Z.; Antunovic, M.; Mandaric, V.; Tisma, S.; Markovic, Z. Myocardial protection during elective coronary artery bypasses grafting by pretreatment with omega-3 polyunsaturated fatty acids. Vojn. Pregl. 2013, 70, 484–492. [Google Scholar] [CrossRef]
- Berger, M.M.; Delodder, F.; Liaudet, L.; Tozzi, P.; Schlaepfer, J.; Chiolero, R.L.; Tappy, L. Three short perioperative infusions of n-3 PUFAs reduce systemic inflammation induced by cardiopulmonary bypass surgery: A randomized controlled trial. Am. J. Clin. Nutr. 2013, 97, 246–254. [Google Scholar] [CrossRef]
- Heidt, M.C.; Vician, M.; Stracke, S.K.H.; Stadlbauer, T.; Grebe, M.T.; Boening, A.; Vogt, P.R.; Erdogan, A. Beneficial effects of intravenously administered N-3 fatty acids for the prevention of atrial fibrillation after coronary artery bypass surgery: A prospective randomized study. Thorac. Cardiovasc. Surg. 2009, 57, 276–280. [Google Scholar] [CrossRef]
- Lordan, R.; Redfern, S.; Tsoupras, A.; Zabetakis, I. Inflammation and cardiovascular disease: Are marine phospholipids the answer? Food Funct. 2020, 11, 2861–2885. [Google Scholar] [CrossRef]
- Cook, C.M.; Hallaråker, H.; Sæbø, P.C.; Innis, S.M.; Kelley, K.M.; Sanoshy, K.D.; Berger, A.; Maki, K.C. Bioavailability of long chain omega-3 polyunsaturated fatty acids from phospholipid-rich herring roe oil in men and women with mildly elevated triacylglycerols. Prostaglandins Leukot. Essent. Fatty Acids 2016, 111, 17–24. [Google Scholar] [CrossRef]
- Calò, L.; Bianconi, L.; Colivicchi, F.; Lamberti, F.; Loricchio, M.L.; de Ruvo, E.; Meo, A.; Pandozi, C.; Staibano, M.; Santini, M. N-3 Fatty acids for the prevention of atrial fibrillation after coronary artery bypass surgery: A randomized, controlled trial. J. Am. Coll. Cardiol. 2005, 45, 1723–1728. [Google Scholar] [CrossRef] [PubMed]
- Sandesara, C.M.; Chung, M.K.; Van Wagoner, D.R.; Barringer, T.A.; Allen, K.; Ismail, H.M.; Zimmerman, B.; Olshansky, B. A Randomized, Placebo-Controlled Trial of Omega-3 Fatty Acids for Inhibition of Supraventricular Arrhythmias After Cardiac Surgery: The FISH Trial. J. Am. Heart Assoc. 2012, 1, e000547. [Google Scholar] [CrossRef]
- Saravanan, P.; West, A.L.; Bridgewater, B.; Davidson, N.C.; Calder, P.C.; Dobrzynsky, H.; Trafford, A.; O’Neill, S.C. Omega-3 fatty acids do not alter P-wave parameters in electrocardiogram or expression of atrial connexins in patients undergoing coronary artery bypass surgery. Europace 2016, 18, 1521–1527. [Google Scholar] [CrossRef]
- Farahani, A.V.; Azar, A.Y.; Goodarzynejad, H.R.; Khorrami, E.; Hosseinzadeh-Attar, M.J.; Oshnouei, S.; Ghavidel, A.A.; Golfeshan, E.; Pour, F.G. Fish oil supplementation for primary prevention of atrial fibrillation after coronary artery bypass graft surgery: A randomized clinical trial. Int. J. Surg. 2017, 42, 41–48. [Google Scholar] [CrossRef]
- Colussi, G.; Catena, C.; Novello, M.; Bertin, N.; Sechi, L.A. Impact of omega-3 polyunsaturated fatty acids on vascular function and blood pressure: Relevance for cardiovascular outcomes. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ritonja, J.A.; Zhou, N.; Chen, B.E.; Li, X. Omega-3 Polyunsaturated Fatty Acids Intake and Blood Pressure: A Dose-Response Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2022, 11, e025071. [Google Scholar] [CrossRef]
- Saber, H.; Yakoob, M.Y.; Shi, P.; Longstreth, W.; Lemaitre, R.N.; Siscovick, D.; Rexrode, K.M.; Willett, W.C.; Mozaffarian, D. Omega-3 Fatty Acids and Incident Ischemic Stroke and Its Atherothrombotic and Cardioembolic Subtypes in 3 US Cohorts. Stroke 2017, 48, 2678–2685. [Google Scholar] [CrossRef]
- Lombardi, M.; Chiabrando, J.G.; Vescovo, G.M.; Bressi, E.; Del Buono, M.G.; Carbone, S.; Koenig, R.A.; Van Tassell, B.W.; Abbate, A.; Biondi-Zoccai, G.; et al. Impact of Different Doses of Omega-3 Fatty Acids on Cardiovascular Outcomes: A Pairwise and Network Meta-analysis. Curr. Atheroscler. Rep. 2020, 22, 45. [Google Scholar] [CrossRef]
- Saravanan, P.; O’Neill, S.C.; Bridgewater, B.; Davidson, N.C. Fish oils supplementation does not reduce risk of atrial fibrillation following coronary artery bypass surgery. Heart Rhythm. 2009, 6. [Google Scholar]
- Gong, Y.; Liu, Z.; Liao, Y.; Mai, C.; Chen, T.; Tang, H.; Tang, Y. Effectiveness of omega-3 Polyunsaturated Fatty Acids Based Lipid Emulsions for Treatment of Patients after Hepatectomy: A Prospective Clinical Trial. Nutrients 2016, 8, 357. [Google Scholar] [CrossRef]
- Marsman, H.A.; de Graaf, W.; Heger, M.; van Golen, R.F.; Kate, F.J.W.T.; Bennink, R.; van Gulik, T.M. Hepatic regeneration and functional recovery following partial liver resection in an experimental model of hepatic steatosis treated with omega-3 fatty acids. Br. J. Surg. 2013, 100, 674–683. [Google Scholar] [CrossRef]
- Bakker, N.; Helder, R.S.v.D.; Geenen, R.W.F.; Hunfeld, M.A.; Cense, H.A.; Demirkiran, A.; Houdijk, A.P.J. Four Weeks of Preoperative Omega-3 Fatty Acids Reduce Liver Volume: A Randomised Controlled Trial. Obes. Surg. 2019, 29, 2037–2044. [Google Scholar] [CrossRef]
- George, J.; White, D.; Fielding, B.; Scott, M.; Rockall, T.; Whyte, M.B. Systematic review of preoperative n-3 fatty acids in major gastrointestinal surgery. BMJ Surg. Interv. Health Technol. 2023, 5, e000172. [Google Scholar] [CrossRef]
- Mohsen, G.; Stroemer, A.; Mayr, A.; Kunsorg, A.; Stoppe, C.; Wittmann, M.; Velten, M. Effects of Omega-3 Fatty Acids on Postoperative Inflammatory Response: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 3414. [Google Scholar] [CrossRef] [PubMed]
- Kuma, H.; Nagashima, R.; Hatae, H.; Tsuda, T.; Hamasaki, N. Beneficial effect of EPA (20:5 n-3 PUFA) on preventing venous thromboembolism: A rat tail thrombosis model experiment. Thromb. Res. 2013, 131, 107–108. [Google Scholar] [CrossRef] [PubMed]
- Reiner, M.F.; Stivala, S.; Limacher, A.; Bonetti, N.R.; Méan, M.; Egloff, M.; Rodondi, N.; Aujesky, D.; von Schacky, C.; Lüscher, T.F.; et al. Omega-3 fatty acids predict recurrent venous thromboembolism or total mortality in elderly patients with acute venous thromboembolism. J. Thromb. Haemost. 2017, 15, 47–56. [Google Scholar] [CrossRef]
- Isaksen, T.; Evensen, L.H.; Johnsen, S.H.; Jacobsen, B.K.; Hindberg, K.; Brækkan, S.K.; Hansen, J. Dietary intake of marine n-3 polyunsaturated fatty acids and future risk of venous thromboembolism. Res. Pract. Thromb. Haemost. 2019, 3, 59–69. [Google Scholar] [CrossRef]
- Dushianthan, A.; Cusack, R.; Burgess, V.A.; Grocott, M.P.; Calder, P. Immunonutrition for Adults With ARDS: Results From a Cochrane Systematic Review and Meta-Analysis. Respir. Care 2020, 65, 99–110. [Google Scholar] [CrossRef]
- Gupta, A.; Govil, D.; Bhatnagar, S.; Gupta, S.; Goyal, J.; Patel, S.; Baweja, H. Efficacy and safety of parenteral omega 3 fatty acids in ventilated patients with acute lung injury. Indian. J. Crit. Care Med. 2011, 15, 108–113. [Google Scholar]
- Serhan, C.N.; Chiang, N.; Van Dyke, T.E. Resolving inflammation: Dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol. 2008, 8, 349–361. [Google Scholar] [CrossRef]
- Kohli, P.; Levy, B.D. Resolvins and protectins: Mediating solutions to inflammation. Br. J. Pharmacol. 2009, 158, 960–971. [Google Scholar] [CrossRef] [PubMed]
- Serhan, C.N.; Clish, C.B.; Brannon, J.; Colgan, S.P.; Chiang, N.; Gronert, K. Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J. Exp. Med. 2000, 192, 1197–1204. [Google Scholar] [CrossRef]
- Kwon, Y. Immuno-Resolving Ability of Resolvins, Protectins, and Maresins Derived from Omega-3 Fatty Acids in Metabolic Syndrome. Mol. Nutr. Food Res. 2020, 64, e1900824. [Google Scholar] [CrossRef]
- Serhan, C.N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 2014, 510, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Morita, M.; Kuba, K.; Ichikawa, A.; Nakayama, M.; Katahira, J.; Iwamoto, R.; Watanebe, T.; Sakabe, S.; Daidoji, T.; Nakamura, S.; et al. The lipid mediator protectin D1 inhibits influenza virus replication and improves severe influenza. Cell 2013, 153, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Duvall, M.G.; Levy, B.D. DHA- and EPA-derived resolvins, protectins, and maresins in airway inflammation. Eur. J. Pharmacol. 2016, 78, 144–155. [Google Scholar] [CrossRef] [PubMed]
- Serhan, C.N.; Petasis, N.A. Resolvins and protectins in inflammation resolution. Chem. Rev. 2011, 111, 5922–5943. [Google Scholar] [CrossRef] [PubMed]
- Bazan, N.G.; Calandria, J.M.; Serhan, C.N. Rescue and repair during photoreceptor cell renewal mediated by docosahexaenoic acid-derived neuroprotectin D1. J. Lipid Res. 2010, 51, 2018–2031. [Google Scholar] [CrossRef]
- Abdulkhaleq, L.A.; Assi, M.A.; Abdullah, R.; Zamri-Saad, M.; Taufiq-Yap, Y.H.; Hezmee, M.N.M. The crucial roles of inflammatory mediators in inflammation: A review. Vet. World 2018, 11, 627–635. [Google Scholar] [CrossRef]
- Oh, D.Y.; Talukdar, S.; Bae, E.J.; Imamura, T.; Morinaga, H.; Fan, W.Q.; Li, P.; Lu, W.J.; Watkins, S.M.; Olefsky, J.M. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 2010, 142, 687–698. [Google Scholar] [CrossRef]
- Wong, S.W.; Kwon, M.J.; Choi, A.M.; Kim, H.P.; Nakahira, K.; Hwang, D.H. Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. J. Biol. Chem. 2009, 284, 27384–27392. [Google Scholar] [CrossRef]
- Stillwell, W.; Shaikh, S.R.; Zerouga, M.; Siddiqui, R.; Wassall, S.R. Docosahexaenoic acid affects cell signaling by altering lipid rafts. Reprod. Nutr. Dev. 2005, 45, 559–579. [Google Scholar] [CrossRef]
- Hjorth, E.; Zhu, M.; Toro, V.C.; Vedin, I.; Palmblad, J.; Cederholm, T.; Freund-Levi, Y.; Faxen-Irving, G.; Wahlund, L.O.; Basun, H. Omega-3 fatty acids enhance phagocytosis of Alzheimer’s disease-related amyloid-beta42 by human microglia and decrease inflammatory markers. J. Alzheimers Dis. 2013, 35, 697–713. [Google Scholar] [CrossRef]
- Loane, D.J.; Faden, A.I. Neuroprotection for traumatic brain injury: Translational challenges and emerging therapeutic strategies. Trends Pharmacol. Sci. 2010, 31, 596–604. [Google Scholar] [CrossRef]
- Profyris, C.; Cheema, S.S.; Zang, D.; Azari, M.F.; Boyle, K.; Petratos, S. Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiol. Dis. 2004, 15, 415–436. [Google Scholar] [CrossRef] [PubMed]
- Priestley, J.V.; Michael-Titus, T.A.; Tetzlaff, W. Limiting spinal cord injury by pharmacological intervention. Handb. Clin. Neurol. 2012, 109, 463–484. [Google Scholar] [PubMed]
- Liu, D.; Xu, G.-Y.; Pan, E.; McAdoo, D. Neurotoxicity of glutamate at the concentration released upon spinal cord injury. Neuroscience 1999, 93, 1383–1389. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.Y.; Hughes, M.G.; Ye, Z.; Hulsebosch, C.E.; McAdoo, D.J. Concentrations of glutamate released following spinal cord injury kill oligodendrocytes in the spinal cord. Exp. Neurol. 2004, 187, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Pilitsis, J.G.; Coplin, W.M.; O’Regan, M.H.; Wellwood, J.M.; Diaz, F.G.; Fairfax, M.R.; Michael, D.B.; Phillis, J.W. Free fatty acids in cerebrospinal fluids from patients with traumatic brain injury. Neurosci. Lett. 2003, 349, 136–138. [Google Scholar] [CrossRef]
- Michael-Titus, A.T.; Priestley, J.V. Omega-3 fatty acids and traumatic neurological injury: From neuroprotection to neuroplasticity? Trends Neurosci. 2014, 37, 30–38. [Google Scholar] [CrossRef]
- Sun, G.Y.; Simonyi, A.; Fritsche, K.L.; Chuang, D.Y.; Hannink, M.; Gu, Z.; Greenlief, C.M.; Yao, J.K.; Lee, J.C.; Beversdorf, D.Q. Docosahexaenoic acid (DHA): An essential nutrient and a nutraceutical for brain health and diseases. Prostaglandins Leukot. Essent. Fat. Acids 2018, 136, 3–13. [Google Scholar] [CrossRef]
- Calder, P.C. The relationship between the fatty acid composition of immune cells and their function. Prostaglandins Leukot. Essent. Fat. Acids 2008, 79, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Rapoport, S.I. Translational studies on regulation of brain docosahexaenoic acid (DHA) metabolism in vivo. Prostaglandins Leukot. Essent. Fat. Acids 2013, 88, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Cheon, Y.; Kim, H.W.; Igarashi, M.; Modi, H.R.; Chang, L.; Ma, K.; Greenstein, D.; Wohltmann, M.; Turk, J.; Rapoport, S.I.; et al. Disturbed brain phospholipid and docosahexaenoic acid metabolism in calcium-independent phospholipase A(2)-VIA (iPLA(2)beta)-knockout mice. Biochim. Biophys. Acta 2012, 1821, 1278–1286. [Google Scholar] [CrossRef] [PubMed]
- Orr, S.K.; Palumbo, S.; Bosetti, F.; Mount, H.T.; Kang, J.X.; Greenwood, C.E.; Ma, D.W.L.; Serhan, C.N.; Bazinet, R.P. Unesterified docosahexaenoic acid is protective in neuroinflammation. J. Neurochem. 2013, 127, 378–393. [Google Scholar] [CrossRef] [PubMed]
- Mas, E.; Croft, K.D.; Zahra, P.; Barden, A.; Mori, T.A. Resolvins D1, D2, and other mediators of self-limited resolution of inflammation in human blood following n-3 fatty acid supplementation. Clin. Chem. 2012, 58, 1476–1484. [Google Scholar] [CrossRef] [PubMed]
- Surette, M.E. The science behind dietary omega-3 fatty acids. CMAJ 2008, 178, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Ekci, B.; Karabicak, I.; Atukeren, P.; Altinlio, E.; Tomaoglu, K.; Tasci, I. The effect of omega-3 fatty acid and ascorbic acid on healing of ischemic colon anastomoses. Ann. Ital. Chir. 2011, 82, 475–479. [Google Scholar] [PubMed]
- Albina, J.E.; Gladden, P.; Walsh, W.R. Detrimental effects of an omega-3 fatty acid-enriched diet on wound healing. JPEN J. Parenter. Enter. Nutr. 1993, 17, 519–521. [Google Scholar] [CrossRef]
- McDaniel, J.C.; Belury, M.; Ahijevych, K.; Blakely, W. Omega-3 fatty acids effect on wound healing. Wound Repair. Regen. 2008, 16, 337–345. [Google Scholar] [CrossRef]
- McDaniel, J.C.; Massey, K.; Nicolaou, A. Fish oil supplementation alters levels of lipid mediators of inflammation in microenvironment of acute human wounds. Wound Repair. Regen. 2011, 19, 189–200. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouagueni, A.; Al-Zoubi, R.M.; Zarour, A.; Al-Ansari, A.; Bawadi, H. Effects of Omega-3 Polyunsaturated Fatty Acids, Docosahexaenoic Acid and Eicosapentaenoic Acid, on Post-Surgical Complications in Surgical Trauma Patients: Mechanisms, Nutrition, and Challenges. Mar. Drugs 2024, 22, 207. https://doi.org/10.3390/md22050207
Ouagueni A, Al-Zoubi RM, Zarour A, Al-Ansari A, Bawadi H. Effects of Omega-3 Polyunsaturated Fatty Acids, Docosahexaenoic Acid and Eicosapentaenoic Acid, on Post-Surgical Complications in Surgical Trauma Patients: Mechanisms, Nutrition, and Challenges. Marine Drugs. 2024; 22(5):207. https://doi.org/10.3390/md22050207
Chicago/Turabian StyleOuagueni, Asma, Raed M. Al-Zoubi, Ahmad Zarour, Abdulla Al-Ansari, and Hiba Bawadi. 2024. "Effects of Omega-3 Polyunsaturated Fatty Acids, Docosahexaenoic Acid and Eicosapentaenoic Acid, on Post-Surgical Complications in Surgical Trauma Patients: Mechanisms, Nutrition, and Challenges" Marine Drugs 22, no. 5: 207. https://doi.org/10.3390/md22050207
APA StyleOuagueni, A., Al-Zoubi, R. M., Zarour, A., Al-Ansari, A., & Bawadi, H. (2024). Effects of Omega-3 Polyunsaturated Fatty Acids, Docosahexaenoic Acid and Eicosapentaenoic Acid, on Post-Surgical Complications in Surgical Trauma Patients: Mechanisms, Nutrition, and Challenges. Marine Drugs, 22(5), 207. https://doi.org/10.3390/md22050207