Research and Application of Marine Microbial Enzymes: Status and Prospects
Abstract
:1. Protease
2. Lipase
3. Polysaccharide-Degrading Enzymes
3.1. Chitinase and chitosanase
3.2. Alginate lyases
3.3. Agarases
3.4. Carrageenases
3.5. Cellulose and hemicellulose hydrolase
3.6. Other polysaccharide hydrolases
4. Extremozymes
5. Prospects
Acknowledgements
Reference
- Niehaus, F; Bertoldo, C; Kähler, M; Antranikian, G. Extremophiles as a source of novel enzymes for industrial application. Appl. Microbiol. Biotechnol 1999, 51, 711–729. [Google Scholar]
- Annison, G. Commercial enzyme supplementation of wheatbased diets raises ilegal glycanaseactivitites and improves apparent metabolisable energy starch and pentosan digestibilities in broiler chockens. Anim. Feed Sci. Technol 1992, 38, 105–121. [Google Scholar]
- Bragger, JM; Daniel, RM; Coolbear, T; Morgan, HW. Very stable enzyme from extremely thermophilic archaeabacteria and eubacteria. Appl. Microbiol. Biotechnol 1989, 31, 556–561. [Google Scholar]
- Kin, SL. Discovery of novel metabolites from marine actinomycetes. Curr. Opin. Microbiol 2006, 9, 245–251. [Google Scholar]
- Bull, AT; Ward, AC; Goodfellow, M. Search and discovery strategies for biotechnology: The paradigm shift. Microbiol. Mol. Biol. Rev 2000, 64, 573–606. [Google Scholar]
- Stach, JEM; Maldonado, LA; Ward, AC; Goodfellow, M; Bull, AT. New primers for the class Actinobacteria: application to marine and terrestrial environments. Environ. Microbiol 2003, 5, 828–841. [Google Scholar]
- Bernan, VS; Greenstein, M; Maiese, WM. Marine micro-organisms as a source of new natural products. Adv. Appl. Microbiol 1997, 43, 57–89. [Google Scholar]
- Burkholder, PR; Pfister, RM; Leitz, FP. Production of a pyrrole antibiotic by a marine bacterium. Appl. Microbiol 1966, 14, 649–653. [Google Scholar]
- David, W; Michel, J. Extremozymes. Curr. Opin. Chem. Biol 1999, 3, 39–46. [Google Scholar]
- Harmsen, HJM; Prieur, D; Jeanthon, C. Distribution of microorganisms in deep sea hydrothermal vent chimneys investigated by whole-cell hybridization and enrichment culture of thermophilic subpopulations. Appl. Environ. Microbiol 1997, 63, 2876–2883. [Google Scholar]
- Ghosh, D; Saha, M; Sana, B; Mukherjee, J. Marine Enzymes. Adv. Biochem. Eng. Biot 2005, 96, 189–218. [Google Scholar]
- Haefner, B. Drugs from the deep: marine natural products as drug candidates. Drug Discov. Today 2003, 8, 536–544. [Google Scholar]
- Kumar, C; Joo, HS; Koo, YM; Paik, S; Chang, CS. Thermostable Alkaline Protease from a Novel Marine Haloalkalophilic Bacillus Clausii Isolate. World J. Microbiol. Biotechnol 2004, 20, 351–357. [Google Scholar]
- Ilona, K; Zdzislaw, ES. Neutral and alkaline muscle proteases of marine fish and invertebrates a review. J. Food Biochem 2007, 20, 349–364. [Google Scholar]
- Zhang, LX; An, R; Wang, JP; Sun, N; Zhang, S; Hu, JC; Kuai, J. Exploring novel bioactive compounds from marine microbes. Curr. Opin. Microbiol 2005, 8, 276–281. [Google Scholar]
- Guerard, F; Guimas, L; Binet, A. Production of tuna waste hydrolysates by a commercial neutral protease preparation. J. Mol. Catal. B -Enzym 2002, 19, 489–498. [Google Scholar]
- Franz, S; Rosa, M; Thomas, P. Extracellular Protease-Producing Psychrotrophic Bacteria from High Alpine Habitats. Arct. Antarct. Alp. Res 1992, 24, 88–92. [Google Scholar]
- Rajesh, P; Mital, D; Satya, PS. Extracellular alkaline protease from a newly isolated haloalkaliphilic Bacillus sp.: Production and optimization. Process Biochem 2005, 40, 3569–3575. [Google Scholar]
- Greene, RV; Grifin, HL; Cotta1, MA. Utility of alkaline protease from marine shipworm bacterium in industrial cleansing applications. Biotechnol. Lett 1996, 18, 759–764. [Google Scholar]
- Graham, CR; David, RW; Frank, TR. Peptone Induction and Rifampin-Insensitive Collagenase Production by Vibrio alginolyticus. J. Bacteriol 1980, 142, 447–454. [Google Scholar]
- Chi, ZM; Ma, C; Wang, P; Li, HF. Optimization of medium and cultivation conditions for alkaline protease production by the marine yeast Aureobasidium pullulans. Bioresour. Technol 2007, 98, 534–538. [Google Scholar]
- Haddar, A; Agrebi, R; Bougatef, A; Hmidet, N; Sellami-Kamoun, A; Nasri, M. Two detergent stable alkaline serine-proteases from Bacillus mojavensis A21: Purification, characterization and potential application as a laundry detergent additive. Bioresour. Technol 2009, 100, 3366–3373. [Google Scholar]
- Babu, J; Pramod, WR; George, T. Cold active microbial lipases: Some hot issues and recent developments. Biotechnol. Adv 2008, 26, 457–470. [Google Scholar]
- Kobayashi, T; Koide, O; Mori, K; Shimamura, S; Matsuura, T; Miura, T; Takaki, Y; Morono, Y; Nunoura, T; Imachi, H; Inagaki, F; Takai, K; Horikoshi, K. Phylogenetic and enzymatic diversity of deep subseafloor aerobic microorganisms in organics- and methane-rich sediments off Shimokita Peninsula. Extremophiles 2008, 12, 519–527. [Google Scholar]
- Seiichi, A; Akihiko, Y; Mutsuo, H. Occurrence of Marine Bacterial Lipase Hydrolyzing Fish Oil. Agric. Biol. Chem 1991, 55, 2657–2659. [Google Scholar]
- Chi, Z; Chi, Z; Zhang, T; Liu, G; Li, J; Wang, X. Production, characterization and gene cloning of the extracellular enzymes from the marine-derived yeasts and their potential applications. Biotechnol. Adv 2009, 27, 236–255. [Google Scholar]
- Davidson, MH. Mechanisms for the hypotriglyceridemic effect of marine omega-3 fatty acids. Am. J. Cardiol 2006, 98, 27–33. [Google Scholar]
- Amare, G; Thomas, D; Steffen, BP; Per, HN. Lipase and protease extraction from activated sludge. Water Res 2003, 37, 3652–3657. [Google Scholar]
- Pierre, V; Jean, MM; Jean, G; Michael, JH. Customizing lipases for biocatalysis: a survey of chemical, physical and molecular biological approaches. J. Mol. Catal. B-Enzym 2000, 9, 113–148. [Google Scholar]
- Kojima, Y; Shimizu, S. Purification and characterization of the lipase from Pseudomonas fluorescens HU380. J. Biosci. Bioeng 2003, 96, 219–226. [Google Scholar]
- Seitz, EW. Industrial application of microbial lipases: a review. J. Am. Oil Chem. Soc 1974, 51, 12–16. [Google Scholar]
- David, K. Lipase Production by Penicillium Oxalicum and Aspergillus flavus. Bot. Gaz 1935, 97, 321. [Google Scholar]
- Feller, G; Thiry, M; Arpigy, JL; Mergeay, M; Gerday, C. Lipases from psychrotrophic antarctic bacteria. FEMS Microbiol. Lett 1990, 66, 239–244. [Google Scholar]
- Wang, L; Chi, ZM; Wang, XH; Liu, ZQ; Li, J. Diversity of lipase-producing yeasts from marine environments and oil hydrolysis by their crude enzymes. Ann. Microbiol 2007, 57, 495–501. [Google Scholar]
- Mo, SJ; Kim, JH; Cho, KW. Enzymatic Properties of an Extracellular Phospholipase C Purified from a Marine Streptomycete. Biosci. Biotechnol. Biochem 2009, 73, 2136–2137. [Google Scholar]
- Marguerite, R. Chitin and chitosan: Properties and applications. Prog. Polym. Sci 2006, 31, 603–632. [Google Scholar]
- Ravi Kumar, MN. A review of chitin and chitosan applications. React. Funct. Polym 2000, 46, 1–27. [Google Scholar]
- Ngo, DN; Kim, MM; Kim, SK. Chitin oligosaccharides inhibit oxidative stress in live cells. Carbohydr. Polym 2008, 74, 228–234. [Google Scholar]
- Je, JY; Kim, SK. Antioxidant activity of novel chitin derivative. Bioorg. Med. Chem. Lett 2006, 16, 1884–1887. [Google Scholar]
- Je, JY; Kim, SK. Antimicrobial action of novel chitin derivative. Biochim. Biophys. Acta-Gen. Subj 2006, 1760, 104–109. [Google Scholar]
- Ngo, DN; Qian, ZJ; Je, JY; Kim, MM; Kim, SK. Aminoethyl chitooligosaccharides inhibit the activity of angiotensin converting enzyme. Process Biochem 2008, 43, 119–123. [Google Scholar]
- Jeuniaux, C; Voss-Foucart, MF. Chitin biomass and production in the marine environment. Biochem. Syst. Ecol 1991, 19, 347–356. [Google Scholar]
- Fukamizo, T. Chitinolytic enzymes: catalysis, substrate binding, and their application. Curr. Protein Pept. Sci 2000, 1, 105–124. [Google Scholar]
- Monzingo, AF; Marcotte, EM; Hart, PJ; Robertus, JD. Chitinases, chitosanases, and lysozymes can be divided into procaryotic and eucaryotic families sharing a conserved core. Nat. Struct. Biol 1996, 3, 133–140. [Google Scholar]
- Xia, W; Liu, P; Liu, J. Advance in chitosan hydrolysis by non-specific cellulases. Bioresour. Technol 2008, 15, 6751–6762. [Google Scholar]
- Osama, R; Koga, T. An investigation of aquatic bacteria capable of utilizing chitin as the sole source of nutrients. Lett. Appl. Microbiol 1995, 21, 288–291. [Google Scholar]
- Suolow, TV; Jones, J. Chitinase-producing bacteria. US Patent 4751081, 1988. [Google Scholar]
- Roberts, RL; Cabib, E. Serratia marcescens chitinase: one-step purification and use for the determination of chitin. Anal. Biochem 1982, 127, 402–412. [Google Scholar]
- Wong, TY; Preston, LA; Schiller, NL. Alginate lyase: review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Ann. Rev. Microbiol 2000, 54, 289–340. [Google Scholar]
- Xiao, L; Han, F; Yang, Z; Lu, XZ; Yu, WG. A novel alginate lyase with high activity on acetylated alginate of Pseudomonas aeruginosa FRD1 from Pseudomonas sp. QD03. World J. Microbiol. Biotechnol 2006, 22, 81–88. [Google Scholar]
- Alkawash, MA; Soothill, JS; Schiller, NL. Alginate lyase enhances antibiotic killing of mucoid Pseudomonas aeruginosa in biofilms. APMIS 2006, 114, 131–138. [Google Scholar]
- Gacesa, P. Alginates. Carbohydr. Polym 1988, 8, 161–182. [Google Scholar]
- Gacesa, P. Enzymic degradation of alginates. Int. J. Biochem 1992, 24, 545–552. [Google Scholar]
- Rasmussen, RS; Morrissey, MT. Marine biotechnology for production of food ingredients. Adv. Food Nutr. Res 2007, 52, 237–292. [Google Scholar]
- John, NCW; John, RE. The agar component of the red seaweed Gelidium purpurascens. Phytochemistry 1981, 20, 237–240. [Google Scholar]
- Oren, A. Prokaryote diversity and taxonomy: current status and future challenges. Philos. Trans. R. Soc. B-Biol. Sci 2004, 359, 623–638. [Google Scholar]
- Yaphe, W; Duckworth, M. The relationship between structures and biological properties of agars. Proceedings of the 7th International Seaweed Symposium, New York, USA, 1972; pp. 15–22.
- Parro, V; Mellado, RP. Effect of glucose on agarase overproduction in Streptomyces. Gene 1994, 145, 49–55. [Google Scholar]
- Aoki, T; Araki, T; Kitamikado, M. Purification and characterization of a novel β-agarase from Vibrio sp. AP-2. Eur. J. Biochem 1990, 187, 461–465. [Google Scholar]
- Leon, O; Quintana, L; Peruzzo, G; Slebe, JC. Purification and Properties of an Extracellular Agarase from Alteromonas sp. Strain C-1. Appl. Environ. Microbiol 1992, 58, 4060–4063. [Google Scholar]
- Hosoda, A; Sakai, M; Kanazawa, S. Isolation and Characterization of Agar-degrading Paenibacillus spp. Associated with the Rhizosphere of Spinach. Biosci. Biotechnol. Biochem 2003, 67, 1048–1055. [Google Scholar]
- Sugano, Y; Terada, I; Arita, M; Noma, M. Purification and characterization of a new agarase from a marine bacterium, Vibrio sp. strain JT0107. Appl. Environ. Microbiol 1993, 59, 1549–1554. [Google Scholar]
- Buttner, MJ; Fearnleiy, IM; Bibb, MJ. The agarase gene (dagA) of Streptomyces coelicolor A3(2): nucleotide sequence and transcriptional analysis. Mol. Genet. Genomics 1987, 209, 101–109. [Google Scholar]
- Belas, R. Sequence analysis of the agrA gene encoding beta-agarase from Pseudomonas atlantica. J. Bacteriol 1989, 171, 602–605. [Google Scholar]
- Sugano, Y; Matsumoto, T; Kodama, H; Noma, M. Cloning and sequencing of agaA, a unique agarase 0107 gene from a marine bacterium, Vibrio sp. strain JT0107. Appl. Environ. Microbiol 1993, 59, 3750–3756. [Google Scholar]
- Sugano, Y; Matsumoto, T; Noma, M. Sequence analysis of the agaB gene encoding a new β-agarase from Vibrio sp. strain JT0107. Biochim. Biophys. Acta 1994, 1218, 105–108. [Google Scholar]
- Suzuki, H; Sawai, Y; Suzuki, T; Kawai, K. Purification and characterization of an extracellular β-agarase from Bacillus sp. MK03. J. Biosci. Bioeng 2003, 95, 328–334. [Google Scholar]
- Parro, V; Mellado, RP; Harwood, CR. Effects of phosphate limitation on agarase production by Streptomyces lividans TK21. FEMS Microbiol. Lett 1998, 158, 107–113. [Google Scholar]
- Sarwar, G; Matoyoshi, S; Oda, H. Purification of a α-carrageenan from marine Cytophaga species. Microbiol. Immunol 1987, 31, 869–877. [Google Scholar]
- Roberts, JN; Christopher, BB; Cynthia, DT; Rhonda, K; Marcelino, B; Peter, LC; Douglas, RL; John, TS. Genital transmission of HPV in a mouse model is potentiated by nonoxynol-9 and inhibited by carrageenan. Nat. Med 2007, 13, 857–861. [Google Scholar]
- Renner, MJ; Breznak, JA. Purification and properties of ArfI, an α-l-arabinofuranosidase from Cytophaga xylanolytica. Appl. Environ. Microb 1998, 64, 43–52. [Google Scholar]
- Ohta, Y; Hatada, Y. A novel enzyme, lambda-carrageenase, isolated from a deep-sea bacterium. J Biochem 2006, 140, 475–481. [Google Scholar]
- Updegraff, DM. Semimicro determination of cellulose in biological materials. Anal. Biochem 1969, 32, 420–424. [Google Scholar]
- Nishiyama, Y; Langan, P; Chanzy, H. Crystal Structure and Hydrogen-Bonding System in Cellulose Iβ from Synchrotron X-ray and Neutron Fiber Diffraction. J. Am. Chem. Soc 2002, 124, 9074–9082. [Google Scholar]
- Klemm, D; Heublein, B; Fink, HP; Bohn, A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem. Int. Ed. Engl 2005, 22, 3358–3393. [Google Scholar]
- Brás, NF; Cerqueira, NMFSA; Fernandes, PA; Ramos, MJ. Carbohydrate Binding Modules from family 11: Understanding the binding mode of polysaccharides. Int. J. Quantum Chem 2008, 108, 2030–2040. [Google Scholar]
- Tong, CC; Cole, AL; Shepherd, MG. Purification and properties of the cellulases from the thermophilic fungus Thermoascus aurantiacus. Biochem. J 1980, 191, 83–94. [Google Scholar]
- Maki, M; Leung, KT; Qin, W. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int. J. Biol. Sci 2009, 5, 500–516. [Google Scholar]
- Doi, RH. Cellulases of mesophilic microorganisms: cellulosome and noncellulosome producers. Ann. N. Y. Acad. Sci 2008, 1125, 267–279. [Google Scholar]
- Raghukumar, C; Muraleedharan, U; Gaud, VR; Mishra, R. Xylanases of marine fungi of potential use for biobleaching of paper pulp. J. Ind. Microbiol. Biotechnol 2004, 31, 433–441. [Google Scholar]
- Yin, LJ; Lin, HH; Chiang, YI; Jiang, ST. Bioproperties and purification of xylanase from Bacillus sp. YJ6. J. Agric. Food Chem 2010, 58, 557–562. [Google Scholar]
- Hou, YH; Wang, TH; Long, H; Zhu, HY. Novel cold-adaptive Penicillium strain FS010 secreting thermo-labile xylanase isolated from Yellow Sea. Acta Biochim. Biophys. Sin 2006, 38, 142–149. [Google Scholar]
- Gupta, R; Gigras, P; Mohapatra, H; Goswami, VK; Chauhan, B. Microbial α-amylases: a biotechnological perspective. Process Biochem 2003, 38, 1599–1616. [Google Scholar]
- Li, HF; Chi, ZM; Wang, XH; Ma, CL. Amylase production by the marine yeast Aureobasidium pullulans N13d. J. Ocean Univ. Chin 2007, 6, 61–66. [Google Scholar]
- Chakraborty, S; Khopade, A; Kokare, C; Mahadik, K; Chopade, B. Isolation and characterization of novel α-amylase from marine Streptomyces sp. D1. J. Mol. Catal. B-Enzym 2009, 58, 17–23. [Google Scholar]
- Mohapatra, BR; Banerjee, UC; Bapuji, M. Characterization of a fungal amylase from Mucor sp. associated with the marine sponge Spirastrella sp. J. Biotechnol 1998, 60, 113–117. [Google Scholar]
- Furukawa, SI; Fujikawa, T; Koga, D. Purification and some properties of exo-type fucoidanases from vibrio sp. N-5. Biosci. Biotech. Biochem 1992, 56, 1829–1834. [Google Scholar]
- Yaphe, W; Morgan, K. Enzymic hydrolysis of fucoidin by Pseudomonas atlantica and Pseudomonas carrageenovora. Nature 1959, 183, 761–762. [Google Scholar]
- Yahata, N; Watanabe, T; Nakamura, Y; Yamamoto, Y; Kamimiya, S; Tanaka, H. Structure of the gene encoding beta-1,3-glucanase A1 of Bacillus circulans WL-12. Gene 1990, 86, 113–117. [Google Scholar]
- Amki, T. β-mannanse of bacteria isolated from natural habitats. Bull. Jpn. Soc. Sci. Fish 1981, 47, 753–760. [Google Scholar]
- Danson, MJ; Hough, DW. Structure, function and stability of enzymes from the Archaea. Trends Microbiol 1998, 6, 307–314. [Google Scholar]
- Fusek, M; Lin, XL; Tang, J. Enzymic properties of thermopsin. J. Biol. Chem 1990, 265, 1496–1501. [Google Scholar]
- Kuchner, O; Arnold, FH. Directed evolution of enzyme catalysts. Trends Biotechnol 1997, 15, 523–530. [Google Scholar]
- Niehaus, F; Bertoldo, C; Kahler, G; Antranikian, M. Extremophiles as a source of novel enzymes for industrial application. Appl. Microbiol. Biotechnol 1999, 51, 711–729. [Google Scholar]
- Kano, H; Taguchi, S; Momose, H. Cold adaptation of a mesophilic serine protease, subtilisin, by in vitro random mutagenesis. Appl. Microbiol. Biotechnol 1997, 47, 46–51. [Google Scholar]
- Feller, G; Payan, F; Theys, M. Stability and structural analysis of α-amylase from the antarctic psychrphile Alteromonas haloplanctis A23. Eur. J. Biochem 1994, 222, 441–447. [Google Scholar]
- Kolenc, RJ; Inniss, WE; GIick, BR. Tranfer and expression of mesophilic plamlid-mediated degradative capacity in a psychrotrophic bacterium. Appl. Environ. Microbiol 1988, 54, 638–641. [Google Scholar]
- Huber, R; Langworthy, TA; Konig, H; Thomm, M; Woese, CR; Sleytr, UB; Stetter, KO. Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 ºC. Arch. Microbiol 1986, 144, 324–333. [Google Scholar]
- Cowan, DA; Smolenski, KA; Daniel, RM; Morgan, HW. An extremely thermostable extracellular proteinase from a strain of the archaebacterium Desulfurococcus growing at 88 ºC. Biochem. J 1987, 247, 121–133. [Google Scholar]
- Song, Q; Zhang, XB. Characterization of a novel non-specific nuclease from thermophilic bacteriophage GBSV1. BMC Biotechnol 2008, 8, 43. [Google Scholar]
- Ito, S; Kobayashi, T; Ara, K; Ozaki, K; Kawai, S; Hatada, Y. Alkaline detergent enzymes from alkaliphiles: enzymatic properties, genetics and structures. Extremophiles 1998, 2, 185–190. [Google Scholar]
- Michael, WWA; Francine, BP; Robert, MK. Extremozymes: Expanding the Limits of Biocatalysis. Nat. Biotechnol 1995, 13, 662–668. [Google Scholar]
- David, WH; Michael, JD. Extremozymes. Curr. Opin. Chem. Biol 1999, 3, 39–46. [Google Scholar]
- Underkofler, LA; Barton, RR; Rennert, SS. Production of Microbial Enzymes and Their Applications. Appl. Microbiol 1958, 6, 212–221. [Google Scholar]
Type | Living Environment | Genus |
---|---|---|
Psychrophilies | − 2~20 ºC | Alteromonas, Algoriphagus, Psychrobacter |
Thermophilies | 55~113 ºC | Aquifex, Archaeoglobus, Bacillus, Hydrogenobacter, Methanococcus, Pyrococcus, Pyrodictium, Pyrolobus, Sulfolobus, Themococcus, Thermoproteus, Thermoplasma, Thermus, Thermotoga |
Acidophilies | pH < 4 | Acidianus, Desulfurolobus, Sulfolobus, Thiobacillus |
Alkaliphilies | pH > 9 | Natronobacterium, Natronococcus, Bacillus |
Halophilies | 2~5 M NaCl | Haloarcula, Halobacterium, Haloferax, Halorubrum |
© 2008 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zhang, C.; Kim, S.-K. Research and Application of Marine Microbial Enzymes: Status and Prospects. Mar. Drugs 2010, 8, 1920-1934. https://doi.org/10.3390/md8061920
Zhang C, Kim S-K. Research and Application of Marine Microbial Enzymes: Status and Prospects. Marine Drugs. 2010; 8(6):1920-1934. https://doi.org/10.3390/md8061920
Chicago/Turabian StyleZhang, Chen, and Se-Kwon Kim. 2010. "Research and Application of Marine Microbial Enzymes: Status and Prospects" Marine Drugs 8, no. 6: 1920-1934. https://doi.org/10.3390/md8061920
APA StyleZhang, C., & Kim, S.-K. (2010). Research and Application of Marine Microbial Enzymes: Status and Prospects. Marine Drugs, 8(6), 1920-1934. https://doi.org/10.3390/md8061920