Cyanotoxins in Epipelic and Epiphytic Cyanobacteria from a Hypersaline Coastal Lagoon, an Environmental Hazard in Climate Warming Times and a Potential Source of New Compounds
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphological and Molecular Identification
2.2. Cyanotoxins
3. Conclusions
4. Materials and Methods
4.1. Study Area
4.2. Sampling
4.3. Isolation and Culture
4.4. Morphological Taxonomic Identification
4.5. DNA Extraction, Sequencing and Data Analysis
4.6. Toxins Extractions
4.7. LC-MS/MS Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Directive 2000/60/EC of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy (Water Framework Directive). Official Journal L 327, 22/12/2000 P.0001-0073. Available online: https://eur-lex.europa.eu/eli/dir/2000/60/oj (accessed on 6 June 2024).
- Facca, C. Ecological Status Assessment of Transitional Waters. Water 2000, 12, 3159. [Google Scholar] [CrossRef]
- Aliaume, C.; Do Chi, T.; Viaroli, P.; Zaldívar, J.M. Coastal lagoons of Southern Europe: Recent changes and future scenarios. Transit. Waters Monogr. 2007, 1, 1–12. [Google Scholar]
- Elliott, M.; Quintino, V. The Estuarine Quality Paradox, environmental homeostasis, and the difficulty of detecting anthropogenic stress in naturally stressed areas. Mar. Pollut. Bull. 2007, 54, 640–645. [Google Scholar] [CrossRef] [PubMed]
- Newton, A.; Icely, J.; Cristina, S.; Brito, A.; Cardoso, A.C.; Colin, F.; Riva, S.D.; Gertz, F.; Hansen, J.W.; Holmer, M.; et al. An overview of ecological status, vulnerability and future perspectives of European shallow, semi-enclosed coastal systems, lagoons, and transitional waters. Estuar. Coast. Shelf Sci. 2014, 140, 95–122. [Google Scholar] [CrossRef]
- Scheffer, M.; Carpenter, S.; Foley, J.A.; Folke, C.; Walker, B. Catastrophic shifts in ecosystems. Nature 2001, 413, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Valiella, I.; Tomasky, G.; Hauxwell, J.; Cole, M.L.; Cebrian, J.; Kroeger, K.D. Operationalizing sustainability: Management and risk assessment of land-derived nitrogen loads to estuaries. Ecol. Appl. 2000, 10, 1006–1023. [Google Scholar] [CrossRef]
- Sfriso, A.; Buosi, A.; Tomio, T.; Juhmani, A.S.; Facca, C.; Sfriso, A.A.; Franzoi, P.; Scapin, L.; Bonometto, A.; Ponis, E.; et al. Aquatic angiosperm transplantations: A tool for environmental management and restoring in transitional water systems. Water 2019, 11, 1264. [Google Scholar] [CrossRef]
- Celepli, N.; Sundh, J.; Ekman, M.; Dupont, C.L.; Yooseph, S.; Bergman, B.; Ininbergs, K. Meta-omic analyses of Baltic Sea cyanobacteria: Diversity, community structure and salt acclimation. Environ. Microbiol. 2017, 19, 673–686. [Google Scholar] [CrossRef] [PubMed]
- Ghai, R.; Mella Hernandez, C.; Picazo, A.; Megumi Mizuno, C.; Ininbers, K.; Díez, B.; Valas, R.; DuPont, C.L.; McMahon, K.D.; Camacho, A.; et al. Metagenomes of Mediterranean Coastal Lagoons. Sci. Rep. 2012, 2, 490. [Google Scholar] [CrossRef] [PubMed]
- Preece, E.P.; Hardy, F.J.; Moore, B.C.; Bryan, M. A review of microcystin detections in estuarine and marine waters: Environmental implications and human health risk. Harmful Algae 2017, 61, 31–45. [Google Scholar] [CrossRef]
- Paerl, H.W.; Otten, T.G.; Kudela, R. Mitigating the expansion of harmful algal blooms across the freshwater-to-marine continuum. Environ. Sci. Technol. 2018, 52, 5519–5529. [Google Scholar] [CrossRef] [PubMed]
- Bormans, M.; Amzil, Z.; Mineaud, E.; Brient, L.; Savar, V.; Robert, E.; Lance, E. Demonstrated transfer of cyanobacteria and cyanotoxins along a freshwater-marine continuum in France. Harmful Algae 2019, 87, 101639. [Google Scholar] [CrossRef] [PubMed]
- Bormans, M.; Savar, V.; Legrand, B.; Mineaud, E.; Robert, E.; Lance, E.; Amzil, Z. Cyanobacteria and cyanotoxins in estuarine water and sediment. Aquat. Ecol. 2020, 54, 625–640. [Google Scholar] [CrossRef]
- Umehara, A.; Tsutsumi, H.; Takahashi, T. Blooming of Microcystis aeruginosa in the reservoir of the reclaimed land and discharge of microcystins to Isahaya Bay (Japan). Environ. Sci. Pollut. Res. 2012, 19, 3257–3267. [Google Scholar] [CrossRef] [PubMed]
- Stal, L.J. Cyanobacterial mats and stromatolites. In Ecology of Cyanobacteria II: Their Diversity in Space and Time; Whitton, B.A., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 65–125. [Google Scholar] [CrossRef]
- Berthold, D.E.; Lefler, F.W.; Laughinhhouse IV, H.D. Recognizing novel cyanobacterial diversity in marine mats, with the description of Sirenicapillariaceae fam. nov., two new genera, Sirenicapillaria gen. nov. and Tigrinifilum gen. nov. and seven new species. Phycologia 2022, 61, 146–165. [Google Scholar] [CrossRef]
- Bauer, F.; Wolfschlaerger, I.; Gesit, J.; Fatner, J.; Wiena Schmalz, C.; Raeder, U. Occurrence, distribution, and toxins of benthic cyanobacteria in German lakes. Toxins 2023, 11, 643. [Google Scholar] [CrossRef] [PubMed]
- Assunçao, J.; Guedes, A.C.; Malcata, F.X. Biotechnological and Pharmacological Applications of Biotoxins and Other Bioactive Molecules from Dinoflagellates. Mar. Drugs 2017, 15, 393. [Google Scholar] [CrossRef] [PubMed]
- Ricciardelli, A.; Pollio, A.; Costantini, M.; Zupo, V. Harmful and Beneficial Properties of Cyanotoxins: Two sides of the same coin. Biotechnol. Adv. 2023, 68, 108235. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, L.; Morone, J.; Hentschke, G.S.; Vasconcelos, V.; Lopes, G. Anti-Inflammatory Activity of Cyanobacteria Pigment Extracts: Physiological Free Radical Scavenging and Modulation of iNOS and LOX Activity. Mar. Drugs 2024, 22, 131. [Google Scholar] [CrossRef] [PubMed]
- Grauer, F.H.; Arnold, H.L., Jr. Seaweed dermatitis: First report of a dermatitis-producing marine alga. Arch. Dermatol. 1961, 84, 720–732. [Google Scholar] [CrossRef]
- Solomon, A.E.; Stoughton, R.B. Dermatitis from purified sea algae toxin (Debromoaplysiatoxin). Arch. Dermatol. 1978, 114, 1333–1335. [Google Scholar] [CrossRef] [PubMed]
- Niedermeyer, T.H.J.; Daily, A.; Swiatecka-Hagenbruch, M.; Moscow, J.A. Selectivity and Potency of Microcystin Congeners against OATP1B1 and OATP Expressing Cancer Cells. PLoS ONE 2014, 9, e91476. [Google Scholar] [CrossRef] [PubMed]
- Sivonen, K.; Jones, G. Cyanobacterial Toxins. In Toxic Cyanobacteria in Water: A Guide to Public Health Significance, Monitoring and Management; Chorus, I., Bertram, J., Eds.; The World Health Organization: Geneva, Switzerland, 1999; pp. 41–111. [Google Scholar]
- Colas, S.; Marie, B.; Lance, E.; Quiblier, C.; Tricoire-Leignel, H.; Mattei, C. Anatoxin-a: Overview on a harmful cyanobacterial neurotoxin from the environmental scale to the molecular target. Environ. Res. 2021, 193, 110590. [Google Scholar] [CrossRef] [PubMed]
- Montero, C.; Riquelme, G.; Del Campo, M.; Lagos, N. Neosaxitoxin, a Paralytic Shellfish Poison phycotoxin, blocks pain and inflammation in equine osteoarthritis. Toxicon 2021, 204, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Ramos, V.M.C.; Catelo-Branco, R.; Leao, P.N.; Martins, J.; Carvalhal-Gomes, S.; Sobrinho da Silva, F.; Mendoça Filho, J.G.; Vasconcelos, V.M. Cyanobacterial diversity in microbial mats from the hypersaline lagoon system of Araruama, Brazil: An in-depth polyphasic study. Front. Microbiol. 2017, 8, 1233. [Google Scholar] [CrossRef] [PubMed]
- Perkerson, R.B., III; Johansen, J.R.; Kovacik, L.; Brand, J.; Kastovsky, J.; Casamatta, D.A. A unique pseudanabaenalean (Cyanobacteria) genus Nodosilinea gen. nov. based on morphological and molecular data. J. Phycol. 2011, 47, 1397–1412. [Google Scholar] [CrossRef]
- Dvorak, P.; Hasler, P.; Casamata, D.A.; Poulickova, A. Underestimated cyanobacterial diversity: Trends and perspectives of research in tropical environments. Fottea 2021, 21, 110–127. [Google Scholar] [CrossRef]
- Zimba, P.V.; Huang, I.-S.; Foley, J.E.; Linton, E.W. Identification of a new-to-science cyanobacterium, Toxifilum mysidocida gen. nov. & sp. nov. (Cyanobacteria, Cyanophyceae). J. Phycol. 2017, 53, 188–197. [Google Scholar]
- Berthold, D.E.; Lefler, F.W.; Laughinghouse IV, H.D. Untangling filamentous marine cyanobactereial diversity from the coast of South Florida with the description of Vermifilaceae fam. nov. and three new genera: Leptochromothrix gen. nov., Ophiophycus gen. nov. and Vermifilum gen. nov. Mol. Phylogenet. Evol. 2021, 160, 107010. [Google Scholar] [CrossRef]
- Suda, S.; Moriya, R.; Sumimoto, S.; Ohno, O. Genetic diversity of filamentous cyanobacteria from shore regions of Okinawa. J. Mar. Sci. Technol. 2013, 21, 175–180. [Google Scholar] [CrossRef]
- Ford, A.K.; Visser, P.M.; van Herk, M.J.; Jongepier, E.; Bonito, V. First insights into the impacts of benthic cyanobacterial mats on fish herbivory functions on a nearshore coral reef. Sci. Rep. 2021, 11, 7147. [Google Scholar] [CrossRef] [PubMed]
- Eugene, N.; Rottacker, E.C.; Kastovsky, J.; Byrum, T.; Choi, H.; Ellisman, M.H.; Komárek, J.; Gerwick, W.H. Moorea producens gen. nov., sp. nov. and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolites. Int. J. Syst. Evol. Microbiol. 2012, 62, 1171–11787. [Google Scholar] [CrossRef] [PubMed]
- Bukaveckas, P.A.; Franklin, R.; Tassone, S.; Trache, B.; Egerton, T. Cyanobacteria and cyanotoxins at the river-estuarine transition. Harmful Algae 2018, 76, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Tatters, A.O.; Howard, M.D.A.; Nagoda, C.; Fetscher, A.E.; Kudela, R.M.; Caron, D.A. Heterogeneity of toxin-producing cyanobacteria and cyanotoxins in coastal watersheds of Southern California. Estuaries Coasts 2019, 42, 958–975. [Google Scholar] [CrossRef]
- Lopes, V.R.; Vasconcelos, V.M. Planktonic and benthic cyanobacteria of European brackish waters: A perspective on estuaries and brackish seas. Eur. J. Phycol. 2011, 4, 292–304. [Google Scholar] [CrossRef]
- Strunecky, O.; Ivanova, A.P.; Mares, J. An updated classification of cyanobacterial orders and families based on phylogenomic and polyphasic analysis. J. Phycol. 2022, 59, 12–51. [Google Scholar] [CrossRef] [PubMed]
- Hauer, T.; Komárek, J. CyanoDB 2.0-On-Line Database of Cyanobacterial Genera; World-Wide Electronic Publication; University of South Bohemia & Institute of Botany AS CR: 2022. Available online: http://www.cyanocb.cz (accessed on 1 February 2024).
- Guiry, M.D.; Guiry, G.M. AlgaeBase; World-Wide Electronic Publication; National University of Ireland: Galway, Ireland, 2023; Available online: https://www.algaebase.org (accessed on 1 February 2024).
- Trung, B.; Vollebrecgt, M.E.; Lürling, M.E. Warming and salt intrusion affect microcystin production in tropical bloom-forming Microcystis. Toxins 2022, 14, 214. [Google Scholar] [CrossRef] [PubMed]
- Douma, M.; Manaut, N.; Oudra, B.; Loudiki, M. First report of cyanobacterial diversity and microcystins in a Microcystis strain from Sidi Boughaba, a Moroccan coastal lagoon. Afr. J. Aquat. Sci. 2016, 41, 445–452. [Google Scholar] [CrossRef]
- Radzi, R.; Muangmai, N.; Broady, P.; Wan Omar, W.M.; Convey, P.; Merican, F. Nodosilinea signensis sp. nov. (Leptolyngbyaceae, Synechoccoccales) a new terrestrial cyanobacterium isolated from mats collected on Signy Island, South Orkney Islands, Antarctica. PLoS ONE 2019, 14, e0224395. [Google Scholar] [CrossRef]
- Khomutovska, N.; Sandzewicz, M.; Lach, L.; Suska-Malawska, M.; Chmielewska, M.; Mazur-Marzec, H.; Ceglowska, M.; Niyatbekov, T.; Wood, S.A.; Puddick, J.; et al. Limited microcystin, anatoxin and cylindrospermopsin production by cyanobacteria from microbial mats in cold deserts. Toxins 2020, 12, 244. [Google Scholar] [CrossRef]
- Andreote AP, D.; Vaz MG, M.V.; Genuário, D.B.; Barbiero, L.; Rezende-Filho, A.T.; Fiore, M.F. Non heterocystous cyanobacteria from Brazilian saline-alkaline lakes. Eur. J. Phycol. 2014, 50, 675–684. [Google Scholar] [CrossRef]
- Regueiras, A.; Pereira, S.; Costa, M.S.; Vasconcelos, V.M. Differential toxicity of cyanobacteria isolated from marine sponges towards echinoderms and crustaceans. Toxins 2018, 10, 297. [Google Scholar] [CrossRef] [PubMed]
- Gkelis, S.; Panou, M.; Konstantinou, D.; Apostolidis, P.; Kasampali, A.; Papadimitriou, S.; Kati, D.; Di Lorenzo, G.M.; Ioakeim, S.; Zervou, S.-K.; et al. Diversity, cyanotoxin production and bioactivities of Cyanobacteria isolated from freshwaters of Greece. Toxins 2019, 11, 436. [Google Scholar] [CrossRef]
- Leao, P.N.; Ramos, V.; Gonçalvez, P.B.; Viana, F.; Lage, O.M.; Gerwick, W.H.; Vasconcelos, V.M. Chemoecological screening reveals high bioactivity in diverse culturable Portuguese marine Cyanobacteria. Marine Drugs 2013, 11, 1316–1335. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; García, M.; Costa-Rodríguez, J.; Costa, M.S.; Ribeiro, M.J.; Fernandes, M.H.; Barros, P.; Barreiro, A.; Vasconcelos, V.M.; Martins, R. Exploring bioactive properties of marine cyanobacteria isolated from the Portuguese coast: High potential as a source of anticancer compounds. Mar. Drugs 2014, 12, 98–114. [Google Scholar] [CrossRef]
- Aboal, M.; Puig, M.A. Intracellular and dissolved microcystins in reservoirs of the river Segura basin, Murcia, SE Spain. Toxicon 2005, 45, 509–518. [Google Scholar] [CrossRef]
- Mantzouki, E.; Lürling, M.; Fastner, J.; De Senerpont Domis, L.; Wilk-Woźniak, E.; Koreivienė, J.; Seelen, L.; Teurlincx, S.; Verstijnen, Y.; Krztoń, W.; et al. Temperature effects explain continental scale distribution of cyanobacterial toxins. Toxins 2018, 10, 156. [Google Scholar] [CrossRef]
- Onodera, H.; Satake, M.; Oshima, Y.; Yasumoto, T.; Carmichael, W.W. New saxitoxin analogues from the freshwater filamentous cyanobacterium Lyngbya wollei. Nat. Toxins 1997, 5, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Borges, H.L.F.; Branco, L.H.Z.; Martins, M.D.; Lima, C.S.; Barbosa, P.T.; Lira, G.A.S.T.; Bittencourt-Oliveira, M.C.; Molica, R.J.R. Cyanotoxin production and phylogeny of benthic cyanobacterial strains isolated from the northeast of Brazil. Harmful Algae 2015, 43, 46–57. [Google Scholar] [CrossRef]
- Belykh, O.I.; Tikhonova, I.V.; Kuzmin, A.V.; Sorokovikova, E.G.; Fedorova, G.A.; Khanaev, I.V.; Sherbakova, T.A.; Timoshin, O.A. First detection of benthic cyanobacteria in Lake Baikal producing paralytic shellfish toxins. Toxicon 2016, 121, 36–40. [Google Scholar] [CrossRef]
- Poirier-Larabie, S.; Hudon, C.; Poirier Ruchard, H.-P.; Gagnon, C. Cyanotoxin release from the benthic mat-forming cyanobacterium Microseira (Lyngbya) wollei in the St. Lawrence River, Canada. Environ. Sci. Poll. Res. 2020, 27, 30285–30294. [Google Scholar] [CrossRef] [PubMed]
- Wood, A.A.; Kelly, L.T.; Bouma-Gregson, K.; Humbert, J.-F.; Laughinghouse, D.D.; Lazorchak, J.; McAllister, T.; McQueen, A.; Pokrzywinski, K.; Puddick, J.; et al. Toxic benthic freshwater cyanobacterial proliferations: Challenges and solutions for enhancing knowledge and improving monitoring and mitigation. Freshw. Biol. 2020, 65, 1824–1842. [Google Scholar] [CrossRef] [PubMed]
- Zupancic, M.; Kogovsek, P.; Ster, T.; Rekar, S.R.; Cerasino, L.; Baebler, S.; Klemencic, A.K.; Elersek, T. Potentially toxic planktic and benthic cyanobacteria in Slovenian freshwater bodies: Detection by quantitative PCR. Toxins 2021, 13, 133. [Google Scholar] [CrossRef] [PubMed]
- WHO. Cyanobacterial Toxins: Saxitoxins; Background document for development of WHO Guidelines for Drinking-water Quality and Guidelines for Drinking-water Quality and Guidelines for Safe Recreational Water Environments, (WHO/HEP/ECH/WSH/2020.8); World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Zammit, G.; Schembri, S.; Fenech, M. Phototrophic biofilms and microbial mats from the marine littoral of central Mediterranean. Acta Bot. Croat. 2021, 80, 112–116. [Google Scholar] [CrossRef]
- Caicedo, N.H.; Heyduck-Söller, B.; Fischer, U.; Thöming, J. Bioproduction of antimicrobial compounds by using marine filamentous cyanobacterium cultivation. J. Appl. Phycol. 2011, 23, 811–818. [Google Scholar] [CrossRef]
- Leao, P.N.; Costa, M.R.; Domingues, V.F.; Gerwick, W.H.; Vasconcelos, V.M.; Martins, R. Antitumor Activity of Hierridin B, a Cyanobacterial Secondary Metabolite Found in both Filamentous and Unicellular Marine Strains. PLoS ONE 2013, 8, e69562. [Google Scholar] [CrossRef] [PubMed]
- Flores-Holguin, N.; Salas-Leiva, J.S.; Núñez-Vázquez, E.J.; Tovar-Ramírez, D.; Glossman-Mitnik, D. Marine Toxins and Pharmaceutical Treasure Troves: A Focus on Saxitoxin Derivatives from a Computational Point of View. Molecules 2024, 29, 275. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Rogel, J.; Barberá, G.G.; Maxwell, B.; Guerrero-Brotons, M.; Díaz-García, C.; Martínez-Sánchez, J.J.; Sallent, A.; Martínez-Ródenas, J.; González-Alcaraz, M.N.; Jiménez-Cárceles, F.J.; et al. The case of Mar Menor eutrophication: State of the art and description of tested Nature-Based Solutions. Ecol. Eng. 2020, 158, 106086. [Google Scholar] [CrossRef]
- Guillard, R.R.L.; Ryther, J.H. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervaceae (Cleve) Gran. Can. J. Microbiol. 1962, 8, 229–239. [Google Scholar] [CrossRef]
- Komárek, J.; Anagnostidis, K. Süsswasserflora von Mitteleuropa, Bd. 19/2: Cyanoprokaryota Bd.2/Part 2: Oscillatoriales; Spektrum Akademischer Verlag: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar] [CrossRef]
- Nübel, U.; García-Pichel, F.; Muyzer, G. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 1997, 66, 3327–3332. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/Nt. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef]
- Huelsenbeck, J.P.; Ronquist, F. Mr Bayes: Bayesian inference of phylogeny. Bioinformatics 2001, 17, 754–755. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Hulsenbeck, J.P. MrBayes 3: Bayesian Phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Lefler, F.W.; Berthold, D.E.; Laughinghouse, H., IV. Cyanoseq: A database of cyanobacterial 16S rRNA gene sequences with curated taxonomy. J. Phycol. 2023, 59, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Huelsenbeck, J.P.; Larget, B.; Alfaro, M.E. Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo. Mol. Biol. Evol. 2004, 21, 1123–1133. [Google Scholar] [CrossRef] [PubMed]
- Stover, B.C.; Müller, K.F. TreeGraph 2: Combining and visualizing evidence from different phylogenetic analyses. BMC Bioinform. 2010, 5, 117. [Google Scholar] [CrossRef] [PubMed]
- Lürling, M.; Faassen, E.J. Dog Poisoning Associated with a Microcystis aeruginosa bloom in the Netherlands. Toxins 2013, 5, 556–567. [Google Scholar] [CrossRef]
- Faassen, E.J.; Lürling, M. Occurrence of the microcystins MC-LW and MC-LF in Dutch surface waters and their contribution to total microcystin toxicity. Mar. Drugs 2013, 11, 2643–2654. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhou, L.; Tan, Y.; Shi, X.; Zhao, Z.; Nie, D.; Zhou, C.; Liu, H. Development and validation of a Liquid Chromatography-Tandem Mass Spectrometry Method Coupled with Dispersive Solid-Phase Extraction for simultaneous quantification of eight paralytic shellfish poisoning toxins in shellfish. Toxins 2017, 9, 206. [Google Scholar] [CrossRef] [PubMed]
Strain | MC-YR μg/g | MC-LF μg/g | MC-LW μg/g | MC-LY μg/g | [D-Asp3] MC-LR μg/g | STX μg/g |
---|---|---|---|---|---|---|
Synechococcus 2004 | 0.56 | <LoQ | - | <LoQ | <LoQ | - |
Toxifilum 2032 | 22.22 | - | <LoQ | - | - | 29.63 |
Nodosilinea 2035 | 6.63 | - | - | - | - | - |
Nodosilinea 2040 | 3.68 | - | - | - | - | - |
Geitlerinema 2042 | 6.06 | - | - | - | - | - |
Nodosilinea 2060 | 3.43 | - | - | - | - | - |
Pseudanabaena 2122 | 11.44 | - | - | - | - | 21.45 |
Phormidium 2058 | 1.20 | - | - | - | - | - |
Sampling Point | Localities | Habitat | Depth (cm) | Conductivity mS/cm | NO3 mg/L | PO4 mg/L |
---|---|---|---|---|---|---|
1 | Breakwater Punta Brava, Los Urrutias | Epiphyte Cymodocea | 20 | 30–48.2 | 65.8–68.3 | 1.2–2.2 |
2 | Mouth Rambla Albujón, Los Narejos | Epipelic | 5 | 35–62 | 87.1–103.2 | <0.01–12.8 |
3 | Mouth Rambla Miranda, El Carmolí | Epipelic | 5 | 28–40 | 68.9–74.2 | 1.6–3.4 |
4 | Mouth Rambla del Miedo, Los Urrutias | Epipelic | 8 | 30–75 | 68.8–86.1 | <0.01–1.1 |
5 | Mouth Rambla Fangal, Cartagena Port | Epipelic | 10 | 56–57 | 28.6–49.9 | <0.01 |
6 | Rambla de Benipila, Algameca Chica | Epipelic | 10 | 56–57 | 21.4–64.2 | <0.01 |
7 | Molino Derribado, San Pedro del Pinatar | Epiphyte Cymodocea | 25 | 25–49.5 | 48.9–76.5 | 0.8–1.9 |
8 | Villananitos, San Pedro del Pinatar | Epiphyte Cymodocea | 20 | 25–49.5 | 60.1–61.3 | 0.6–2.2 |
Compound | Formula | m/z | MS/MS | RT (min) | LoD (μg/mL) | LoQ (μg/mL) | Linear Range (μg/mL) |
---|---|---|---|---|---|---|---|
ATX-a | C10H15NO | 166.1241 | 130.0498 | 0.66 | 0.001 | 0.004 | 0.001–1 |
STX | C10H17N7O4 | 300.1415 | 204.0882 | 0.42 | 0.0001 | 0.0005 | 0.0001–0.25 |
MC-RR | C49H75N13O12 | 519.7902 (+2) | 213.0875 | 1.25 | 0.001 | 0.005 | 0.001–2.5 |
NOD | C41H60N8O10 | 825.451 | 135.0805 | 2.46 | 0.001 | 0.003 | 0.001–5 |
[D-Asp3] MC-LR | C48H72N10O12 | 981.5404 | 135.0805 | 3.31 | 0.0001 | 0.0005 | 0.0001–0.5 |
MC-LF | C52H71N7O12 | 986.5233 | 164.9845 | 4.89 | 0.001 | 0.004 | 0.001–0.75 |
MC-LR | C49H74N10O12 | 995.5567 | 599.3553 | 3,33 | 0.0005 | 0.002 | 0.0005–1 |
MC-LY | C52H71N7O13 | 1002.5183 | 213.0875 | 4.44 | 0.001 | 0.005 | 0.001–5 |
MC-LW | C54H72N8O12 | 1025.532 | 517.2761 | 4.78 | 0.001 | 0.005 | 0.001–5 |
MC-YR | C52H72N10O13 | 1045.5316 | 135.0804 | 3.18 | 0.001 | 0.004 | 0.001–5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Leyva, Y.; Torrecillas, A.; Aboal, M. Cyanotoxins in Epipelic and Epiphytic Cyanobacteria from a Hypersaline Coastal Lagoon, an Environmental Hazard in Climate Warming Times and a Potential Source of New Compounds. Mar. Drugs 2024, 22, 334. https://doi.org/10.3390/md22080334
Gómez-Leyva Y, Torrecillas A, Aboal M. Cyanotoxins in Epipelic and Epiphytic Cyanobacteria from a Hypersaline Coastal Lagoon, an Environmental Hazard in Climate Warming Times and a Potential Source of New Compounds. Marine Drugs. 2024; 22(8):334. https://doi.org/10.3390/md22080334
Chicago/Turabian StyleGómez-Leyva, Yerai, Alejandro Torrecillas, and Marina Aboal. 2024. "Cyanotoxins in Epipelic and Epiphytic Cyanobacteria from a Hypersaline Coastal Lagoon, an Environmental Hazard in Climate Warming Times and a Potential Source of New Compounds" Marine Drugs 22, no. 8: 334. https://doi.org/10.3390/md22080334
APA StyleGómez-Leyva, Y., Torrecillas, A., & Aboal, M. (2024). Cyanotoxins in Epipelic and Epiphytic Cyanobacteria from a Hypersaline Coastal Lagoon, an Environmental Hazard in Climate Warming Times and a Potential Source of New Compounds. Marine Drugs, 22(8), 334. https://doi.org/10.3390/md22080334