Secondary Metabolites with Agricultural Antagonistic Potential from Aspergillus sp. ITBBc1, a Coral-Associated Marine Fungus
Abstract
:1. Introduction
2. Results
2.1. Structural Elucidation
2.2. Antagonistic Evaluation
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Fungal Material and Fermentation
3.3. Extraction and Isolation
3.3.1. Megastigmanone A (1)
3.3.2. Megastigmanone B (2)
3.3.3. Megastigmanone C (3)
3.3.4. Prenylterphenyllin H (4)
3.4. Modified Mosher’s Reaction
3.5. Antagonistic Bioassay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zain, M.E. Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc. 2011, 15, 129–144. [Google Scholar] [CrossRef]
- Juraschek, L.M.; Kappenberg, A.; Amelung, W. Mycotoxins in soil and environment. Sci. Total Environ. 2022, 814, 152425. [Google Scholar] [CrossRef]
- Alshannaq, A.; Yu, J.H. Occurrence, toxicity, and analysis of major mycotoxins in food. Int. J. Environ. Res. Public Health 2017, 14, 632. [Google Scholar] [CrossRef]
- Vianello, A.; Macri, F. Inhibition of plant cell membrane transport phenomena induced by zearalenone (F-2). Planta 1978, 143, 51–57. [Google Scholar] [CrossRef]
- Pekkarinen, A.; Mannonen, L.; Jones, B.L.; Niku-Paavola, M.L. Production of proteases by Fusarium species grown on barley grains and in media containing cereal proteins. J. Cereal Sci. 2000, 31, 253–261. [Google Scholar] [CrossRef]
- Abbas, H.K.; Duke, S.O.; Tanaka, T. Phytotoxicity of fumonisins and related compounds. J. Toxicol. Toxin Rev. 1993, 12, 225–251. [Google Scholar] [CrossRef]
- Merrill, A.H., Jr.; Sullards, M.C.; Wang, E.; Voss, K.A.; Riley, R.T. Sphingolipid metabolism: Roles in signal transduction and disruption by fumonisins. Environ. Health. Perspect 2001, 109, 283–289. [Google Scholar]
- Brodal, G.; Hofgaard, I.S.; Eriksen, G.S.; Bernhoft, A.; Sundheim, L. Mycotoxins in organically versus conventionally produced cereal grains and some other crops in temperate regions. World Mycotoxin J. 2016, 9, 755–770. [Google Scholar] [CrossRef]
- Marin, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 2013, 60, 218–237. [Google Scholar] [CrossRef]
- Schaarschmidt, S.; Fauhl-Hassek, C. The fate of mycotoxins during the processing of wheat for human consumption. Compr. Rev. Food Sci. Food Saf. 2018, 17, 556–593. [Google Scholar] [CrossRef]
- Myers, J.P.; Antoniou, M.N.; Blumberg, B.; Carroll, L.; Colborn, T.; Everett, L.G.; Hansen, M.; Landrigan, P.J.; Lanphear, B.P.; Mesnage, R.; et al. Concerns over use of glyphosate-based herbicides and risks associated with exposures: A consensus statement. Environ. Health 2016, 15, 19. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Cheng, J.; Lu, Y.; Wang, H.; Gao, Y.; Shi, J.; Yin, C.; Wang, X.; Chen, S.; Strasser, R.J.; et al. Novel action targets of natural product gliotoxin in photosynthetic apparatus. Front. Plant Sci. 2020, 10, 1688. [Google Scholar] [CrossRef]
- Cimmino, A.; Masi, M.; Evidente, M.; Superchi, S.; Evidente, A. Fungal phytotoxins with potential herbicidal activity: Chemical and biological characterization. Nat. Prod. Rep. 2015, 32, 1629–1653. [Google Scholar] [CrossRef]
- Evidente, A. Specialized metabolites produced by phytotopatogen fungi to control weeds and parasite plants. Microorganisms 2023, 11, 843. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.; Ahmad-Hamdani, M.S.; Rosli, A.M.; Hamdan, H. Bioherbicides: An eco-friendly tool for sustainable weed management. Plants 2021, 10, 1212. [Google Scholar] [CrossRef] [PubMed]
- Pusztahelyi, T.; Holb, I.J.; Pócsi, I. Secondary metabolites in fungus-plant interactions. Front. Plant Sci. 2015, 6, 573. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.H.; Gou, J.Y.; Zhao, D.L.; Wang, D.; Liu, J.; Ma, G.Y.; Li, Y.Q.; Zhang, C.S. Phytotoxicity and anti-phytopathogenic activities of marine-derived fungi and their secondary metabolites. RSC Adv. 2018, 8, 37573–37580. [Google Scholar] [CrossRef] [PubMed]
- Du, F.Y.; Li, X.M.; Sun, Z.C.; Meng, L.H.; Wang, B.G. Secondary metabolites with agricultural antagonistic potentials from Beauveria felina, a marine-derived entomopathogenic fungus. J. Agric. Food Chem. 2020, 68, 14824–14831. [Google Scholar] [CrossRef] [PubMed]
- Irvine, N.M.; Yerkes, C.N.; Graupner, P.R.; Roberts, R.E.; Hahn, D.R.; Pearce, C.; Gerwick, B.C. Synthesis and characterization of synthetic analogs of cinnacidin, a novel phytotoxin from Nectria sp. Pest Manag. Sci. 2008, 64, 891–899. [Google Scholar] [CrossRef]
- Guo, Z.K.; Abulaizi, A.; Huang, L.; Xiong, Z.J.; Zhang, S.Q.; Liu, T.; Wang, R. Discovery of p-terphenyl metabolites as potential phosphodiesterase PDE4D inhibitors from the coral-associated fungus Aspergillus sp. ITBBc1. Mar. Drugs 2022, 20, 679. [Google Scholar] [CrossRef]
- Xiong, Z.J.; Wang, R.; Xia, T.F.; Zhang, S.Q.; Ma, S.; Guo, Z.K. Natural products and biological activity from actinomycetes associated with marine algae. Molecules 2023, 28, 5138. [Google Scholar] [CrossRef]
- Guo, Z.K.; Ma, S.; Khan, S.; Zhu, H.J.; Zhang, B.; Zhang, S.; Jiao, R.H. Zhaoshumycins A and B, two unprecedented antimycin-type depsipeptides produced by the marine-derived Streptomyces sp. ITBB-ZKa6. Mar. Drugs 2021, 19, 624. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhao, J.; Wang, X.; Zhao, L.; Liu, H.; Wei, Y.; You, X.; Cen, S.; Yu, L. Peniazaphilin A, a new azaphilone derivative produced by Penicillium sp. CPCC 400786. J. Antibiot. 2018, 71, 905–907. [Google Scholar] [CrossRef] [PubMed]
- Marchelli, R.; Vining, L.C. Terphenyllin, a novel p-terphenyl metabolite from Aspergillus candidus. J. Antibiot. 1975, 28, 328–331. [Google Scholar] [CrossRef] [PubMed]
- Kurobane, I.; Vining, L.C.; Mcinnes, A.G.; Smith, D.G. 3-Hydroxyterphenyllin, a new metabolite of Aspergillus candidus. Structure elucidation by H and C nuclear magnetic resonance spectroscopy. J. Antibiot. 1979, 32, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Rahbaek, L.; Frisvad, J.C.; Christophersen, C. An amendment of Aspergillus section Candidi based on chemotaxonomical evidence. Phytochemistry 2000, 53, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.P.; Li, Y.J.; Zhao, Y.Y.; Guo, J.M.; Liu, Y.Y.; Wang, X.P.; Shen, Z.Y.; Qiang, L.; Fu, Y.H. Carbazole alkaloids from the fruits of Clausena anisum-olens with potential PTP1B and α-glucosidase inhibitory activities. Bioorg. Chem. 2021, 110, 104775. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.L.; Zhu, S.S.; Liu, Y.; Chen, H.W.; Shi, Y.T.; Zeng, K.W.; Tu, P.F.; Jiang, Y. Carbazole alkaloids with potential cytotoxic activities targeted on PCK2 protein from Murraya microphylla. Bioorg. Chem. 2021, 114, 105113. [Google Scholar] [CrossRef]
- Guo, Z.K.; Wang, T.; Guo, Y.; Song, Y.C.; Tan, R.X.; Ge, H.M. Cytotoxic angucyclines from Amycolatopsis sp. HCa1, a rare actinobacteria derived from Oxya chinensis. Planta Med. 2011, 77, 2057–2060. [Google Scholar] [CrossRef]
- González Coloma, A.; Yeves, M.F.; Diaz Hernandez, C.E.; Reina Artiles, M.; Lacret Pimienta, R.; Cabrera Perez, R.; Gimenez Mariño, C.; Kaushik, N. Natural Borad-Spectrum Biocides. WO2017068223A1, 27 April 2017. [Google Scholar]
- Zhou, G.; Chen, X.; Zhang, X.; Che, Q.; Zhang, G.; Zhu, T.; Gu, Q.; Li, D. Prenylated p-Terphenyls from a mangrove endophytic fungus, Aspergillus candidus LDJ-5. J. Nat. Prod. 2020, 83, 8–13. [Google Scholar] [CrossRef]
- Cutler, H.G.; Lefiles, J.H.; Crumley, F.G.; Cox, R.H. Hydroxyterphenyllin: A novel fungal metabolite with plant growth inhibiting properties. J. Agric. Food Chem. 1978, 26, 632–635. [Google Scholar] [CrossRef]
- Wang, Y.; Compton, C.; Rankin, G.O.; Cutler, S.J.; Rojanasakul, Y.; Tu, Y.; Chen, Y.C. 3-Hydroxyterphenyllin, a natural fungal metabolite, induces apoptosis and S phase arrest in human ovarian carcinoma cells. Int. J. Oncol. 2017, 50, 1392–1402. [Google Scholar] [CrossRef] [PubMed]
Position | 1 | 2 | 3 | |||
---|---|---|---|---|---|---|
δC | δH (J in Hz) | δC | δH (J in Hz) | δC | δH (J in Hz) | |
1 | 202.2, C | 202.9, C | 202.2, C | |||
2 | 128.8, C | 129.4, C | 128.6, C | |||
2-CH3 | 11.6, CH3 | 1.79 (s) | 11.7, CH3 | 1.78 (s) | 11.5, CH3 | 1.79 (s) |
3 | 152.7, C | 155.8, C | 153.1, C | |||
4 | 37.1, CH2 | 2.86 (m); 2.63 (m) | 38.6, CH2 | 2.75 (ddd, 18.4, 5.7, 1.1); 2.45 (m) | 38.2, CH2 | 2.90 (d, 19.0); 2.58 (d, 19.0) |
5 | 74.2, CH | 3.97 (dd, 3.7, 2.9) | 72.9, CH | 3.85 (dd, 10.2, 5.7) | 74.2, CH | 3.96 (dd, 3.7, 2.9) |
5-OH | 3.70 (br s) | 3.89 (br s) | 3.74(br s) | |||
6 | 76.4, C | 77.8, C | 76.4, C | |||
6-CH3 | 23.3, CH3 | 1.23 (s) | 18.2, CH3 | 1.15 (s) | 23.4, CH3 | 1.22 (s) |
6-OH | 4.17 (br s) | 4.19 (br s) | 4.13 (br s) | |||
1′ | 43.7, CH2 | 2.51 (dd, 13.3, 8.7) 2.35 (dd, 13.3, 4.2) | 43.6, CH2 | 2.45 (m) | 43.9, CH2 | 2.47 (dd, 13.1, 4.7) 2.34 (dd, 13.1, 8.4) |
2′ | 70.0, CH | 3.89 (m) | 70.1, CH | 3.89 (m) | 70.4, CH | 3.85 (m) |
2′-OH | 3.70 (br s) | 3.04 (br s) | 3.67 (br s) | |||
3′ | 41.0, CH2 | 1.47 (m) | 41.3, CH2 | 1.48 (m) | 41.1, CH2 | 1.48 (m) |
4′ | 19.6, CH2 | 1.51 (m); 1.40 (m) | 19.6, CH2 | 1.50 (m); 1.40 (m) | 19.6, CH2 | 1.51 (m); 1.41 (m) |
5′ | 14.3, CH3 | 0.91 (t, 7.1) | 14.3, CH3 | 0.92 (t, 7.1) | 14.4, CH3 | 0.91 (t, 7.1) |
Position | δC | δH (J in Hz) | Position | δC | δH (J in Hz) |
---|---|---|---|---|---|
1 | 126.4, C | 1″ | 139.5, C | ||
2 | 133.0, CH | 7.11 (d,2.0) | 2″ | 129.7, CH | 7.67 (d, 7.4) |
3 | 120.2, C | 3″ | 129.2, CH | 7.46 (t, 7.4) | |
4 | 152.9, C | 4″ | 128.1, CH | 7.38 (t,7.4) | |
5 | 116.7, CH | 6.74 (d, 8.3) | 5″ | 129.2, CH | 7.46 (t, 7.4) |
6 | 131.0, CH | 7.14 (dd, 8.3, 2.0) | 6″ | 129.7, CH | 7.67 (d, 7.4) |
1′ | 118.4, C | 1‴ | 32.3, CH2 | 3.01 (dd, 16.4, 5.4); 2.76 (dd, 16.4, 8.2) | |
2′ | 149.2, C | 2‴ | 70.1, CH | 3.82 (dd, 7.5, 5.3) | |
3′ | 140.3, C | 3‴ | 77.8, C | ||
3′-OCH3 | 60.9, CH3 | 3.38 (s) | 4‴ | 20.7, CH3 | 1.28 (s) |
4′ | 133.6, C | 5‴ | 26.3, CH3 | 1.38 (s) | |
5′ | 104.3, CH | 6.53 (s) | |||
6′ | 154.6, C | ||||
6′-OCH3 | 56.1, CH3 | 3.74 (s) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abulaizi, A.; Wang, R.; Xiong, Z.; Zhang, S.; Li, Y.; Ge, H.; Guo, Z. Secondary Metabolites with Agricultural Antagonistic Potential from Aspergillus sp. ITBBc1, a Coral-Associated Marine Fungus. Mar. Drugs 2024, 22, 270. https://doi.org/10.3390/md22060270
Abulaizi A, Wang R, Xiong Z, Zhang S, Li Y, Ge H, Guo Z. Secondary Metabolites with Agricultural Antagonistic Potential from Aspergillus sp. ITBBc1, a Coral-Associated Marine Fungus. Marine Drugs. 2024; 22(6):270. https://doi.org/10.3390/md22060270
Chicago/Turabian StyleAbulaizi, Ailiman, Rong Wang, Zijun Xiong, Shiqing Zhang, Yuanchao Li, Huiming Ge, and Zhikai Guo. 2024. "Secondary Metabolites with Agricultural Antagonistic Potential from Aspergillus sp. ITBBc1, a Coral-Associated Marine Fungus" Marine Drugs 22, no. 6: 270. https://doi.org/10.3390/md22060270
APA StyleAbulaizi, A., Wang, R., Xiong, Z., Zhang, S., Li, Y., Ge, H., & Guo, Z. (2024). Secondary Metabolites with Agricultural Antagonistic Potential from Aspergillus sp. ITBBc1, a Coral-Associated Marine Fungus. Marine Drugs, 22(6), 270. https://doi.org/10.3390/md22060270