Investigation into the Phytochemical Composition, Antioxidant Properties, and In-Vitro Anti-Diabetic Efficacy of Ulva lactuca Extracts
Abstract
:1. Introduction
2. Results
2.1. Yields, Phenols, and Flavonoid Contents
2.2. Fatty Acid Analysis
2.3. HPLC Analysis of U. lactuca Extracts
2.4. Antioxidant Activity
2.5. In-Vitro α-Amylase Inhibition
2.6. Molecular Modeling Studies
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Plant Material and Extraction
4.2.1. Maceration Extraction
4.2.2. Soxhlet Extraction
4.3. Phytochemicals Compounds
4.3.1. Quantification of Total Phenolic Constituents
4.3.2. Measurement of Total Flavonoid Contents
4.4. Fatty Acid GC–MS Analysis of U. lactuca Extracts
4.5. HPLC Analyses of U. lactuca Extracts
4.6. Antioxidant Activity
4.6.1. Scavenging 2,2-Diphenyl-1-Picrylhydrazyl Radical Test
4.6.2. β-Carotene Bleaching Assay
4.7. In-Vitro α-Amylase Inhibition
4.8. In-Vitro α-Glucosidase Inhibition Assay
4.9. Theoretical Study
4.9.1. Ligand Preparation
4.9.2. Molecular Docking and Preparation of Proteins
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dominguez, H.; Loret, E.P. Ulva lactuca, A Source of Troubles and Potential Riches. Mar. Drugs 2019, 17, 357. [Google Scholar] [CrossRef] [PubMed]
- Peter, N.R.; Raja, N.R.; Rengarajan, J.; Pillai, A.R.; Kondusamy, A.; Saravanan, A.K.; Paran, B.C.; Lal, K.K. A Comprehensive Study on Ecological Insights of Ulva lactuca Seaweed Bloom in a Lagoon along the Southeast Coast of India. Ocean Coast. Manag. 2024, 248, 106964. [Google Scholar] [CrossRef]
- Mantri, V.A.; Kazi, M.A.; Balar, N.B.; Gupta, V.; Gajaria, T. Concise Review of Green Algal Genus Ulva Linnaeus. J. Appl. Phycol. 2020, 32, 2725–2741. [Google Scholar] [CrossRef]
- Bonanno, G.; Veneziano, V.; Piccione, V. The Alga Ulva lactuca (Ulvaceae, Chlorophyta) as a Bioindicator of Trace Element Contamination along the Coast of Sicily, Italy. Sci. Total Environ. 2020, 699, 134329. [Google Scholar] [CrossRef] [PubMed]
- Wald, J. Evaluatiestudie Naar Mogelijkheden Voor Grootschalige Zeewierteelt in Het Zuidwestelijke Deltagebied, in Het Bijzonder de Oosterschelde; Plant Research International: Wageningen, The Netherlands, 2010. [Google Scholar]
- Malta, E.-J.; Draisma, S.G.A.; Kamermans, P. Free-Floating Ulva in the Southwest Netherlands: Species or Morphotypes? A Morphological, Molecular and Ecological Comparison. Eur. J. Phycol. 1999, 34, 443–454. [Google Scholar] [CrossRef]
- Kamermans, P.; Malta, E.-J.; Verschuure, J.M.; Schrijvers, L.; Lentz, L.F.; Lien, A.T.A. Effect of Grazing by Isopods and Amphipods on Growth of Ulva spp. (Chlorophyta). Aquat. Ecol. 2002, 36, 425–433. [Google Scholar] [CrossRef]
- Pedersen, M.F.; Borum, J. Nutrient Control of Estuarine Macroalgae: Growth Strategy and the Balance between Nitrogen Requirements and Uptake. Mar. Ecol. Prog. Ser. 1997, 161, 155–163. [Google Scholar] [CrossRef]
- Lourenço, S.O.; Barbarino, E.; Nascimento, A.; Freitas, J.N.P.; Diniz, G.S. Tissue Nitrogen and Phosphorus in Seaweeds in a Tropical Eutrophic Environment: What a Long-Term Study Tells Us. In Proceedings of the Eighteenth International Seaweed Symposium, Bergen, Norway, 20–25 June 2004; Springer: Berlin/Heidelberg, Germany, 2007; pp. 163–172. [Google Scholar]
- De Pádua, M.; Growoski Fontoura, P.S.; Mathias, A.L. Chemical Composition of Ulvaria oxysperma (Kützing) Bliding, Ulva lactuca (Linnaeus) and Ulva fascita (Delile). Braz. Arch. Biol. Technol. 2004, 47, 49–55. [Google Scholar] [CrossRef]
- Raven, P.H.; Evert, R.F.; Eichhorn, S.E. Biology of Plants; Macmillan: New York, NY, USA, 2005; ISBN 0716710072. [Google Scholar]
- Siddhanta, A.K.; Prasad, K.; Meena, R.; Prasad, G.; Mehta, G.K.; Chhatbar, M.U.; Oza, M.D.; Kumar, S.; Sanandiya, N.D. Profiling of Cellulose Content in Indian Seaweed Species. Bioresour. Technol. 2009, 100, 6669–6673. [Google Scholar] [CrossRef]
- Siddhanta, A.K.; Chhatbar, M.U.; Mehta, G.K.; Sanandiya, N.D.; Kumar, S.; Oza, M.D.; Prasad, K.; Meena, R. The Cellulose Contents of Indian Seaweeds. J. Appl. Phycol. 2011, 23, 919–923. [Google Scholar] [CrossRef]
- Yanagisawa, M.; Nakamura, K.; Ariga, O.; Nakasaki, K. Production of High Concentrations of Bioethanol from Seaweeds That Contain Easily Hydrolyzable Polysaccharides. Process Biochem. 2011, 46, 2111–2116. [Google Scholar] [CrossRef]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils, 13th ed.; Prentice Hall: Hoboken, NJ, USA, 2002; Volume 249. [Google Scholar]
- Martone, P.T.; Estevez, J.M.; Lu, F.; Ruel, K.; Denny, M.W.; Somerville, C.; Ralph, J. Discovery of Lignin in Seaweed Reveals Convergent Evolution of Cell-Wall Architecture. Curr. Biol. 2009, 19, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Vahdat, E.; Nourbakhsh, F.; Basiri, M. Lignin Content of Range Plant Residues Controls N Mineralization in Soil. Eur. J. Soil Biol. 2011, 47, 243–246. [Google Scholar] [CrossRef]
- Smith, J.L.; Summers, G.; Wong, R. Nutrient and Heavy Metal Content of Edible Seaweeds in New Zealand. N. Z. J. Crop Hortic. Sci. 2010, 38, 19–28. [Google Scholar] [CrossRef]
- Yaich, H.; Garna, H.; Besbes, S.; Paquot, M.; Blecker, C.; Attia, H. Chemical Composition and Functional Properties of Ulva lactuca Seaweed Collected in Tunisia. Food Chem. 2011, 128, 895–901. [Google Scholar] [CrossRef]
- Bruhn, A.; Dahl, J.; Nielsen, H.B.; Nikolaisen, L.; Rasmussen, M.B.; Markager, S.; Olesen, B.; Arias, C.; Jensen, P.D. Bioenergy Potential of Ulva lactuca: Biomass Yield, Methane Production and Combustion. Bioresour. Technol. 2011, 102, 2595–2604. [Google Scholar] [CrossRef]
- Haddou, S.; Mounime, K.; Loukili, E.; Ou-Yahia, D.; Hbika, A.; Idrissi, M.Y.; Legssyer, A.; Lgaz, H.; Asehraou, A.; Touzani, R. Investigating the Biological Activities of Moroccan Cannabis sativa L. Seed Extracts: Antimicrobial, Anti-Inflammatory, and Antioxidant Effects with Molecular Docking Analysis. Moroc. J. Chem. 2023, 11, 11–14. [Google Scholar]
- Cherriet, S.; Merzouki, M.; El-Fechtali, M.; Loukili, E.; Challioui, A.; Soulaymani, A.; Nanadiyanto, A.B.D.; Ibriz, M.; Elbekkaye, K.; Ouasghir, A. In Silico Investigation of Aristolochia Longa Anticancer Potential against the Epidermal Growth Factor Receptor (EGFR) in the Tyrosine Kinase Domain. Moroc. J. Chem. 2023, 11, 11–14. [Google Scholar]
- Tundis, R.; Loizzo, M.R.; Menichini, F. Natural Products as α-Amylase and α-Glucosidase Inhibitors and Their Hypoglycaemic Potential in the Treatment of Diabetes: An Update. Mini Rev. Med. Chem. 2010, 10, 315–331. [Google Scholar] [CrossRef]
- Gromova, L.V.; Fetissov, S.O.; Gruzdkov, A.A. Mechanisms of Glucose Absorption in the Small Intestine in Health and Metabolic Diseases and Their Role in Appetite Regulation. Nutrients 2021, 13, 2474. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Mishra, A. α-Glucosidase Inhibitors for Diabetes/Blood Sugar Regulation. In Natural Products as Enzyme Inhibitors: An Industrial Perspective; Springer: Berlin/Heidelberg, Germany, 2022; pp. 269–283. [Google Scholar]
- Taibi, M.; Loukili, E.H.; Elbouzidi, A.; Baraich, A.; Haddou, M.; Bellaouchi, R.; Saalaoui, E.; Asehraou, A.; Addi, M.; Bourhia, M. Exploring the Pharmacological Potential of the Chemically Characterized Essential Oil from Clinopodium nepeta Subsp. Ascendens: A Combined In Vitro and In Silico Analysis. Moroc. J. Chem. 2024, 12, 997–1021. [Google Scholar]
- Kaneria, M.; Chanda, S. Evaluation of Antioxidant and Antimicrobial Properties of Manilkara zapota L. (Chiku) Leaves by Sequential Soxhlet Extraction Method. Asian Pac. J. Trop. Biomed. 2012, 2, S1526–S1533. [Google Scholar] [CrossRef]
- Me, D.Y.; Me, Q.W.; Be, L.K.; Be, J.J. Antioxidant Activities of Various Extracts of Lotus (Nelumbo nuficera Gaertn) Rhizome. Asia Pac. J. Clin. Nutr. 2007, 16, 158. [Google Scholar]
- Cho, S.; Kang, S.; Cho, J.; Kim, A.; Park, S.; Hong, Y.-K.; Ahn, D.-H. The Antioxidant Properties of Brown Seaweed (Sargassum siliquastrum) Extracts. J. Med. Food 2007, 10, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Oucif, H.; Benaissa, M.; Ali Mehidi, S.; Prego, R.; Aubourg, S.P.; Abi-Ayad, S.-M.E.-A. Chemical Composition and Nutritional Value of Different Seaweeds from the West Algerian Coast. J. Aquat. Food Prod. Technol. 2020, 29, 90–104. [Google Scholar] [CrossRef]
- Terouzi, W.; Yacine, Z.A.; Hanine, H.; Boulli, A.; Oussama, A. Comparative Study of Physical and Chemical Propriety of the Oil of Some Varieties of Olive Trees. Int. J. Innov. Appl. Stud. 2014, 6, 1096. [Google Scholar]
- Brahmi, F.; Haddad, S.; Bouamara, K.; Yalaoui-Guellal, D.; Prost-Camus, E.; De Barros, J.-P.P.; Prost, M.; Atanasov, A.G.; Madani, K.; Boulekbache-Makhlouf, L. Comparison of Chemical Composition and Biological Activities of Algerian Seed Oils of Pistacia lentiscus L., Opuntia ficus indica (L.) Mill. and Argania spinosa L. Skeels. Ind. Crops Prod. 2020, 151, 112456. [Google Scholar] [CrossRef]
- Zhu, S.; Jiao, W.; Xu, Y.; Hou, L.; Li, H.; Shao, J.; Zhang, X.; Wang, R.; Kong, D. Palmitic Acid Inhibits Prostate Cancer Cell Proliferation and Metastasis by Suppressing the PI3K/Akt Pathway. Life Sci. 2021, 286, 120046. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Oguzhan, B.; Louchami, K.; Chardigny, J.-M.; Portois, L.; Carpentier, Y.A.; Malaisse, W.-J.; Herchuelz, A.; Sener, A. Pancreatic Islet Function in ω-3 Fatty Acid-Depleted Rats: Alteration of Calcium Fluxes and Calcium-Dependent Insulin Release. Am. J. Physiol. Metab. 2006, 291, E441–E448. [Google Scholar] [CrossRef] [PubMed]
- Attia, Y.A.; Al-Harthi, M.A.; Korish, M.A.; Shiboob, M.M. Fatty Acid and Cholesterol Profiles and Hypocholesterolemic, Atherogenic, and Thrombogenic Indices of Table Eggs in the Retail Market. Lipids Health Dis. 2015, 14, 136. [Google Scholar] [CrossRef]
- Sawada, K.; Kawabata, K.; Yamashita, T.; Kawasaki, K.; Yamamoto, N.; Ashida, H. Ameliorative Effects of Polyunsaturated Fatty Acids against Palmitic Acid-Induced Insulin Resistance in L6 Skeletal Muscle Cells. Lipids Health Dis. 2012, 11, 36. [Google Scholar] [CrossRef] [PubMed]
- Vassiliou, E.K.; Gonzalez, A.; Garcia, C.; Tadros, J.H.; Chakraborty, G.; Toney, J.H. Oleic Acid and Peanut Oil High in Oleic Acid Reverse the Inhibitory Effect of Insulin Production of the Inflammatory Cytokine TNF-α Both in Vitro and in Vivo Systems. Lipids Health Dis. 2009, 8, 25. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, A.; Kanno, T.; Nishizaki, T. Stearic Acid Serves as a Potent Inhibitor of Protein Tyrosine Phosphatase 1B. Cell. Physiol. Biochem. 2013, 32, 1451–1459. [Google Scholar] [CrossRef] [PubMed]
- Nugent, C.; Prins, J.B.; Whitehead, J.P.; Wentworth, J.M.; Chatterjee, V.K.K.; O’Rahilly, S. Arachidonic Acid Stimulates Glucose Uptake in 3T3-L1 Adipocytes by Increasing GLUT1 and GLUT4 Levels at the Plasma Membrane: Evidence for Involvement of Lipoxygenase Metabolites and Peroxisome Proliferator-Activated Receptor γ. J. Biol. Chem. 2001, 276, 9149–9157. [Google Scholar] [CrossRef] [PubMed]
- Manco, M.; Calvani, M.; Mingrone, G. Effects of Dietary Fatty Acids on Insulin Sensitivity and Secretion. Diabetes Obes. Metab. 2004, 6, 402–413. [Google Scholar] [CrossRef] [PubMed]
- El Hassania, L.; Mounime, K.; Elbouzidi, A.; Taibi, M.; Mohamed, C.; Abdelkhaleq, L.; Mohammed, R.; Naceiri Mrabti, H.; Zengin, G.; Addi, M. Analyzing the Bioactive Properties and Volatile Profiles Characteristics of Opuntia Dillenii (Ker Gawl.) Haw: Exploring Its Potential for Pharmacological Applications. Chem. Biodivers. 2024, 21, e202301890. [Google Scholar] [CrossRef]
- Loukili, E.L.H.; Abrigach, F.; Bouhrim, M.; Bnouham, M.; Fauconnier, M.; Ramdani, M. Chemical Composition and Physicochemical Analysis of Opuntia Dillenii Extracts Grown in Morocco. J. Chem. 2021, 2021, 8858929. [Google Scholar] [CrossRef]
- Mensink, R.P.; Zock, P.L.; Kester, A.D.M.; Katan, M.B. Effects of Dietary Fatty Acids and Carbohydrates on the Ratio of Serum Total to HDL Cholesterol and on Serum Lipids and Apolipoproteins: A Meta-Analysis of 60 Controlled Trials. Am. J. Clin. Nutr. 2003, 77, 1146–1155. [Google Scholar] [CrossRef]
- Calder, P.C. Marine Omega-3 Fatty Acids and Inflammatory Processes: Effects, Mechanisms and Clinical Relevance. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2015, 1851, 469–484. [Google Scholar] [CrossRef]
- Calder, P.C. Omega-3 Fatty Acids and Inflammatory Processes. Nutrients 2010, 2, 355–374. [Google Scholar] [CrossRef]
- Huang, C.B.; Ebersole, J.L. A Novel Bioactivity of Omega-3 Polyunsaturated Fatty Acids and Their Ester Derivatives. Mol. Oral Microbiol. 2010, 25, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Guedes, A.C.; Amaro, H.M.; Malcata, F.X. Microalgae as Sources of High Added-value Compounds—A Brief Review of Recent Work. Biotechnol. Prog. 2011, 27, 597–613. [Google Scholar] [CrossRef] [PubMed]
- Pulz, O.; Gross, W. Valuable Products from Biotechnology of Microalgae. Appl. Microbiol. Biotechnol. 2004, 65, 635–648. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, G.; Ecker, J. The Opposing Effects of N−3 and N−6 Fatty Acids. Prog. Lipid Res. 2008, 47, 147–155. [Google Scholar] [CrossRef]
- Plaza, M.; Herrero, M.; Cifuentes, A.; Ibanez, E. Innovative Natural Functional Ingredients from Microalgae. J. Agric. Food Chem. 2009, 57, 7159–7170. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Wu, J.H.Y. Omega-3 Fatty Acids and Cardiovascular Disease: Effects on Risk Factors, Molecular Pathways, and Clinical Events. J. Am. Coll. Cardiol. 2011, 58, 2047–2067. [Google Scholar] [CrossRef] [PubMed]
- Field, C.J.; Schley, P.D. Evidence for Potential Mechanisms for the Effect of Conjugated Linoleic Acid on Tumor Metabolism and Immune Function: Lessons from N−3 Fatty Acids. Am. J. Clin. Nutr. 2004, 79, 1190S–1198S. [Google Scholar] [CrossRef] [PubMed]
- DAS, M.; Zuniga, E.; Ojima, I. Novel Taxoid-Based Tumor-Targeting Drug Conjugates. Chim. Oggi 2009, 27, 54. [Google Scholar] [PubMed]
- Radwan, S.S. Sources of C 20-Polyunsaturated Fatty Acids for Biotechnological Use. Appl. Microbiol. Biotechnol. 1991, 35, 421–430. [Google Scholar] [CrossRef]
- Khotimchenko, S.V.; Vaskovsky, V.E.; Titlyanova, T.V. Fatty Acids of Marine Algae from the Pacific Coast of North California. Bot. Mar. 2002, 45, 17–22. [Google Scholar] [CrossRef]
- Van Ginneken, V.J.T.; Helsper, J.P.F.G.; de Visser, W.; van Keulen, H.; Brandenburg, W.A. Polyunsaturated Fatty Acids in Various Macroalgal Species from North Atlantic and Tropical Seas. Lipids Health Dis. 2011, 10, 104. [Google Scholar] [CrossRef] [PubMed]
- Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary Polyphenols and the Prevention of Diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. [Google Scholar] [CrossRef] [PubMed]
- Berim, A.; Gang, D.R. Methoxylated Flavones: Occurrence, Importance, Biosynthesis. Phytochem. Rev. 2016, 15, 363–390. [Google Scholar] [CrossRef]
- Ververidis, F.; Trantas, E.; Douglas, C.; Vollmer, G.; Kretzschmar, G.; Panopoulos, N. Biotechnology of Flavonoids and Other Phenylpropanoid-derived Natural Products. Part I: Chemical Diversity, Impacts on Plant Biology and Human Health. Biotechnol. J. Healthc. Nutr. Technol. 2007, 2, 1214–1234. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Ali, A.; Ali, J.; Sahni, J.K.; Baboota, S. Rutin: Therapeutic Potential and Recent Advances in Drug Delivery. Expert Opin. Investig. Drugs 2013, 22, 1063–1079. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, J.T.; Bailen, R.A.; Saldanha, L.G.; Gahche, J.J.; Costello, R.B.; Betz, J.M.; Davis, C.D.; Bailey, R.L.; Potischman, N.; Ershow, A.G. The Dietary Supplement Label Database: Recent Developments and Applications. J. Nutr. 2018, 148, 1428S–1435S. [Google Scholar] [CrossRef] [PubMed]
- Incandela, L.; Cesarone, M.R.; DeSanctis, M.T.; Belcaro, G.; Dugall, M.; Acerbi, G. Treatment of Diabetic Microangiopathy and Edema with HR (Paroven, Venoruton; 0-(β-Hydroxyethyl)-Rutosides): A Prospective, Placebo-Controlled, Randomized Study. J. Cardiovasc. Pharmacol. Ther. 2002, 7, S11–S15. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, M. Salicylic Acid: An Old Dog, New Tricks, and Staphylococcal Disease. J. Clin. Investig. 2003, 112, 149–151. [Google Scholar] [CrossRef] [PubMed]
- Natella, F.; Nardini, M.; Di Felice, M.; Scaccini, C. Benzoic and Cinnamic Acid Derivatives as Antioxidants: Structure—Activity Relation. J. Agric. Food Chem. 1999, 47, 1453–1459. [Google Scholar] [CrossRef]
- Pekkarinen, S.S.; Stöckmann, H.; Schwarz, K.; Heinonen, I.M.; Hopia, A.I. Antioxidant Activity and Partitioning of Phenolic Acids in Bulk and Emulsified Methyl Linoleate. J. Agric. Food Chem. 1999, 47, 3036–3043. [Google Scholar] [CrossRef]
- Kikuzaki, H.; Hisamoto, M.; Hirose, K.; Akiyama, K.; Taniguchi, H. Antioxidant Properties of Ferulic Acid and Its Related Compounds. J. Agric. Food Chem. 2002, 50, 2161–2168. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Kim, A.R.; Kim, J.E.; Choi, J.S.; Chung, H.Y. Peroxynitrite Scavenging Activity of Sinapic Acid (3,5-Dimethoxy-4-Hydroxycinnamic Acid) Isolated from Brassica juncea. J. Agric. Food Chem. 2002, 50, 5884–5890. [Google Scholar] [CrossRef]
- Cuvelier, M.-E.; Richard, H.; Berset, C. Comparison of the Antioxidative Activity of Some Acid-Phenols: Structure-Activity Relationship. Biosci. Biotechnol. Biochem 1992, 56, 324–325. [Google Scholar] [CrossRef]
- Robbins, R.J. Phenolic Acids in Foods: An Overview of Analytical Methodology. J. Agric. Food Chem. 2003, 51, 2866–2887. [Google Scholar] [CrossRef]
- Firuzi, O.; Giansanti, L.; Vento, R.; Seibert, C.; Petrucci, R.; Marrosu, G.; Agostino, R.; Saso, L. Hypochlorite Scavenging Activity of Hydroxycinnamic Acids Evaluated by a Rapid Microplate Method Based on the Measurement of Chloramines. J. Pharm. Pharmacol. 2003, 55, 1021–1027. [Google Scholar] [CrossRef]
- Nenadis, N.; Lazaridou, O.; Tsimidou, M.Z. Use of Reference Compounds in Antioxidant Activity Assessment. J. Agric. Food Chem. 2007, 55, 5452–5460. [Google Scholar] [CrossRef] [PubMed]
- Nowak, H.; Kujawa, K.; Zadernowski, R.; Roczniak, B.; KozŁowska, H. Antioxidative and Bactericidal Properties of Phenolic Compounds in Rapeseeds. Lipid/Fett 1992, 94, 149–152. [Google Scholar] [CrossRef]
- Tesaki, S.; Tanabe, S.; Ono, H.; Fukushi, E.; Kawabata, J.; WATANABE, M. 4-Hydroxy-3-Nitrophenylacetic and Sinapic Acids as Antibacterial Compounds from Mustard Seeds. Biosci. Biotechnol. Biochem. 1998, 62, 998–1000. [Google Scholar] [CrossRef]
- Barber, M.S.; McConnell, V.S.; DeCaux, B.S. Antimicrobial Intermediates of the General Phenylpropanoid and Lignin Specific Pathways. Phytochemistry 2000, 54, 53–56. [Google Scholar] [CrossRef]
- Johnson, M.L.; Dahiya, J.P.; Olkowski, A.A.; Classen, H.L. The Effect of Dietary Sinapic Acid (4-Hydroxy-3,5-Dimethoxy-Cinnamic Acid) on Gastrointestinal Tract Microbial Fermentation, Nutrient Utilization, and Egg Quality in Laying Hens. Poult. Sci. 2008, 87, 958–963. [Google Scholar] [CrossRef]
- Maddox, C.E.; Laur, L.M.; Tian, L. Antibacterial Activity of Phenolic Compounds against the Phytopathogen Xylella fastidiosa. Curr. Microbiol. 2010, 60, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Engels, C.; Schieber, A.; Gänzle, M.G. Sinapic Acid Derivatives in Defatted Oriental Mustard (Brassica juncea L.) Seed Meal Extracts Using UHPLC-DAD-ESI-MS n and Identification of Compounds with Antibacterial Activity. Eur. Food Res. Technol. 2012, 234, 535–542. [Google Scholar] [CrossRef]
- Yun, K.-J.; Koh, D.-J.; Kim, S.-H.; Park, S.J.; Ryu, J.H.; Kim, D.-G.; Lee, J.-Y.; Lee, K.-T. Anti-Inflammatory Effects of Sinapic Acid through the Suppression of Inducible Nitric Oxide Synthase, Cyclooxygase-2, and Proinflammatory Cytokines Expressions via Nuclear Factor-ΚB Inactivation. J. Agric. Food Chem. 2008, 56, 10265–10272. [Google Scholar] [CrossRef]
- Hudson, E.A.; Dinh, P.A.; Kokubun, T.; Simmonds, M.S.J.; Gescher, A. Characterization of Potentially Chemopreventive Phenols in Extracts of Brown Rice That Inhibit the Growth of Human Breast and Colon Cancer Cells. Cancer Epidemiol. Biomark. Prev. 2000, 9, 1163–1170. [Google Scholar]
- Yoon, B.H.; Jung, J.W.; Lee, J.-J.; Cho, Y.-W.; Jang, C.-G.; Jin, C.; Oh, T.H.; Ryu, J.H. Anxiolytic-like Effects of Sinapic Acid in Mice. Life Sci. 2007, 81, 234–240. [Google Scholar] [CrossRef]
- Benchikh, Y.; Louaileche, H.; George, B.; Merlin, A. Changes in Bioactive Phytochemical Content and in Vitro Antioxidant Activity of Carob (Ceratonia siliqua L.) as Influenced by Fruit Ripening. Ind. Crops Prod. 2014, 60, 298–303. [Google Scholar] [CrossRef]
- Singh, M.; Lee, K.E.; Vinayagam, R.; Kang, S.G. Antioxidant and Antibacterial Profiling of Pomegranate-Pericarp Extract Functionalized-Zinc Oxide Nanocomposite. Biotechnol. Bioprocess Eng. 2021, 26, 728–737. [Google Scholar] [CrossRef]
- Kwon, N.; Vinayagam, R.; Do, G.S.; Lee, K.E.; Kang, S.G. Protective Effects of Fermented Houttuynia Cordata Against UVA and H2O2-Induced Oxidative Stress in Human Skin Keratinocytes. Appl. Biochem. Biotechnol. 2023, 195, 3027–3046. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Joshi, A.; Arora, B.; Bhowmik, A.; Sharma, R.R.; Kumar, P. Significance of FRAP, DPPH, and CUPRAC Assays for Antioxidant Activity Determination in Apple Fruit Extracts. Eur. Food Res. Technol. 2020, 246, 591–598. [Google Scholar] [CrossRef]
- Buisson, G.; Duee, E.; Haser, R.; Payan, F. Three Dimensional Structure of Porcine Pancreatic Alpha-amylase at 2.9 A Resolution. Role of Calcium in Structure and Activity. EMBO J. 1987, 6, 3909–3916. [Google Scholar] [CrossRef]
- Dalli, M.; Daoudi, N.E.; Azizi, S.; Benouda, H.; Bnouham, M.; Gseyra, N. Chemical Composition Analysis Using HPLC-UV/GC-MS and Inhibitory Activity of Different Nigella Sativa Fractions on Pancreatic α-Amylase and Intestinal Glucose Absorption. Biomed Res. Int. 2021, 2021, 9979419. [Google Scholar] [CrossRef] [PubMed]
- Brayer, G.D.; Luo, Y.; Withers, S.G. The Structure of Human Pancreatic A-amylase at 1.8 Å Resolution and Comparisons with Related Enzymes. Protein Sci. 1995, 4, 1730–1742. [Google Scholar] [CrossRef] [PubMed]
- Daoudi, N.E.; Bouhrim, M.; Ouassou, H.; Legssyer, A.; Mekhfi, H.; Ziyyat, A.; Aziz, M.; Bnouham, M. Inhibitory Effect of Roasted/Unroasted Argania spinosa Seeds Oil on α-Glucosidase, α-Amylase and Intestinal Glucose Absorption Activities. South Afr. J. Bot. 2020, 135, 413–420. [Google Scholar] [CrossRef]
- Haguet, Q.; Le Joubioux, F.; Chavanelle, V.; Groult, H.; Schoonjans, N.; Langhi, C.; Michaux, A.; Otero, Y.F.; Boisseau, N.; Peltier, S.L. Inhibitory Potential of α-Amylase, α-Glucosidase, and Pancreatic Lipase by a Formulation of Five Plant Extracts: TOTUM-63. Int. J. Mol. Sci. 2023, 24, 3652. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Yao, F.; Xue, Q.; Fan, H.; Yang, L.; Li, X.; Sun, L.; Liu, Y. Inhibitory Effects against α-Glucosidase and α-Amylase of the Flavonoids-Rich Extract from Scutellaria baicalensis Shoots and Interpretation of Structure–Activity Relationship of Its Eight Flavonoids by a Refined Assign-Score Method. Chem. Cent. J. 2018, 12, 82. [Google Scholar] [CrossRef] [PubMed]
- Scheen, A.-J. Antidiabétiques Oraux Dans Le Traitement Du Diabète de Type 2: Perspectives Historique et Médico-Économique. Médecine Des Mal. Métaboliques 2015, 9, 186–197. [Google Scholar] [CrossRef]
- Animish, A.; Jayasri, M.A. A Retrospective Review of Marine algae and the Strategies Employed for Prospective Diabetes Management. Algal Res. 2023, 74, 103209. [Google Scholar] [CrossRef]
- Özmatara, M.B.A.T. The Effect of Extraction Methods on Antioxidant and Enzyme Inhibitory Activities and Phytochemical Components of Galium aparine L. Trak. Univ. J. Nat. Sci. 2021, 22, 17–22. [Google Scholar]
- SenthilKumar, P.; Sudha, S. Evaluation of Alpha-Amylase and Alpha-Glucosidase Inhibitory Properties of Selected Seaweeds from Gulf of Mannar. Int. Res. J. Pharm. 2012. [Google Scholar]
- Mohapatra, L.; Bhattamisra, S.K.; Panigrahy, R.C.; Parida, S.K. Evaluation of the Antioxidant, Hypoglycaemic and Anti-Diabetic Activities of Some Seaweed Collected From the East Coast of India. Biomed. Pharmacol. J. 2016, 9, 365–375. [Google Scholar] [CrossRef]
- Pappou, S.; Dardavila, M.M.; Savvidou, M.G.; Louli, V.; Magoulas, K.; Voutsas, E. Extraction of Bioactive Compounds from Ulva lactuca. Appl. Sci. 2022, 12, 2117. [Google Scholar] [CrossRef]
- Nie, T.; Cooper, G.J.S. Mechanisms Underlying the Antidiabetic Activities of Polyphenolic Compounds: A Review. Front. Pharmacol. 2021, 12, 798329. [Google Scholar] [CrossRef] [PubMed]
- Sok Yen, F.; Shu Qin, C.; Tan Shi Xuan, S.; Jia Ying, P.; Yi Le, H.; Darmarajan, T.; Gunasekaran, B.; Salvamani, S. Hypoglycemic Effects of Plant Flavonoids: A Review. Evid. -Based Complement. Altern. Med. 2021, 2021, 2057333. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Su, A.; Yuan, S.; Zhao, H.; Tan, S.; Hu, C.; Deng, H.; Guo, Y. Evaluation of Total Flavonoids, Myricetin, and Quercetin from Hovenia dulcis Thunb. as Inhibitors of α-Amylase and α-Glucosidase. Plant Foods Hum. Nutr. 2016, 71, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Hsu, C.; Ng, L. Inhibitory Potential of Fatty Acids on Key Enzymes Related to Type 2 Diabetes. Biofactors 2013, 39, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Sayahi, M.; Shirali, S. The Antidiabetic and Antioxidant Effects of Carotenoids: A Review. Asian J. Pharm. Res. Health Care 2017, 9, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Ouahabi, S.; Loukili, E.H.; Elbouzidi, A.; Taibi, M.; Bouslamti, M.; Nafidi, H.-A.; Salamatullah, A.M.; Saidi, N.; Bellaouchi, R.; Addi, M. Pharmacological Properties of Chemically Characterized Extracts from Mastic Tree: In Vitro and In Silico Assays. Life 2023, 13, 1393. [Google Scholar] [CrossRef] [PubMed]
- Ouahabi, S.; Loukili, E.H.; Daoudi, N.E.; Chebaibi, M.; Ramdani, M. Study of the Phytochemical Composition, Antioxidant Properties, and In Vitro Anti-Diabetic Efficacy of Gracilaria Bursa-Pastoris Extracts. Mar. Drugs 2023, 21, 372. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.-E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Bekkouch, O.; Harnafi, M.; Touiss, I.; Khatib, S.; Harnafi, H.; Alem, C.; Amrani, S. In Vitro Antioxidant and in Vivo Lipid-Lowering Properties of Zingiber Officinale Crude Aqueous Extract and Methanolic Fraction: A Follow-up Study. Evid. -Based Complement. Altern. Med. 2019, 2019, 9734390. [Google Scholar] [CrossRef]
- Daoudi, N.E.; Bouziane, O.; Bouhrim, M.; Bnouham, M. Natural Aldose Reductase Inhibitors for Treatment and Prevention of Diabetic Cataract: A Review. Herba Pol. 2022, 68, 35–58. [Google Scholar] [CrossRef]
- Hbika, A.; Daoudi, N.E.; Bouyanzer, A.; Bouhrim, M.; Mohti, H.; Loukili, E.H.; Mechchate, H.; Al-Salahi, R.; Nasr, F.A.; Bnouham, M. Artemisia absinthium L. Aqueous and Ethyl Acetate Extracts: Antioxidant Effect and Potential Activity in Vitro and in Vivo against Pancreatic α-Amylase and Intestinal α-Glucosidase. Pharmaceutics 2022, 14, 481. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.S.; Kavrekar, V.; Mishra, A. In Vitro Studies on Alpha Amylase and Alpha Glucosidase Inhibitory Activities of Selected Plant Extracts. Eur. J. Exp. Biol. 2013, 3, 128–132. [Google Scholar]
- Fajriyah, N.N.; Mugiyanto, E.; Rahmasari, K.S.; Nur, A.V.; Najihah, V.H.; Wihadi, M.N.K.; Merzouki, M.; Challioui, A.; Vo, T.H. Indonesia Herbal Medicine and Its Active Compounds for Anti-Diabetic Treatment: A Systematic Mini Review. Moroc. J. Chem. 2023, 11, 11–14. [Google Scholar]
- Bouammali, H.; Zraibi, L.; Ziani, I.; Merzouki, M.; Bourassi, L.; Fraj, E.; Challioui, A.; Azzaoui, K.; Sabbahi, R.; Hammouti, B. Rosemary as a Potential Source of Natural Antioxidants and Anticancer Agents: A Molecular Docking Study. Plants 2023, 13, 89. [Google Scholar] [CrossRef]
- Boumezzourh, A.; Ouknin, M.; Merzouki, M.; Dabbous-Wach, A.; Hammouti, B.; Umoren, P.S.; Costa, J.; Challioui, A.; Umoren, S.A.; Majidi, L. Acetylcholinesterase, Tyrosinase, α-Glucosidase Inhibition by Ammodaucus leucotrichus Coss. & Dur. Fruits essential Oil and Ethanolic Extract and Molecular Docking Analysis. Moroc. J. Chem. 2023, 11, 11–14. [Google Scholar]
Solvent | Extraction Methods | Polyphenols (mg GAE/g) | Flavonoids (mg QE/g) |
---|---|---|---|
Ethyl acetate | M | 198.09 ± 0.11 | 102.10 ± 0.09 |
S | 145.74 ± 0.15 | 65.27 ± 0.05 | |
Methanol | M | 47.53 ± 0.05 | 27.18 ± 0.09 |
S | 32.46 ± 0.08 | 20.24 ± 0.04 | |
Water | M | 379.67 ± 0.09 | 212.11 ± 0.11 |
Fatty Acids | RT (min) | HE (%) | EAcE (%) | ||
---|---|---|---|---|---|
M | S | M | S | ||
Eicosenoic acid (C20:1) | 20.08 | 35.44 ± 0.02 | 6.93 ± 0.04 | 29.62 ± 0.07 | nd |
7,10-Hexadecadienoic acid (C16:2) | 21.17 | 2.60 ± 0.05 | 2.93 ± 0.01 | 13.52 ± 0.04 | nd |
Palmitoleic acid (C16:1) | 23.12 | 5.01 ± 0.07 | 6.37 ± 0.03 | 24.72 ± 0.06 | nd |
Palmitic acid (C16:0) | 23.31 | 28.05 ± 0.03 | 46.81 ± 0.10 | 32.14 ± 0.08 | 49.92 ± 0.07 |
Margaric acid (C17:0) | 23.87 | nd | 6.90 ± 0.06 | nd | nd |
Oleic acid (C18:1) | 24.55 | nd | nd | nd | 28.60 ± 0.04 |
Linoleic acid (C18:2) | 25.04 | 25.48 ± 0.01 | 23.50 ± 0.05 | nd | 21.48 ± 0.05 |
Linolenic acid (C18:3) | 25.09 | nd | 6.56 ± 0.02 | nd | nd |
Stearic acid (C18:0) | 25.26 | 3.42 ± 0.01 | nd | nd | nd |
SFA a | 31.47 | 31.47 | 53.71 | 32.14 | 49.92 |
UFA b | 68.53 | 68.53 | 46.29 | 67.86 | 50.08 |
UFA/SFA | 2.18 | 2.18 | 0.86 | 2.11 | 1 |
N° | Compounds | RT (min) | EAcE (%) | ME (%) | ||
---|---|---|---|---|---|---|
M | S | M | S | |||
1 | Gallic acid | 15.47 | nd | nd | nd | 0.64 |
2 | Catechin | 18.68 | 1.52 | 8.18 | nd | nd |
3 | 4-hydroxy benzoïque | 18.91 | 4.11 | 18.77 | nd | 3.56 |
4 | Chlorogenic acid | 19.15 | 1.09 | 4.20 | 11.66 | 7.71 |
5 | Caffeic acid | 19.45 | nd | Nd | 35.64 | 24.24 |
6 | Syringic acid | 19.74 | nd | 3.09 | 3.67 | nd |
7 | Vanilline | 23.10 | 3.45 | nd | nd | nd |
8 | p-Coumaric acid | 23.63 | Nd | nd | nd | 5.26 |
9 | Sinapic acid | 24.09 | 9.53 | nd | nd | nd |
10 | Quercetine 3glucoside | 24.52 | 8.07 | nd | nd | nd |
11 | 7,3′,4′-flavon-3-ol | 24.92 | 8.31 | 20.68 | nd | nd |
12 | Naringin | 25.01 | 8.34 | 17.75 | 21.06 | 12.63 |
13 | Rutin | 25.16 | 8.29 | nd | nd | nd |
14 | Salicylic acid | 25.32 | nd | 15.61 | 14.90 | 11.85 |
15 | Quercetine | 25.46 | 8.67 | nd | nd | nd |
16 | Cinnamic acid | 25.48 | 8.94 | nd | nd | 9.66 |
17 | Luteolin | 25.64 | 8.91 | nd | nd | 9.38 |
18 | Apigenine | 25.87 | 7.83 | nd | nd | nd |
19 | Kaempferol | 26.1 | 9.11 | 11.69 | 8.10 | 9.11 |
20 | Flavone | 26.92 | nd | nd | 4.95 | 5.94 |
21 | Flavanone | 27.412 | nd | 3.79 | nd | nd |
Extracts | IC50 (mg/mL) | ||
---|---|---|---|
DPPH | β-Carotene | ||
EAcE | M | 0.55 ± 0.02 | 0.47 ± 0.04 |
S | 0.62 ± 0.01 | 0.08 ± 0.14 | |
ME | M | 0.59 ± 0.13 | 0.41 ± 0.22 |
S | 0.65 ± 0.21 | 0.10 ± 0.05 | |
AQE | M | 0.09 ± 0.12 | 0.11 ± 0.17 |
Ascorbic Acid | 0.06 | - | |
BHA | - | 0.02 |
Inhibitors | IC50 (mg/mL) | ||
---|---|---|---|
α-Amylase | α-Glucosidase | ||
Acarbose | 0.35 ± 0.08 | 0.39 ± 0.04 | |
EAcE | M | 0.77 ± 0. 09 ** | 0.42± 0.04 *** |
S | 0.78 ± 0. 16 *** | 0.37± 0.05 ns | |
ME | M | 0.81 ± 0. 05 *** | 0.44± 0.06 ** |
S | 0.63 ± 0. 03 ns | 0.27± 0.04 ** | |
AQE | M | 0.89 ± 0. 21 *** | 0.51± 0.06 *** |
N° | Compound Name | Docking Score (kcal/mol) | |
---|---|---|---|
Alpha-Amylase | Alpha-Glucosidase | ||
1 | Gallic acid | −5.298 | −7.334 |
2 | Catechin | −5.806 | −5.592 |
3 | 4-hydroxy-benzoïc acid | −5.064 | −5.034 |
4 | Chlorogenic acid | −4.228 | −4.589 |
5 | Caffeic acid | −4.629 | −5.425 |
6 | Syringic acid | −4.946 | −4.767 |
7 | Vanilline | −5.272 | −5.621 |
8 | p-Coumaric acid | −4.223 | −4.044 |
9 | Sinapic acid | −4.304 | −3.813 |
10 | Quercetin-O-3-glucoside | −5.704 | −5.218 |
11 | 7,3′,4′-flavon-3-ol | −5.923 | −6.620 |
12 | Naringin | −5.601 | −5.055 |
13 | Rutin | −6.807 | −6.060 |
14 | Salicylic acid | −5.336 | −4.886 |
15 | Quercetin | −5.187 | −4.654 |
16 | Cinnamic acid | −3.589 | −3.522 |
17 | Apigenin | −5.811 | −4.766 |
18 | Kaempferol | −5.539 | −4.899 |
19 | Flavone | −5.994 | −5.319 |
20 | Flavanone | −5.433 | −5.599 |
21 | Acarbose (standard) | −4.877 | −4.925 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouahabi, S.; Daoudi, N.E.; Loukili, E.H.; Asmae, H.; Merzouki, M.; Bnouham, M.; Challioui, A.; Hammouti, B.; Fauconnier, M.-L.; Rhazi, L.; et al. Investigation into the Phytochemical Composition, Antioxidant Properties, and In-Vitro Anti-Diabetic Efficacy of Ulva lactuca Extracts. Mar. Drugs 2024, 22, 240. https://doi.org/10.3390/md22060240
Ouahabi S, Daoudi NE, Loukili EH, Asmae H, Merzouki M, Bnouham M, Challioui A, Hammouti B, Fauconnier M-L, Rhazi L, et al. Investigation into the Phytochemical Composition, Antioxidant Properties, and In-Vitro Anti-Diabetic Efficacy of Ulva lactuca Extracts. Marine Drugs. 2024; 22(6):240. https://doi.org/10.3390/md22060240
Chicago/Turabian StyleOuahabi, Safae, Nour Elhouda Daoudi, El Hassania Loukili, Hbika Asmae, Mohammed Merzouki, Mohamed Bnouham, Allal Challioui, Belkheir Hammouti, Marie-Laure Fauconnier, Larbi Rhazi, and et al. 2024. "Investigation into the Phytochemical Composition, Antioxidant Properties, and In-Vitro Anti-Diabetic Efficacy of Ulva lactuca Extracts" Marine Drugs 22, no. 6: 240. https://doi.org/10.3390/md22060240
APA StyleOuahabi, S., Daoudi, N. E., Loukili, E. H., Asmae, H., Merzouki, M., Bnouham, M., Challioui, A., Hammouti, B., Fauconnier, M. -L., Rhazi, L., Ayerdi Gotor, A., Depeint, F., & Ramdani, M. (2024). Investigation into the Phytochemical Composition, Antioxidant Properties, and In-Vitro Anti-Diabetic Efficacy of Ulva lactuca Extracts. Marine Drugs, 22(6), 240. https://doi.org/10.3390/md22060240