Associations of Job Stress Indicators with Oxidative Biomarkers in Japanese Men and Women
Abstract
:1. Introduction
2. Methods
2.1. Subjects
2.2. Parameters
2.2.1. Job Stress Evaluated Using the Demands-Control-Support Model
2.2.2. Job Stress Evaluated Using the Effort-Reward Imbalance Model
2.2.3. Urinary H2O2 and 8-OHdG
2.2.4. Covariates
2.3. Statistical Analysis
3. Results
4. Discussion
Characteristic | Men (n = 272) | Women (n = 295) | p a | ||||
---|---|---|---|---|---|---|---|
Mean | SD | Range | Mean | SD | Range | ||
Age (years) | 43.5 | 10.0 | 20.0–67.7 | 40.3 | 10.6 | 18.6–65.4 | <0.001 |
BMI (kg/m2) | 23.7 | 3.5 | 16.1–37.2 | 21.7 | 3.6 | 14.5–39.7 | <0.001 |
Total vegetable intake (g/day) | 124.8 | 80.2 | 0–645 | 144.4 | 93.2 | 4–557 | 0.007 |
Urinary H2O2 (μmol/g creatinine) | 5.54 | 6.83 | 0.01–51.38 | 6.32 | 11.13 | 0.01–101.45 | 0.309 |
Urinary 8-OHdG (μg/g creatinine) | 8.86 | 3.36 | 2.13–21.87 | 9.25 | 4.03 | 0.05–25.56 | 0.216 |
Job Content Questionnaire | |||||||
Job demands | 32.1 | 5.5 | 12–48 | 32.4 | 5.6 | 12–48 | 0.455 |
Job control | 65.7 | 10.4 | 24–90 | 62.2 | 10.8 | 24–90 | <0.001 |
Worksite social support | 22.3 | 3.2 | 12–32 | 21.7 | 4.0 | 8–32 | 0.044 |
Job strain index b | 0.50 | 0.10 | 0.24–0.95 | 0.54 | 0.15 | 0.21–1.42 | <0.001 |
Effort-Reward Imbalance Questionnaire | |||||||
Extrinsic effort | 13.3 | 4.2 | 6–29 | 13.5 | 4.7 | 6–28 | 0.660 |
Reward | 44.3 | 6.8 | 21–55 | 42.2 | 8.2 | 13–55 | 0.001 |
Effort-reward ratio | 0.58 | 0.28 | 0.22–2.10 | 0.64 | 0.37 | 0.20–2.44 | 0.029 |
n | % | n | % | ||||
Cigarette smoking | <0.001 | ||||||
Moderate smoker c | 85 | 31.3 | 40 | 13.6 | |||
Heavy smoker d | 80 | 29.4 | 6 | 2.0 | |||
Alcohol consumption | <0.001 | ||||||
Once per week or less, but not none | 64 | 23.5 | 127 | 43.1 | |||
More than once per week | 142 | 52.2 | 50 | 16.9 | |||
Exercising once per week or more | 104 | 38.2 | 61 | 20.7 | <0.001 |
Factor | Men | Women | |||||||
---|---|---|---|---|---|---|---|---|---|
Univariate Model | Adjusted Model a | Univariate Model | Adjusted Model a | ||||||
Odds ratio for high b urinary H2O2 (95% confidence interval) | |||||||||
Job Content Questionnaire | |||||||||
Job strain index c | 0.96 | (0.77, 1.33) | 1.07 | (0.80, 1.43) | 0.97 | (0.74, 1.27) | 1.00 | (0.76, 1.32) | |
Worksite social support | 0.69 | (0.53, 0.91) | 0.68 | (0.51, 0.90) | 0.98 | (0.75, 1.28) | 1.05 | (0.79, 1.41) | |
Effort-Reward Imbalance Questionnaire | |||||||||
Effort-reward ratio | 1.26 | (0.97, 1.63) | 1.35 | (1.03, 1.78) | 1.02 | (0.79, 1.33) | 1.05 | (0.79, 1.40) | |
Odds ratio for high b urinary 8-OHdG (95% confidence interval) | |||||||||
Job Content Questionnaire | |||||||||
Job strain index c | 0.98 | (0.74, 1.29) | 1.02 | (0.76, 1.37) | 0.92 | (0.70, 1.22) | 0.96 | (0.71, 1.30) | |
Worksite social support | 0.98 | (0.75, 1.29) | 1.00 | (0.75, 1.33) | 0.75 | (0.57, 0.98) | 0.87 | (0.65, 1.17) | |
Effort-Reward Imbalance Questionnaire | |||||||||
Effort-reward ratio | 1.10 | (0.84, 1.43) | 1.14 | (0.86, 1.51) | 1.14 | (0.88, 1.46) | 1.04 | (0.79, 1.38) |
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Møller, P.; Wallin, H.; Knudsen, L.E. Oxidative stress associated with exercise, psychological stress and life-style factors. Chem. Biol. Interact. 1996, 102, 17–36. [Google Scholar] [CrossRef]
- Inoue, A.; Kawakami, N.; Ishizaki, M.; Tabata, M.; Tsuchiya, M.; Akiyama, M.; Kitazume, A.; Kuroda, M.; Shimazu, A. Three job stress models/concepts and oxidative DNA damage in a sample of workers in Japan. J. Psychosom. Res. 2009, 66, 329–334. [Google Scholar] [CrossRef]
- Adachi, S.; Kawamura, K.; Takemoto, K. Oxidative damage of nuclear DNA in liver of rats exposed to psychological stress. Cancer Res. 1993, 53, 4153–4155. [Google Scholar]
- Liu, J.; Wang, X.; Shigenaga, M.K.; Yeo, H.C.; Mori, A.; Ames, B.N. Immobilization stress causes oxidative damage to lipid, protein, and DNA in the brain of rats. Faseb J. 1996, 10, 1532–1538. [Google Scholar]
- Cernak, I.; Savic, V.; Kotur, J.; Prokic, V.; Kuljic, B.; Grbovic, D.; Veljovic, M. Alterations in magnesium and oxidative status during chronic emotional stress. Magnes. Res. 2000, 13, 29–36. [Google Scholar]
- Sivonová, M.; Zitnanová, I.; Hlincíková, L.; Skodácek, I.; Trebatická, J.; Duracková, Z. Oxidative stress in university students during examinations. Stress 2004, 7, 183–188. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Shioji, I.; Sugimoto, A.; Yamaoka, M. Psychological stress increases bilirubin metabolites in human urine. Biochem. Biophys. Res. Commun. 2002, 293, 517–520. [Google Scholar] [CrossRef]
- Irie, M.; Asami, S.; Nagata, S.; Miyata, M.; Kasai, H. Relationships between perceived workload, stress and oxidative DNA damage. Int. Arch. Occup. Envir. Health 2001, 74, 153–157. [Google Scholar] [CrossRef]
- Irie, M.; Tsutsumi, A.; Shioji, I.; Kobayashi, F. Effort-reward imbalance and physical health among Japanese workers in a recently downsized corporation. Int. Arch. Occup. Environ. Health 2004, 77, 409–417. [Google Scholar]
- Chandola, T.; Siegrist, J.; Marmot, M. Do changes in effort-reward imbalance at work contribute to an explanation of the social gradient in angina? Occup. Environ. Medicine 2005, 62, 223–230. [Google Scholar] [CrossRef]
- Kao, C.L.; Chen, L.K.; Chang, Y.L.; Yung, M.C.; Hsu, C.C.; Chen, Y.C.; Lo, W.L.; Chen, S.J.; Ku, H.H.; Hwang, S.J. Resveratrol protects human endothelium from H2O2-induced oxidative stress and senescence via SirT1 activation. J. Atheroscler. Thromb. 2010, 17, 970–979. [Google Scholar] [CrossRef]
- Karasek, R.A. Job demands, job decision latitude, and mental strain: implications for job redesign. Adm. Sci. Q. 1979, 24, 285–308. [Google Scholar] [CrossRef]
- Siegrist, J. Adverse health effects of high effort—Low reward conditions at work. J. Occup. Health Psychol. 1996, 1, 27–43. [Google Scholar] [CrossRef]
- Halliwell, B.; Clement, M.V.; Long, L.H. Hydrogen peroxide in the human body. Febs Lett. 2000, 486, 10–13. [Google Scholar] [CrossRef]
- Banerjee, D.; Madhusoodanan, U.K.; Nayak, S.; Jacob, J. Urinary hydrogen peroxide: A probable marker of oxidative stress in malignancy. Clin. Chim. Acta 2003, 334, 205–209. [Google Scholar] [CrossRef]
- Kawakami, N.; Kobayashi, F.; Araki, S.; Haratani, T.; Furui, H. Assessment of job stress dimensions based on the job demands-control model of employees of telecommunication and electric power companies in Japan: reliability and validity of the Japanese version of job content questionnaire. Int. J. Behav. Med. 1995, 2, 358–375. [Google Scholar] [CrossRef]
- Landsbergis, P.A.; Schnall, P.L.; Warren, K.; Pickering, T.G.; Schwartz, J.E. Association between ambulatory blood pressure and alternative formulations of job strain. Scand. J. Work Environ. Health 1994, 20, 349–363. [Google Scholar] [CrossRef]
- Pikhart, H.; Bobak, M.; Siegrist, J.; Pajak, A.; Rywik, S.; Kyshegyi, J.; Gostautas, A.; Skodova, Z.; Marmot, M. Psychosocial work characteristics and self rated health in four post-communist countries. J. Epidemiol. Community Health 2001, 55, 624–630. [Google Scholar] [CrossRef]
- Tsutsumi, A.; Ishitake, T.; Peter, R.; Siegrist, J.; Matoba, T. The Japanese version of the effort-reward imbalance questionnaire: A study in dental technicians. Work Stress 2001, 15, 86–96. [Google Scholar]
- Banerjee, D.; Jacob, J.; Kunjamma, G.; Madhusoodanan, U.K.; Ghosh, S. Measurement of urinary hydrogen peroxide by FOX-1 method in conjunction with catalase in diabetes mellitus—A sensitive and specific approach. Clin. Chim. Acta 2004, 350, 233–236. [Google Scholar] [CrossRef]
- Saito, S.; Yamauchi, H.; Hasui, Y.; Kurashige, J.; Ochi, H.; Yoshida, K. Quantitative determination of urinary 8-hydroxydeoxyguanosine (8-OHdG) by using ELISA. Res. Commun. Molecul. Pathol. P. 2000, 107, 39–44. [Google Scholar]
- Evans, M.D.; Singh, R.; Mistry, V.; Sandhu, K.; Farmer, P.B.; Cooke, M.S. Analysis of urinary 8-oxo-7,8-dihydro-purine-2'-deoxyribonucleosides by LC-MS/MS and improved ELISA. Free Radical Res. 2008, 42, 831–840. [Google Scholar] [CrossRef]
- Song, M.F.; Li, Y.S.; Ootsuyama, Y.; Kasai, H.; Kawai, K.; Ohta, M.; Eguchi, Y.; Yamato, H.; Matsumoto, Y.; Yoshida, R.; Ogawa, Y. Urea, the most abundant component in urine, cross-reacts with a commercial 8-OHdG ELISA kit and contributes to overestimation of urinary 8-OHdG. Free Radical Biol. Med. 2009, 47, 41–46. [Google Scholar] [CrossRef]
- Møller, P.; Loft, S. Dietary antioxidants and beneficial effect on oxidatively damaged DNA. Free Radical Biol. Med. 2006, 41, 388–415. [Google Scholar] [CrossRef]
- Whaley-Connell, A.; Sowers, J.R. Oxidative stress in the cardiorenal metabolic syndrome. Curr. Hypertens. Rep. 2012, 14, 360–365. [Google Scholar] [CrossRef]
- Pryor, W.A. Cigarette smoke radicals and the role of free radicals in chemical carcinogenicity. Environ. Health Perspect. 1997, 105, 875–882. [Google Scholar]
- Zhu, H.; Jia, Z.; Misra, H.; Li, Y.R. Oxidative stress and redox signaling mechanisms of alcoholic liver disease: Updated experimental and clinical evidence. J. Dig. Dis. 2012, 13, 133–142. [Google Scholar] [CrossRef]
- Powers, S.K.; Jackson, M.J. Exercise-induced oxidative stress: Cellular mechanisms and impact on muscle force production. Physiol. Rev. 2008, 88, 1243–1276. [Google Scholar] [CrossRef]
- Boehm, J.K.; Williams, D.R.; Rimm, E.B.; Ryff, C.; Kubzansky, L.D. Association between optimism and serum antioxidants in the midlife in the United States study. Psychosom. Med. 2013, 75, 2–10. [Google Scholar] [CrossRef]
- Takahashi, K.; Yoshimura, Y.; Kaimoto, T.; Kunii, D.; Komatsu, T.; Yamamoto, S. Validation of a food frequency questionnaire based on food groups for estimating individual nutrient intake. Jpn. J. nutr. 2001, 59, 221–232. [Google Scholar] [CrossRef]
- Chandramathi, S.; Suresh, K.; Anita, Z.B.; Kuppusamy, U.R. Comparative assessment of urinary oxidative indices in breast and colorectal cancer patients. J. Cancer Res. Clin. Oncol. 2009, 135, 319–323. [Google Scholar] [CrossRef]
- Sato, Y.; Ogino, K.; Sakano, N.; Wang, D.H.; Yoshida, J.; Akazawa, Y.; Kanbara, S.; Inoue, K.; Kubo, M.; Takahashi, H. Evaluation of urinary hydrogen peroxide as an oxidative stress biomarker in a healthy Japanese population. Free Radical Res. 2013, 47, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Werns, S.W.; Shea, M.J.; Lucchesi, B.R. Free radicals and myocardial injury: Pharmacologic implications. Circulation 1986, 74, 1–5. [Google Scholar] [CrossRef]
- McCord, J.M. Oxygen-derived free radicals in postischemic tissue injury. N. Engl. J. Med. 1985, 312, 159–163. [Google Scholar] [CrossRef]
- Hall, E.M.; Johnson, J.V.; Tsou, T.S. Women, occupation, and risk of cardiovascular morbidity and mortality. Occup. Med. 1993, 8, 709–719. [Google Scholar]
- Lee, S.; Colditz, G.; Berkman, L.; Kawachi, I. A prospective study of job strain and coronary heart disease in US women. Int. J. Epidemiol. 2002, 31, 1147–1153. [Google Scholar] [CrossRef]
- Peter, R.; Siegrist, J.; Hallqvist, J.; Reuterwall, C.; Theorell, T.; SHEEP Study Group. Psychosocial work environment and myocardial infarction: improving risk estimation by combining two complementary job stress models in the SHEEP Study. J. Epidemiol. Community Health 2002, 56, 294–300. [Google Scholar] [CrossRef]
- Hu, C.W.; Wu, M.T.; Chao, M.R.; Pan, C.H.; Wang, C.J.; Swenberg, J.A.; Wu, K.Y. Comparison of analyses of urinary 8-hydroxy-2’-deoxyguanosine by isotope-dilution liquid chromatography with electrospray tandem mass spectrometry and by enzyme-linked immunosorbent assay. Rapid Commun. Mass Spectrom. 2004, 18, 505–510. [Google Scholar] [CrossRef]
- Pilger, A.; Rüdiger, H.W. 8-Hydroxy-2’-deoxyguanosine as a marker of oxidative DNA damage related to occupational and environmental exposures. Int. Arch. Occup. Environ. Health 2006, 80, 1–15. [Google Scholar] [CrossRef]
- Cooke, M.S.; Singh, R.; Hall, G.K.; Mistry, V.; Duarte, T.L.; Farmer, P.B.; Evans, M.D. Evaluation of enzyme-linked immunosorbent assay and liquid chromatography-tandem mass spectrometry methodology for the analysis of 8-oxo-7,8-dihydro-2'-deoxyguanosine in saliva and urine. Free Radical Biol. Med. 2006, 41, 1829–1836. [Google Scholar] [CrossRef]
- Cooke, M.S.; Olinski, R.; Loft, S. European Standards Committee on Urinary (DNA) Lesion Analysis. Measurement and meaning of oxidatively modified DNA lesions in urine. Cancer Epidemiol. Biomarker. Prev. 2008, 17, 3–14. [Google Scholar] [CrossRef]
- Evans, M.D.; Olinski, R.; Loft, S.; Cooke, M.S.; European Standards Committee on Urinary (DNA) Lesion Analysis. Toward consensus in the analysis of urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine as a noninvasive biomarker of oxidative stress. Faseb J. 2010, 24, 1249–1260. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Takaki, J. Associations of Job Stress Indicators with Oxidative Biomarkers in Japanese Men and Women. Int. J. Environ. Res. Public Health 2013, 10, 6662-6671. https://doi.org/10.3390/ijerph10126662
Takaki J. Associations of Job Stress Indicators with Oxidative Biomarkers in Japanese Men and Women. International Journal of Environmental Research and Public Health. 2013; 10(12):6662-6671. https://doi.org/10.3390/ijerph10126662
Chicago/Turabian StyleTakaki, Jiro. 2013. "Associations of Job Stress Indicators with Oxidative Biomarkers in Japanese Men and Women" International Journal of Environmental Research and Public Health 10, no. 12: 6662-6671. https://doi.org/10.3390/ijerph10126662
APA StyleTakaki, J. (2013). Associations of Job Stress Indicators with Oxidative Biomarkers in Japanese Men and Women. International Journal of Environmental Research and Public Health, 10(12), 6662-6671. https://doi.org/10.3390/ijerph10126662