Impact of Viewing vs. Not Viewing a Real Forest on Physiological and Psychological Responses in the Same Setting
Abstract
:1. Introduction
2. Methods
2.1. Subjects
2.2. Experimental Stimuli
2.3. Procedure
2.4. Measurements
2.5. Data and Statistical Analysis
3. Results
3.1. Environmental Conditions
3.2. Physiological Responses
BP | Main Effect | Interaction | |||||||
---|---|---|---|---|---|---|---|---|---|
Condition (Enclosed vs. Forest) | Time (pre vs. post) | Condition × Time | |||||||
F | p | η2 | F | p | η2 | F | p | η2 | |
SBP | 2.601 | 0.125 | 0.01 | 17.449 ** | 0.001 | 0.02 | 1.872 | 0.223 | <0.01 |
DBP | 1.537 | 0.235 | 0.01 | 12.143 ** | 0.004 | 0.02 | 0.042 | 0.841 | <0.01 |
MAP | 2.185 | 0.161 | 0.01 | 15.778 ** | 0.001 | 0.02 | 0.047 | 0.831 | <0.01 |
NIRS Signals | Main Effect | Interaction | |||||||
---|---|---|---|---|---|---|---|---|---|
Condition (Enclosed vs. Forest) | Time (1 min to 15 min) | Condition × Time | |||||||
F | p | η2 | F | p | η2 | F | p | η2 | |
HbO2 | 7.046 * | 0.019 | 0.12 | 0.836 | 0.622 | 0.01 | 3.521 *** | <0.001 | 0.05 |
HHb | 3.710 | 0.075 | 0.09 | 2.052 * | 0.019 | 0.02 | 1.605 | 0.087 | 0.02 |
total Hb | 4.366 | 0.055 | 0.10 | 1.342 | 0.192 | 0.02 | 2.500 ** | 0.004 | 0.04 |
Stress Marker | Condition | Pre | Post | ||||
---|---|---|---|---|---|---|---|
Salivary amylase (kU/L) | Enclosed | 14.3 | ± | 3.3 | 16.5 | ± | 3.2 |
Forest | 19.0 | ± | 4.2 | 16.7 | ± | 3.2 |
HRV | Condition | 0–5 min | 10–15 min |
---|---|---|---|
HR (bpm) | Enclosed | 68.9 ± 2.1 | 67.6 ± 2.0 * |
Forest | 69.0 ± 2.7 | 67.5 ± 2.3 * | |
HF (msec2) | Enclosed | 202 ± 29 | 231 ± 32 |
Forest | 204 ± 35 | 249 ± 26 ** | |
LF/HF | Enclosed | 2.12 ± 0.28 | 1.62 ± 0.46 |
Forest | 2.04 ± 0.42 | 1.85 ± 0.67 |
HRV | Main Effect | Interaction | |||||||
---|---|---|---|---|---|---|---|---|---|
Condition (Enclosed vs. Forest) | Time (first vs. last 5 min) | Condition × Time | |||||||
F | p | η2 | F | p | η2 | F | p | η2 | |
HR | 0.001 | 0.972 | <0.01 | 6.125 * | 0.027 | 0.01 | 0.296 | 0.595 | <0.01 |
HF | 0.420 | 0.528 | <0.01 | 8.074 * | 0.014 | 0.03 | 0.848 | 0.374 | <0.01 |
LF/HF | 0.066 | 0.802 | <0.01 | 1.347 | 0.267 | 0.01 | 0.621 | 0.445 | <0.01 |
3.3. Psychological Responses
Condition | Enclosed | Forest | ||||
---|---|---|---|---|---|---|
POMS | Pre | Post | p value | Pre | Post | p value |
Trait-Anxiety | 3.5 ± 0.7 | 2.4 ± 0.6 | 0.234 | 4.2 ± 0.9 | 2.2 ± 0.8 * | 0.031 |
Depression | 1.2 ± 0.4 | 0.9 ± 0.4 | 0.345 | 1.5 ± 0.5 | 0.2 ± 0.1 ** | 0.001 |
Anger-Hostility | 0.5 ± 0.2 | 0.3 ± 0.2 | 0.265 | 0.4 ± 0.2 | 0.2 ± 0.2 | 0.265 |
Vigor | 4.3 ± 1.0 | 2.6 ± 0.7 ** | 0.008 | 5.1 ± 0.9 | 3.9 ± 0.9 | 0.060 |
Fatigue | 2.6 ± 0.7 | 1.7 ± 0.5 | 0.068 | 2.7 ± 0.6 | 0.9 ± 0.3 ** | 0.001 |
Confuse | 5.1 ± 0.6 | 4.9 ± 0.4 | 0.795 | 5.8 ± 0.6 | 4.1 ± 0.3 ** | 0.002 |
POMS | Main Effect | Interaction | |||||||
---|---|---|---|---|---|---|---|---|---|
Condition (Enclosed vs. Forest) | Time (pre vs. post) | Condition × Time | |||||||
F | p | η2 | F | p | η2 | F | p | η2 | |
T-A | 0.185 | 0.674 | <0.01 | 7.399 * | 0.017 | 0.07 | 0.483 | 0.499 | 0.01 |
D | 0.337 | 0.571 | 0.01 | 17.013 ** | 0.001 | 0.07 | 2.654 | 0.126 | 0.03 |
A-H | 0.189 | 0.670 | <0.01 | 6.000 * | 0.028 | 0.02 | <0.001 | 1.000 | <0.01 |
V | 3.684 | 0.076 | 0.02 | 11.663 ** | 0.004 | 0.05 | 0.374 | 0.551 | <0.01 |
F | 0.387 | 0.544 | 0.01 | 14.403 ** | 0.002 | 0.10 | 1.683 | 0.216 | 0.01 |
C | 0.019 | 0.893 | <0.01 | 6.668 * | 0.022 | 0.06 | 4.996 * | 0.042 | 0.05 |
4. Discussion
4.1. Cardiovascular Responses
4.2. Cerebral Oxygenation
4.3. Salivary Amylase
4.4. Profile of Mood States (POMS)
4.5. Technical Considerations
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Barton, J.; Griffin, M.; Pretty, J. Exercise-, nature- and socially interactive-based initiatives improve mood and self-esteem in the clinical population. Perspect. Public Health 2012, 132, 89–96. [Google Scholar] [CrossRef]
- Barton, J.; Pretty, J. What is the best dose of nature and green exercise for improving mental health? A multi-study analysis. Environ. Sci. Technol. 2010, 44, 3947–3955. [Google Scholar] [CrossRef] [PubMed]
- Takano, T.; Nakamura, K.; Watanabe, M. Urban residential environments and senior citizens’ longevity in megacity areas: The importance of walkable green spaces. J. Epidemiol. Community Health 2002, 56, 913–918. [Google Scholar] [CrossRef] [PubMed]
- Morita, E.; Fukuda, S.; Nagano, J.; Hamajima, N.; Yamamoto, H.; Iwai, Y.; Nakashima, T.; Ohira, H.; Shirakawa, T. Psychological effects of forest environments on healthy adults: Shinrin-yoku (forest-air bathing, walking) as a possible method of stress reduction. Public Health 2007, 121, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Park, B.J.; Tsunetsugu, Y.; Kasetani, T.; Hirano, H.; Kagawa, T.; Sato, M.; Miyazaki, Y. Physiological effects of Shinrin-yoku (taking in the atmosphere of the forest)—Using salivary cortisol and cerebral activity as indicators. J. Physiol. Anthropol. 2007, 26, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Park, B.J.; Tsunetsugu, Y.; Kasetani, T.; Kagawa, T.; Miyazaki, Y. The physiological effects of Shinrin-yoku (taking in the forest atmosphere or forest bathing): Evidence from field experiments in 24 forests across Japan. Environ. Health Prev. Med. 2010, 15, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Tsunetsugu, Y.; Park, B.J.; Ishii, H.; Hirano, H.; Kagawa, T.; Miyazaki, Y. Physiological effects of Shinrin-yoku (taking in the atmosphere of the forest) in an old-growth broadleaf forest in Yamagata Prefecture, Japan. J. Physiol. Anthropol. 2007, 26, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Park, B.J.; Tsunetsugu, Y.; Ohira, T.; Kagawa, T.; Miyazaki, Y. Effect of forest bathing on physiological and psychological responses in young Japanese male subjects. Public Health 2011, 125, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Deguchi, M.; Miyazaki, Y. The effects of exercise in forest and urban environments on sympathetic nervous activity of normal young adults. J. Int. Med. Res. 2006, 34, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, R.S. View through a window may influence recovery from surgery. Science 1984, 224, 420–421. [Google Scholar] [CrossRef] [PubMed]
- Hoshi, Y.; Huang, J.; Kohri, S.; Iguchi, Y.; Naya, M.; Okamoto, T.; Ono, S. Recognition of human emotions from cerebral blood flow changes in the frontal region: A study with event-related near-infrared spectroscopy. J. Neuroimaging Off. J. Am. Soc. Neuroimaging 2011, 21, 94–101. [Google Scholar] [CrossRef]
- Groenewegen, P.P.; van den Berg, A.E.; de Vries, S.; Verheij, R.A. Vitamin G: Effects of green space on health, well-being, and social safety. BMC Public Health 2006, 6. [Google Scholar] [CrossRef]
- Lee, K.C.; Chao, Y.H.; Yiin, J.J.; Hsieh, H.Y.; Dai, W.J.; Chao, Y.F. Evidence that music listening reduces preoperative patients’ anxiety. Biol. Res. Nurs. 2012, 14, 78–84. [Google Scholar] [CrossRef]
- Leicht, A.S.; Sinclair, W.H.; Patterson, M.J.; Rudzki, S.; Tulppo, M.P.; Fogarty, A.L.; Winter, S. Influence of postexercise cooling techniques on heart rate variability in men. Exp. Physiol. 2009, 94, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.M.; Koo, M.; Yu, Z.R. Effects of music and essential oil inhalation on cardiac autonomic balance in healthy individuals. J. Altern. Complement. Med. 2009, 15, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur. Heart J. 1996, 17, 354–381.
- Horiuchi, M.; Fadel, P.J.; Ogoh, S. Differential effect of sympathetic activation on tissue oxygenation in gastrocnemius and soleus muscles during exercise in humans. Exp. Physiol. 2014, 99, 348–358. [Google Scholar] [CrossRef] [PubMed]
- Ando, S.; Hatamoto, Y.; Sudo, M.; Kiyonaga, A.; Tanaka, H.; Higaki, Y. The effects of exercise under hypoxia on cognitive function. PLoS One 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Ando, S.; Yamada, Y.; Kokubu, M. Reaction time to peripheral visual stimuli during exercise under hypoxia. J. Appl. Physiol. 2010, 108, 1210–1216. [Google Scholar] [CrossRef] [PubMed]
- Hoshi, Y.; Kobayashi, N.; Tamura, M. Interpretation of near-infrared spectroscopy signals: A study with a newly developed perfused rat brain model. J. Appl. Physiol. 2001, 90, 1657–1662. [Google Scholar] [PubMed]
- George, M.S.; Ketter, T.A.; Parekh, P.I.; Horwitz, B.; Herscovitch, P.; Post, R.M. Brain activity during transient sadness and happiness in healthy women. Am. J. Psychiatry 1995, 152, 341–351. [Google Scholar] [PubMed]
- Yamaguchi, M.; Deguchi, M.; Wakasugi, J.; Ono, S.; Takai, N.; Higashi, T.; Mizuno, Y. Hand-held monitor of sympathetic nervous system using salivary amylase activity and its validation by driver fatigue assessment. Biosens. Bioelectron. 2006, 21, 1007–1014. [Google Scholar] [CrossRef] [PubMed]
- McNair, D.M.; Maurice, L. An analysis of mood in neurotics. J. Abnorm. Soc. Psychol. 1964, 69, 620–627. [Google Scholar] [CrossRef]
- Yokoyama, K.; Araki, S.; Kawakami, N.; Takeshita, T. Production of the Japanese edition of profile of mood states (POMS): Assessment of reliability and validity. Jpn. J. Public Health 1990, 37, 913–918. (In Japanese) [Google Scholar]
- Li, Q.; Otsuka, T.; Kobayashi, M.; Wakayama, Y.; Inagaki, H.; Katsumata, M.; Hirata, Y.; Li, Y.; Hirata, K.; Shimizu, T.; et al. Acute effects of walking in forest environments on cardiovascular and metabolic parameters. Eur. J. Appl. Physiol. 2011, 111, 2845–2853. [Google Scholar] [CrossRef] [PubMed]
- Dayawansa, S.; Umeno, K.; Takakura, H.; Hori, E.; Tabuchi, E.; Nagashima, Y.; Oosu, H.; Yada, Y.; Suzuki, T.; Ono, T.; et al. Autonomic responses during inhalation of natural fragrance of Cedrol in humans. Auton. Neurosci. Basic Clin. 2003, 108, 79–86. [Google Scholar] [CrossRef]
- Umeno, K.; Hori, E.; Tsubota, M.; Shojaku, H.; Miwa, T.; Nagashima, Y.; Yada, Y.; Suzuki, T.; Ono, T.; Nishijo, H. Effects of direct cedrol inhalation into the lower airway on autonomic nervous activity in totally laryngectomized subjects. Br. J. Clin. Pharmacol. 2008, 65, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Mishima, R.; Kudo, T.; Tsunetsugu, Y.; Miyazaki, Y.; Yamamura, C.; Yamada, Y. Effects of sounds generated by a dental turbine and a stream on regional cerebral blood flow and cardiovascular responses. Odontol. Soc. Nippon Dent. Univ. 2004, 92, 54–60. [Google Scholar] [CrossRef]
- Brown, D.K.; Barton, J.L.; Gladwell, V.F. Viewing nature scenes positively affects recovery of autonomic function following acute-mental stress. Environ. Sci. Technol. 2013, 47, 5562–5569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gladwell, V.F.; Brown, D.K.; Barton, J.L.; Tarvainen, M.P.; Kuoppa, P.; Pretty, J.; Suddaby, J.M.; Sandercock, G.R. The effects of views of nature on autonomic control. Eur. J. Appl. Physiol. 2012, 112, 3379–3386. [Google Scholar] [CrossRef] [PubMed]
- Narkiewicz, K.; Winnicki, M.; Schroeder, K.; Phillips, B.G.; Kato, M.; Cwalina, E.; Somers, V.K. Relationship between muscle sympathetic nerve activity and diurnal blood pressure profile. Hypertension 2002, 39, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Pal, G.K.; Adithan, C.; Amudharaj, D.; Dutta, T.K.; Pal, P.; Nandan, P.G.; Nanda, N. Assessment of sympathovagal imbalance by spectral analysis of heart rate variability in prehypertensive and hypertensive patients in Indian population. Clin. Exp. Hypertens. 2011, 33, 478–483. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, H.; Larson, M.G.; Venditti, F.J., Jr.; Manders, E.S.; Evans, J.C.; Feldman, C.L.; Levy, D. Impact of reduced heart rate variability on risk for cardiac events. The framingham heart study. Circulation 1996, 94, 2850–2855. [Google Scholar] [CrossRef] [PubMed]
- Ekkekakis, P. Illuminating the black box: Investigating prefrontal cortical hemodynamics during exercise with near-infrared spectroscopy. J. Sport Exerc. Psychol. 2009, 31, 505–553. [Google Scholar] [PubMed]
- Chen, S.; Sakatani, K.; Lichty, W.; Ning, P.; Zhao, S.; Zuo, H. Auditory-evoked cerebral oxygenation changes in hypoxic-ischemic encephalopathy of newborn infants monitored by near infrared spectroscopy. Early Hum. Dev. 2002, 67, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Sakatani, K.; Xie, Y.; Lichty, W.; Li, S.; Zuo, H. Language-activated cerebral blood oxygenation and hemodynamic changes of the left prefrontal cortex in poststroke aphasic patients: A near-infrared spectroscopy study. Stroke 1998, 29, 1299–1304. [Google Scholar] [CrossRef] [PubMed]
- Hock, C.; Villringer, K.; Muller-Spahn, F.; Wenzel, R.; Heekeren, H.; Schuh-Hofer, S.; Hofmann, M.; Minoshima, S.; Schwaiger, M.; Dirnagl, U.; et al. Decrease in parietal cerebral hemoglobin oxygenation during performance of a verbal fluency task in patients with Alzheimer’s disease monitored by means of near-infrared spectroscopy (NIRS)—Correlation with simultaneous rCBF-PET measurements. Brain Res. 1997, 755, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Sakatani, K.; Lichty, W.; Xie, Y.; Li, S.; Zuo, H. Effects of aging on language-activated cerebral blood oxygenation changes of the left prefrontal cortex: Near infrared spectroscopy study. J. Stroke Cerebrovasc. Dis. 1999, 8, 398–403. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, T.; Horiuchi, M.; Ichikawa, D.; Sato, K.; Tanaka, N.; Bailey, D.M.; Ogoh, S. Kinetics of exercise-induced neural activation; interpretive dilemma of altered cerebral perfusion. Exp. Physiol. 2012, 97, 219–227. [Google Scholar] [PubMed]
- Fox, P.T.; Raichle, M.E. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc. Natl. Acad. Sci. USA 1986, 83, 1140–1144. [Google Scholar] [CrossRef] [PubMed]
- Beil, K.; Hanes, D. The influence of urban natural and built environments on physiological and psychological measures of stress—A pilot study. Int. J. Environ. Res. Public Health 2013, 10, 1250–1267. [Google Scholar] [CrossRef] [PubMed]
- Roe, J.J.; Thompson, C.W.; Aspinall, P.A.; Brewer, M.B.; Duff, E.I.; Miller, D.; Mitchell, R.; Clow, A. Green space and stress: Evidence from cortisol measures in deprived urban communities. Int. J. Environ. Res. Public Health 2013, 10, 4086–4103. [Google Scholar] [CrossRef] [PubMed]
- Harmon, A.G.; Towe-Goodman, N.R.; Fortunato, C.K.; Granger, D.A. Differences in saliva collection location and disparities in baseline and diurnal rhythms of alpha-amylase: A preliminary note of caution. Horm. Behav. 2008, 54, 592–596. [Google Scholar] [CrossRef] [PubMed]
- Akers, A.; Barton, J.; Cossey, R.; Gainsford, P.; Griffin, M.; Micklewright, D. Visual color perception in green exercise: Positive effects on mood and perceived exertion. Environ. Sci. Technol. 2012, 46, 8661–8666. [Google Scholar] [CrossRef] [PubMed]
- Arikuni, T.; Sako, H.; Murata, A. Ipsilateral connections of the anterior cingulate cortex with the frontal and medial temporal cortices in the macaque monkey. Neurosci. Res. 1994, 21, 19–39. [Google Scholar] [CrossRef] [PubMed]
- Ghashghaei, H.T.; Hilgetag, C.C.; Barbas, H. Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. NeuroImage 2007, 34, 905–923. [Google Scholar] [CrossRef] [PubMed]
- Levesque, J.; Eugene, F.; Joanette, Y.; Paquette, V.; Mensour, B.; Beaudoin, G.; Leroux, J.M.; Bourgouin, P.; Beauregard, M. Neural circuitry underlying voluntary suppression of sadness. Biol. Psychiatry 2003, 53, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, K.; Yasukouchi, A. Analysis of heart rate variability during mental task with reference to ambient temperature. Appl. Hum. Sci. J. Physiol. Anthropol. 1999, 18, 219–223. [Google Scholar] [CrossRef]
- Jansen, P.M.; Leineweber, M.J.; Thien, T. The effect of a change in ambient temperature on blood pressure in normotensives. J. Hum. Hypertens. 2001, 15, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Dale, P.; Augustine, G.L.; Fitzpatrick, D.; Hall, W.C.; LaManita, A.S.; McNamara, J.O.; White, L.E. Neuroscience, 5th ed.; Sinauer Assciates: Sunderland, MA, USA, 2011; pp. 290–291. [Google Scholar]
- Miyazawa, T.; Horiuchi, M.; Komine, H.; Sugawara, J.; Fadel, P.J.; Ogoh, S. Skin blood flow influences cerebral oxygenation measured by near-infrared spectroscopy during dynamic exercise. Eur. J. Appl. Physiol. 2013, 113, 2841–2848. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, J.A.; Bishop, B. Respiratory sinus arrhythmia in humans: How breathing pattern modulates heart rate. Am. J. Physiol. 1981, 241, 620–629. [Google Scholar]
- Kollai, M.; Mizsei, G. Respiratory sinus arrhythmia is a limited measure of cardiac parasympathetic control in man. J. Physiol. 1990, 424, 329–342. [Google Scholar] [PubMed]
- Weise, F.; Heydenreich, F. Effects of modified respiratory rhythm on heart rate variability during active orthostatic load. Biomed. Biochim. Acta 1989, 48, 549–556. [Google Scholar] [PubMed]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horiuchi, M.; Endo, J.; Takayama, N.; Murase, K.; Nishiyama, N.; Saito, H.; Fujiwara, A. Impact of Viewing vs. Not Viewing a Real Forest on Physiological and Psychological Responses in the Same Setting. Int. J. Environ. Res. Public Health 2014, 11, 10883-10901. https://doi.org/10.3390/ijerph111010883
Horiuchi M, Endo J, Takayama N, Murase K, Nishiyama N, Saito H, Fujiwara A. Impact of Viewing vs. Not Viewing a Real Forest on Physiological and Psychological Responses in the Same Setting. International Journal of Environmental Research and Public Health. 2014; 11(10):10883-10901. https://doi.org/10.3390/ijerph111010883
Chicago/Turabian StyleHoriuchi, Masahiro, Junko Endo, Norimasa Takayama, Kazutaka Murase, Norio Nishiyama, Haruo Saito, and Akio Fujiwara. 2014. "Impact of Viewing vs. Not Viewing a Real Forest on Physiological and Psychological Responses in the Same Setting" International Journal of Environmental Research and Public Health 11, no. 10: 10883-10901. https://doi.org/10.3390/ijerph111010883
APA StyleHoriuchi, M., Endo, J., Takayama, N., Murase, K., Nishiyama, N., Saito, H., & Fujiwara, A. (2014). Impact of Viewing vs. Not Viewing a Real Forest on Physiological and Psychological Responses in the Same Setting. International Journal of Environmental Research and Public Health, 11(10), 10883-10901. https://doi.org/10.3390/ijerph111010883